Theory of Poroelasticity 7. Anisotropic material

Ki-Bok Min, PhD

Assistant Professor Department of Energy Resources Engineering Seoul National University

Generalized Hooke's Law Tensor & Matrix Form

SEOUL NATIONAL UNIVERSITY

 Compliance matrix has 21 independent parameters (By the symmetry of stress tensor, strain tensor and consideration of strain energy)

More explicit expression - Lekhnitskii(1963), Hudson (1997)

Monoclinic One plane of elastic symmetry

$$\begin{pmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{yz} \\ \gamma_{xz} \\ \gamma_{xy} \end{pmatrix} = \begin{pmatrix} \frac{1}{E_{x}} & -\frac{v_{yx}}{E_{y}} & -\frac{v_{zx}}{E_{z}} & 0 & 0 & \frac{\eta_{x,xy}}{G_{xy}} \\ -\frac{v_{xy}}{E_{x}} & \frac{1}{E_{y}} & -\frac{v_{zy}}{E_{z}} & 0 & 0 & \frac{\eta_{y,xy}}{G_{xy}} \\ -\frac{v_{xz}}{E_{x}} & -\frac{v_{yz}}{E_{y}} & \frac{1}{E_{z}} & 0 & 0 & \frac{\eta_{z,xy}}{G_{xy}} \\ 0 & 0 & 0 & \frac{1}{G_{yz}} & \frac{\mu_{yz,xz}}{G_{xz}} & 0 \\ 0 & 0 & 0 & \frac{\mu_{xz,yz}}{G_{yz}} & \frac{1}{G_{xz}} & 0 \\ \frac{\eta_{xy,x}}{E_{x}} & \frac{\eta_{xy,y}}{E_{y}} & \frac{\eta_{xy,z}}{E_{z}} & 0 & 0 & \frac{1}{G_{xy}} \end{pmatrix}$$

- With a plane of symmetry normal to z-axis
- 13 independent constants

Orthotropic Three orthogonal planes of elastic symmetry NATIONAL UNIVERSITY

$$\begin{pmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{yz} \\ \gamma_{xz} \\ \gamma_{xy} \end{pmatrix} = \begin{pmatrix} \frac{1}{E_{x}} & -\frac{V_{yx}}{E_{y}} & -\frac{V_{zx}}{E_{z}} & 0 & 0 & 0 \\ -\frac{V_{xy}}{E_{x}} & \frac{1}{E_{y}} & -\frac{V_{zy}}{E_{z}} & 0 & 0 & 0 \\ -\frac{V_{xz}}{E_{x}} & -\frac{V_{yz}}{E_{y}} & \frac{1}{E_{z}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G_{yz}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_{xz}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G_{xz}} \end{pmatrix} \begin{pmatrix} \sigma_{x} \\ \sigma_{y} \\ \sigma_{z} \\ \tau_{yz} \\ \tau_{xz} \\ \tau_{xy} \end{pmatrix}$$

- Three orthogonal planes elastic symmetry
- 9 independent constants

Transversely Isotropic One axis of elastic symmetry of rotation

$$\begin{pmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{yz} \\ \gamma_{xy} \\ \gamma_{xy} \end{pmatrix} = \begin{pmatrix} \frac{1}{E} & -\frac{\nu}{E} & -\frac{\nu'}{E'} & 0 & 0 & 0 \\ -\frac{\nu}{E} & \frac{1}{E} & -\frac{\nu'}{E'} & 0 & 0 & 0 \\ -\frac{\nu'}{E'} & -\frac{\nu'}{E'} & \frac{1}{E'} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G'} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G'} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G'} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G} \end{pmatrix} \begin{pmatrix} \sigma_{x} \\ \sigma_{y} \\ \sigma_{z} \\ \tau_{xz} \\ \tau_{xy} \end{pmatrix}$$

$$\begin{aligned} \varepsilon_{x} = E_{y} = E \\ E_{z} = E' \\ v_{xy} = v_{yx} = v \\ v_{xy} = v_{yx} = v \\ v_{xz} = v_{zy} = v' \\ G_{xz} = G_{yz} = G' \end{cases} \quad v_{xz} = v_{yz} = v' \frac{E}{E'} \quad . 5 \text{ independent constants}$$

Isotropic Complete symmetry

$$E' = E$$

$$V' = V$$

$$G' = G$$

$$\begin{pmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ \gamma_{yz} \\ \gamma_{xy} \end{pmatrix} = \begin{pmatrix} \frac{1}{E} & -\frac{v}{E} & -\frac{v}{E} & 0 & 0 & 0 \\ -\frac{v}{E} & \frac{1}{E} & -\frac{v}{E} & 0 & 0 & 0 \\ -\frac{v}{E} & -\frac{v}{E} & \frac{1}{E} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G} \end{pmatrix} \begin{pmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{yz} \\ \tau_{xz} \\ \tau_{xy} \end{pmatrix}$$

Bounds of elastic constants

$$W = \frac{1}{2}\sigma_{ij}\varepsilon_{ij} \qquad W = \frac{1}{2}\sigma^T S\sigma$$

- the 6×6 matrices of elastic constants must be positive definite (Ting, 1996)
- A necessary and sufficient condition for the quadratic form to be positive definite is that all principal minors of matrix (that is all minor determinants in the matrix having diagonal elements coincident with the principal diagonal of the matrix) are positive (Amadei et al 1987).

Bounds of elastic constants Orthogonal

SEOUL NATIONAL UNIVERSITY

 $E_x, E_y, E_z, G_x, G_y, G_z > 0$

1

Bounds of elastic constants Orthogonal

SEOUL NATIONAL UNIVERSITY

$$\begin{split} E_{x}, E_{y}, E_{z}, G_{x}, G_{y}, G_{z} > 0 \\ -\sqrt{\frac{E_{x}}{E_{y}}} \langle v_{xy} \langle \sqrt{\frac{E_{x}}{E_{y}}} \\ -\sqrt{\frac{E_{y}}{E_{z}}} \langle v_{yz} \langle \sqrt{\frac{E_{y}}{E_{z}}} \\ -\sqrt{\frac{E_{x}}{E_{z}}} \langle v_{xz} \langle \sqrt{\frac{E_{x}}{E_{z}}} \end{split}$$

$$1 - \frac{E_z}{E_y} v_{yz}^2 - \frac{E_y}{E_x} v_{xy}^2 - \frac{E_z}{E_x} v_{xz}^2 - 2\frac{E_z}{E_x} v_{xy} v_{xz} v_{yz} \rangle 0$$

Bounds of elastic constants Transversely Isotropic

SEOUL NATIONAL UNIVERSITY

E, E', G' > 0-1 < \nu < 1 -\sqrt{\frac{E'(1-\nu)}{E} - \sqrt{\frac{E'(1-\nu)}{2}} < \nu' < \sqrt{\frac{E'(1-\nu)}{E} - \frac{2}{2}}

Bounds of elastic constants Isotropic

$$-\sqrt{\frac{(1-\nu)}{2}} < \nu < \sqrt{\frac{(1-\nu)}{2}}$$

Application to fractured rock masses - Amadei (1981)

SEOUL NATIONAL UNIVERSITY

Rock masses with three perpendicular fracture sets can modelled as orthogonally isotropic rock

Transformation of compliance tensor under the transformation of axis

- 0th order tensor (scalar) : no need to transform, independent of coordinate
- 1th order tensor (vector) :
- 2nd order tensor :
 - i.e. stress, strain, permeability

$$x_i' = \beta_{ij} x_j$$

$$\sigma'_{ij} = \beta_{im}\beta_{jn}\sigma_{mn}$$

$$S'_{ijkl} = \beta_{im} \beta_{jn} \beta_{kp} \beta_{lp} S_{mnpq}$$

$$\beta_{ij} = \begin{pmatrix} \cos(x', x) & \cos(x', y) & \cos(x', z) \\ \cos(y', x) & \cos(y', y) & \cos(y', z) \\ \cos(z', x) & \cos(z', y) & \cos(z', z) \end{pmatrix} \qquad \beta_{ij} = \begin{pmatrix} \cos\varphi & \sin\varphi & 0 \\ -\sin\varphi & \cos\varphi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

General transformation Rotation

Compliance matrix Transformation

	Х	Y	z
Χ'	α_1	β_1	γ_1
Y'	α2	β_2	γ2
Ζ'	α3	β_3	γ_3

	1	2	3	4	5	6
1	α_1^2	α_2^2	α_3^2	$2\alpha_2\alpha_3$	$2\alpha_3\alpha_1$	$2\alpha_1\alpha_2$
2	β_1^2	β_2^2	β_3^2	$2\beta_2\beta_3$	$2\beta_3\beta_1$	$2\beta_1\beta_2$
3	γ_1^2	γ_2^2	γ_3^2	$2\gamma_2\gamma_3$	$2\gamma_3\gamma_1$	$2\gamma_1\gamma_2$
4	$\beta_1 \gamma_1$	$\beta_2 \gamma_2$	$\beta_3 \gamma_3$	$\beta_2 \gamma_3 + \beta_3 \gamma_2$	$\beta_1 \gamma_3 + \beta_3 \gamma_1$	$\beta_1 \gamma_2 + \beta_2 \gamma_1$
5	$\gamma_1 \alpha_1$	$\gamma_2 \alpha_2$	$\gamma_3 \alpha_3$	$\gamma_2 \alpha_3 + \gamma_3 \alpha_2$	$\gamma_1 \alpha_3 + \gamma_3 \alpha_1$	$\gamma_1 \alpha_2 + \gamma_2 \alpha_1$
6	$\alpha_1 \beta_1$	$\alpha_2 \beta_2$	$\alpha_{3}\beta_{3}$	$\alpha_2\beta_3 + \alpha_3\beta_2$	$\alpha_1\beta_3 + \alpha_3\beta_1$	$\alpha_1\beta_2 + \alpha_2\beta_1$

Transformation of compliance tensor Elastic modulus and Poisson's ratio (Min & Jing, 2004)

SEOUL NATIONAL UNIVERSITY

Transversely Isotropic rock

Transformation of compliance tensor Elastic modulus

SEOUL NATIONAL UNIVERSITY

• Orthotropic rock

Transformation of compliance tensor Elastic modulus

SEOUL NATIONAL UNIVERSITY

Fractured Rock Masses