
Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-1

Chapter 1: Introduction

Prof. Soo-Ik Chae

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-2

Objectives

After completing this chapter, you will be able to:

 Understand the features of HDLs and Verilog HDL

 Describe the HDL-based design flow

 Describe the basic features of the modules in Verilog HDL

 Describe how to model a design in structural style

 Describe how to model a design in dataflow style

 Describe how to model a design in behavioral style

 Describe how to model a design in mixed style

 Describe how to simulate/verify a design using Verilog HDL

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-3

Importance of HDLs

 HDL is an acronym of Hardware Description Language.

 Two most commonly used HDLs:

 Verilog HDL (also called Verilog for short)

 VHDL (Very high-speed integrated circuits HDL)

 Features of HDLs:

 Design can be described at a very abstract level.

 Functional verification can be done early in the design

cycle.

 Designing with HDLs is analogous to computer

programming.

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-4

Popularity of Verilog HDL

 It is a general-purpose, easy to learn, and easy to use HDL

language.

 It allows different levels of abstraction to be mixed in the

same model.

 It is supported by all logic synthesis tools.

 It provides a powerful Programming Language Interface

(PLI).

 Allow us to develop our own CAD tools such as delay

calculator.

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-5

SystemVerilog

 IEEE Standard1800

 the industry's first unified hardware description and

verification language (HDVL) standard.

 a major extension of the established IEEE 1364TM Verilog

language.

 It was developed originally by Accellera to dramatically

improve productivity in the design of large gate-count, IP-

based, bus-intensive chips.

 SystemVerilog is targeted primarily at the chip

implementation and verification flow, with powerful links to

the system-level design flow.

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-6

HDL-Based Design Flow

Design specification

Design entery

Functional verification

Device selected

Place and route

Timing analysis

Programming

Prototyping

Device selected

Programming

Place and route

Timing analysis

Prototyping Prototyping

PLD

CPLD/FPGA

GA/standard cell

Target-independent part

T
ar

g
et

-d
ep

en
d

en
t

p
ar

t

Cell library selected

Synthesis and optimization Synthesis and optimization

Post-synthesis verification Post-synthesis verification

S
y

n
th

es
is

Im
p

le
m

en
ta

ti
o

n

Front-end design

Back-end design

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-7

Modules – Hardware Module Concept

 The basic unit of a digital system is a module.

 Each module consists of:

 a core circuit (called internal or body) --- performs the

required function

 an interface (called ports) --- carries out the required

communication between

the core circuit

and outside.

14 13 12 11 10 9 8

1 2 3 4 5 6 7

GND

V
CC

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-8

Modules – Verilog HDL modules

 module --- The basic building block in Verilog HDL.

 It can be an element or a collection of lower-level design

blocks.
module Module name

Port List, Port Declarations (if any)

Parameters (if any)

Declarations of wires, regs, and other variables

Instantiation of lower level modules or primitives

Data flow statements (assign)

always and initial blocks. (all behavioral statements go

into these blocks).

Tasks and functions.

endmodule statement

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-9

Lexical Conventions

 Verilog HDL uses almost the same lexical conventions as C

language.

 Identifiers consists of alphanumeric characters, _, and $.

• Verilog is a case-sensitive language just like C.

 White space: blank space (\b), tabs (\t), and new line (\n).

 Comments:

• // indicates that the remaining of the line is a comment.

• /* ….*/ indicates what in between them are comments.

 Sized number: <size>`<base format><number>

• 4`b1001 --- a 4-bit binary number

• 16`habcd --- a 16-bit hexadecimal number

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-10

Lexical Conventions

 Unsized number: `<base format><number>

• 2007 --- a 32-bit decimal number by default

• `habc --- a 32-bit hexadecimal number

 x or z values: x denotes an unknown value; z denotes a

high impedance value.

 Negative number: -<size>`<base format><number>

• -4`b1001 --- a 4-bit binary number

• -16`habcd --- a 16-bit hexadecimal number

 ”_” and “?”

• 16`b0101_1001_1110_0000

• 8`b01??_11?? --- equivalent to a 8`b01zz_11zz

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-11

Lexical Conventions

 String: “Back to School and Have a Nice Semester”

 Coding style:

 Use lowercase letters for all signal names, variable names,

and port names.

 Use uppercase letters for names of constants and user-

defined types.

 Use meaningful names for signals, ports, functions, and

parameters.

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-12

The Value Set

 Four-value logic system in Verilog HDL

 0 and 1 represent logic values low and high, respectively.

 z indicates the high-impedance condition of a node or net.

 x indicates an unknown value of a net or node.

Value Meaning

0

1

x

z

Logic 0, false condition

Logic 1, true condition

Unknown logic value

High impedance

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-13

Data Types

 Verilog HDL has two classes of data types.

 Nets mean any hardware connection points.

 Variables represent any data storage elements.

Nets Variables

wire

tri

wand

trior

wor

triand

supply0

supply1

tri0

tri1

trireg

reg

integer

real

time

realtime

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-14

Data Types

 A net variable

 can be referenced anywhere in a module.

 must be driven by a primitive, continuous assignment,

force … release, or module port.

 A variable

 can be referenced anywhere in a module.

 can be assigned value only within a procedural statement,

task, or function.

 cannot be an input or inout port in a module.

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-15

Module Modeling Styles

 Structural style

 Gate level comprises a set of interconnected gate

primitives.

 Switch level consists of a set of interconnected switch

primitives.

 Dataflow style

 specifies the dataflow (i.e., data dependence) between

registers.

 is specified as a set of continuous assignment statements.

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-16

Module Modeling Styles

 Behavioral or algorithmic style

 is described in terms of the desired design algorithm

 is without concerning the hardware implementation

details.

 can be described in any high-level programming

language.

Mixed style

 is the mixing use of above three modeling styles.

 is commonly used in modeling large designs.

 In industry, RTL (register-transfer level) means

 RTL = synthesizable behavioral + dataflow constructs

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-17

Port Declaration

 Port Declaration

 input: input ports.

 output: output ports.

 inout: bidirectional ports

 Port Connection Rules

 Named association

 Positional association

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-18

Port Declaration

Instance name is optional.

module full_adder (x, y, cin, s, cout);

input x, y, cin;

output s, cout;

wire s1,c1,c2; // outputs of both half adders

// -- full adder body-- //

// instantiate the half adder

 half_adder ha_1 (x, y, s1, c1);

 half_adder ha_2 (.x(cin), .y(s1), .s(s), .c(c2));

 or (cout, c1, c2);

endmodule

Connecting by using named association

Connecting by using positional association

Instance name is necessary.

Can only be connected by using positional association

module half_adder (x, y, s, c);

input x, y;

output s, c;

// -- half adder body-- //

// instantiate primitive gates

 xor xor1 (s, x, y);

 and and1 (c, x, y);

endmodule

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-19

Structural modeling

// gate-level hierarchical description of 4-bit adder

// gate-level description of half adder

module half_adder (x, y, s, c);

input x, y;

output s, c;

// half adder body

// instantiate primitive gates

xor (s,x,y);

and (c,x,y);

endmodule

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-20

Structural modeling

// gate-level description of full adder

module full_adder (x, y, cin, s, cout);

input x, y, cin;

output s, cout;

wire s1, c1, c2; // outputs of both half adders

// full adder body

// instantiate the half adder

half_adder ha_1 (x, y, s1, c1);

half_adder ha_2 (cin, s1, s, c2);

or (cout, c1, c2);

endmodule

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-21

Structural modeling

// gate-level description of 4-bit adder

module four_bit_adder (x, y, c_in, sum, c_out);

input [3:0] x, y;

input c_in;

output [3:0] sum;

output c_out;

wire c1, c2, c3; // intermediate carries

// four_bit adder body

// instantiate the full adder

full_adder fa_1 (x[0], y[0], c_in, sum[0], c1);

full_adder fa_2 (x[1], y[1], c1, sum[1], c2);

full_adder fa_3 (x[2], y[2], c2, sum[2], c3);

full_adder fa_4 (x[3], y[3], c3, sum[3], c_out);

endmodule

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-22

Hierarchical Design

x
y

s

c
out

c
in

HA

HA

s

c

c

sx

ys1

c1

c2
x
y

x[0]x[1]x[2]x[3] y[0]y[1]y[2]y[3]

c0

s[0]s[1]s[2]s[3]

cout
c1c2c3

y x
CinCout

S

y x
CinCout

S

y x
CinCout

S

y x
CinCout

S

xy

4-bit parallel adder

S

cout c0

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-23

Dataflow Modeling

 Use continuous statements

 assign [delay] l_value = expression

 delay: the amount of time between a change of operand

used in expression and the assignment to l-value.

 Continuous statement in a module execute concurrently

regardless of the order they appear.

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-24

Dataflow Modeling

module full_adder_dataflow(x, y, c_in, sum, c_out);

// I/O port declarations

input x, y, c_in;

output sum, c_out;

// specify the function of a full adder

assign #5 {c_out, sum} = x + y + c_in;

endmodule

Full Adder

c
in

x
y

s

c
out

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-25

Behavioral Modeling

 Use two procedural constructs: initial and always

 initial statement

 Executed only once at simulation time 0

 Used to set up initial value of variable data types

 always statement

 Executed repeatedly

 At simulation time 0, both initial and always statements are

executed concurrently.

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-26

Behavioral Modeling
module full_adder_behavioral(x, y, c_in, sum, c_out);
// I/O port declarations
input x, y, c_in;
output sum, c_out;
reg sum, c_out; // sum and c_out need to be declared as reg types.
// specify the function of a full adder
always @(x, y, c_in) //or always @(x or y or c_in)
#5 {c_out, sum} = x + y + c_in;
endmodule

module full_adder_behavioral(x, y, c_in, sum, c_out);

// I/O port declarations

input x, y, c_in;

output sum, c_out;

reg sum, c_out; // sum and c_out need to be declared as reg types.

// specify the function of a full adder

always @(*)

#5 {c_out, sum} = x + y + c_in;

endmodule

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-27

Mixed-Style Modeling

module full_adder_mixed_style(x, y, c_in, s, c_out);

// I/O port declarations

input x, y, c_in;

output s, c_out;

reg c_out;

wire s1, c1, c2;

// structural modeling of HA 1.

xor xor_ha1 (s1, x, y);

and and_ha1(c1, x, y);

// dataflow modeling of HA 2.

assign s = c_in ^ s1;

assign c2 = c_in & s1;

// behavioral modeling of output OR gate.

always @(c1, c2) // can also use always @(*)

c_out = c1 | c2;

endmodule

x
y

s

c
out

c
in

HA

HA

s

c

c

s
x

ys1

c1

c2
x
y

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-28

Simulation

 Design

 Simulation

 Verification

 Stimulus block: testbench

 Unit under test (UUT)

 Design under test (DUT)

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-29

Basic Simulation Constructs

Module Under TestStimulus Block

Response

Stimulus
Top-Level Block

Module Under Test

Response

Stimulus

Stimulus Block

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-30

System Tasks for Simulation

 $display displays values of variables, string, or expressions

 $display(ep1, ep2, …, epn);

ep1, ep2, …, epn: quoted strings, variables, expressions.

 $monitor monitors a signal when its value changes.

 $monitor(ep1, ep2, …, epn);

 $monitoton enables monitoring operation.

 $monitotoff disables monitoring operation.

 $stop suspends the simulation.

 $finish terminates the simulation.

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-31

Time Scale for Simulations

 Time scale compiler directive

`timescale time_unit / time_precision

 The time_precision must not exceed the time_unit.

 For instance, with a timescale 1 ns/1 ps, the delay

specification #15 corresponds to 15 ns.

 It uses the same time unit in both behavioral and gate-

level modeling.

 For FPGA designs, it is suggested to use ns as the time

unit.

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-32

Modeling and Simulation Example --- A 4-bit adder

// Gate-level description of 4-bit adder

module four_bit_adder (x, y, c_in, sum, c_out);

input [3:0] x, y;

input c_in;

output [3:0] sum;

output c_out;

wire C1,C2,C3; // Intermediate carries

// -- four_bit adder body--

// Instantiate the full adder

full_adder fa_1 (x[0],y[0],c_in,sum[0],C1);

full_adder fa_2 (x[1],y[1],C1,sum[1],C2);

full_adder fa_3 (x[2],y[2],C2,sum[2],C3);

full_adder fa_4 (x[3],y[3],C3,sum[3],c_out);

endmodule

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-33

Modeling and Simulation Example --- A 4-bit adder

full_adder

 fa_2

full_adder

 fa_3

full_adder

 fa_4
 fa_1.Cout

 fa_1.ha_2.S

 fa_1.ha_2.C fa_1.ha_1.S

 fa_1.ha_1.C

[1]
x

[1]
y

Cin

[1]
S

Cout

[2]
x

[2]
y

Cin

[2]
S

Cout

[3]
x

[3]
y

Cin

[3]
S

Cout

[0]

[0]

[0]

[0]

[0]

c_out

sum[3:0]
[3:0]

c_in

y[3:0]
[3:0]

x[3:0]
[3:0]

After dissolving one full adder.

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-34

Modeling and Simulation Example --- A Test Bench

`timescale 1 ns / 100 ps // time unit is in ns.

module four_bit_adder_tb;

//Internal signals declarations:

reg [3:0] x;

reg [3:0] y;

reg c_in;

wire [3:0] sum;

wire c_out;

// Unit Under Test port map

four_bit_adder UUT (.x(x), .y(y), .c_in(c_in), .sum(sum), .c_out(c_out));

reg [7:0] i;

initial begin // for use in post-map and post-par simulations.

// $sdf_annotate ("four_bit_adder_map.sdf", four_bit_adder);

// $sdf_annotate ("four_bit_adder_timesim.sdf", four_bit_adder);

end

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-35

Modeling and Simulation Example --- A Test Bench

initial

for (i = 0; i <= 255; i = i + 1) begin

x[3:0] = i[7:4]; y[3:0] = i[3:0]; c_in =1'b0;

#20 ; end

initial #6000 $finish;

initial

$monitor($realtime,“ns %h %h %h %h", x, y, c_in, {c_out, sum});

endmodule

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-36

Modeling and Simulation Example --- Simulation Results

0ns 0 0 0 00

20ns 0 1 0 01

40ns 0 2 0 02

60ns 0 3 0 03

80ns 0 4 0 04

100ns 0 5 0 05

120ns 0 6 0 06

140ns 0 7 0 07

160ns 0 8 0 08

180ns 0 9 0 09

200ns 0 a 0 0a

220ns 0 b 0 0b

240ns 0 c 0 0c

260ns 0 d 0 0d

280ns 0 e 0 0e

300ns 0 f 0 0f

320ns 1 0 0 01

340ns 1 1 0 02

360ns 1 2 0 03

380ns 1 3 0 04

400ns 1 4 0 05

420ns 1 5 0 06

440ns 1 6 0 07

460ns 1 7 0 08

480ns 1 8 0 09

500ns 1 9 0 0a

520ns 1 a 0 0b

540ns 1 b 0 0c

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-37

Modeling and Simulation Example --- Simulation Results

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-3813-38

Generation of SDF Files

 Pre-layout: The pre-layout numbers contain delay values that

are based on the wire-load models.

 It uses an approximation to generate the pre-layout SDF

since the pre-layout netlist does not contain the

interconnect delays.

 For example: *_map.sdf (contains gate delay only) in ISE

design flow.

 Post-layout: The post-layout numbers contain delay values

that are based on the actual layout, including interconnect

delay information.

 For example: *_timesim.sdf (contains both gate and

interconnect delays) in ISE design flow.

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-39

Delay Back-Annotation

In test bench, add:

$sdf_annotate (design_file_name _map.sdf", design_file_name);

$sdf_annotate (design_file_name _timesim.sdf", design_file_name);

RTL description

Gate-level netlist

Post-layout netlistDelay calculator

Delay values

Initial pre-layout delay

estimation

Post-layout information

Back-annotation of

pre-layout delays

Pre-layout netlistDelay calculator

Pre-layout information

Logic synthesis

Placement

Routing

Back-annotation of

post-layout delays

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-40

The ISE Design Flow

• Synthesis extracts

logic from the HDL

model.

• Translation prepares

for logic synthesis,

including managing

the design hierarchy.

• Mapping optimizes the

logic and fits it into the

logic elements.

Specification

Modelsim

Design entryTiming constraints

Translation

Static Timing Analysis

(TRCE)

(logic delay & wire delay)

FPGA target

Floorplanning

Synthesis

Static Timing analysis

(only logic delay)

Place and route

Synthesis

Map

Translation

Technology-

independent

optimization

Technology-

dependent

optimization

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-41

A Simulation Flow --- The Roles of Test benches

The same test bench is used in

all levels, from behavioral

down to post place and route.

Test bench

Behavior simulation *.v

*_tb.v

*_translate.v (ISE)

glbl.v

simprims folder

(Xilinx_simprims library)

*_timesim.sdf (ISE)

*_timesim.v (ISE)

Post-translation

Post-map

Related files

*_map.sdf (ISE)

*_map.v (ISE)

Post-PAR

Files required for gate-level

simulations:

Post-synthesis *.v (fc2)

*.vm (SynplifyPro)

Xilinx ISE System

Chapter1: Introduction

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-42

A Simulation Flow --- An ISE-Based Flow

Design entry

Synthesis

Gate-level

simulation

Behavior simulation
RTL_Source.v

RTL_Source_tb.v

*_translate.v

RTL_Source_tb.v

Gate-level

simulation

glbl.v

RTL_Source_tb.v

simprims folder (compiled into Xilinx_simprims library)

*_timesim.sdf

*_timesim.v

Translation

Map

Modelsim Related files

Gate-level

simulation

RTL_Source_tb.v

*_map.sdf

*_map.v

Generate

programming file

Place & route

Files required for gate-level simulations.
*.edf

ISE

fc2, XST

Synplify Pro

