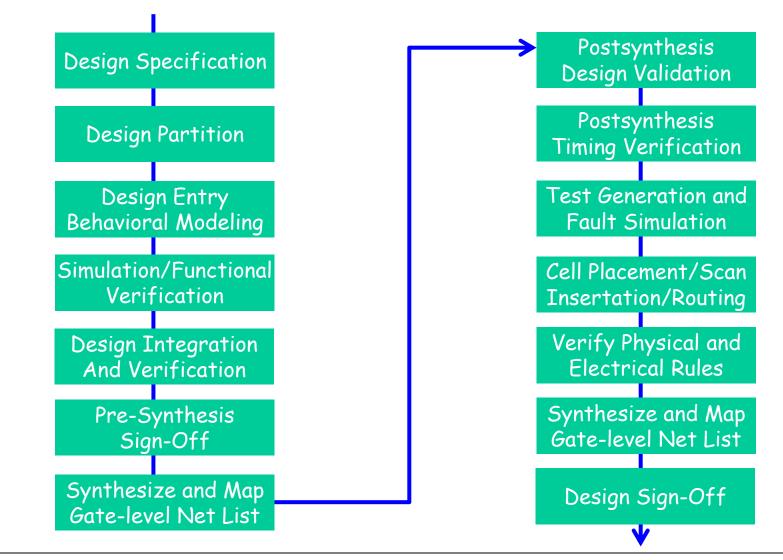
Digital Design Methodology


Prof. Soo-Ik Chae

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley

Digital Design Methodology (Added)

- Design Methodology
 - Design Specification
 - Verification
 - Synthesis
- Technology Options
 - Full Custom VLSI
 - Standard Cell ASIC
 - FPGA

Design Methodology: Big Picture

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley

Design Specification

- Written statement of functionality, timing, area, power, testability, fault coverage, etc.
- Functional specification methods:
 - State Transition Graphs
 - Timing Charts
 - Algorithm State Machines (like flowcharts)
 - HDLs (Verilog and VHDL)

Design Partition

- Partition to form an Architecture
 - Interacting functional units
 - Control vs. datapath separation
 - Interconnection structures within datapath
 - Structural design descriptions
 - Components described by their behaviorals
 - Register-transfer descriptions
 - Top-down design method exploiting hierarchy and reuse of design effort

Design Entry

- Primary modern method: hardware description language
 - Higher productivity than schematic entry
 - Inherently easy to document
 - Easier to debug and correct
 - Easy to change/extend and hence experiment with alternative architectures
- Synthesis tools map description into generic technology description
 - E.g., logic equations or gates that will subsequently be mapped into detailed target technology
 - Allows this stage to be technology independent (e.g., FPGA LUTs or ASIC standard cell libraries)
- Behavioral descriptions are how it is done in industry today

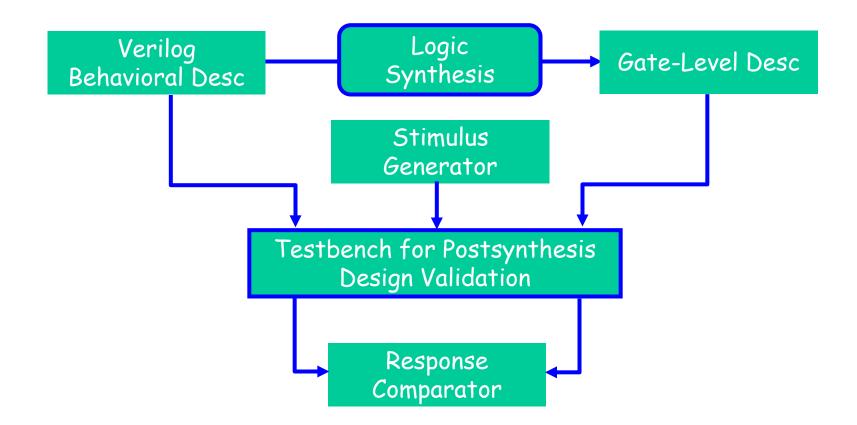
Simulation and Functional Verification

- Simulation vs. Formal Methods
- Test Plan Development
 - What functions are to be tested and how
 - Testbench Development
 - Testing of independent modules
 - Testing of composed modules
 - Test Execution and Model Verification
 - Errors in design
 - Errors in description syntax
 - Ensure that the design can be synthesized
 - The model must be VERIFIED before the design methodology can proceed

Design Integration and Verification

- Integrate and test the individual components that have been independently verified
- Appropriate testbench development and integration
- Extremely important step and one that is often the source of the biggest problems
 - Individual modules thoroughly tested
 - Integration not as carefully tested
 - Bugs lurking in the interface behavior among modules!

Presynthesis Sign-off


- Demonstrate full functionality of the design
- Make sure that the behavior specification meets the design specification
 - Does the demonstrated input/output behavior of the HDL description represent that which is expected from the original design specification
- Sign-off only when all functional errors have been eliminated

Gate-Level Synthesis and Technology Mapping

- Once all syntax and functional errors have been eliminated, synthesize the design from the behavior description
 - Optimized Boolean description
 - Map onto target technology
- Optimizations include
 - Minimize logic
 - Reduce area
 - Reduce power
 - Balance speed vs. other resources consumed
- Produces netlist of standard cells or database to configure target FPGA

Postsynthesis Design Validation

Does gate-level synthesized logic implement the same inputoutput function as the HDL behavioral description?

Postsynthesis Timing Verification

- Are the timing specifications met?
- Are the speeds adequate on the critical paths?
 - Can't accurately be determined until actual physical layout is understood and analyzed—length of wires, relative placement of sources and sinks, number of switch matrix crosspoints traversed, etc.
- Resynthesis may be required to achieve timing goals
 - Resize transistors
 - Modify architecture
 - Choose a different target device or technology

Test Generation and Fault Simulation

- This is NOT about debugging the design!
 - Design should be correct at this stage, so ...
- Determine set of test vectors to test for inherent fabrication flaws
 - Need a quick method to sort out the bad from the good chips
 - More exhaustive testing may be necessary for chips that pass the first level
 - More relevant for ASIC design than FPGAs
 - Avoiding this step is one of the advantages of using the FPGA approach
- Fault simulation is used to determine how complete are the test vectors

Placement and Routing

- ASIC Standard Cells
 - Select the cells and placement them on the mask
 - Interconnect the placed cells
 - Choose implementation scheme for critical signals
 - E.g., Clock distribution trees to minimize skew
 - Insert scan paths
- FPGAs
 - Placing functions into particular CLBs/Slices and committing interconnections to particular wires in the switch matrix

Physical and Electrical Design Rule Check

Applies to ASICs primarily

- Are mask geometries correct to insure high probability of successful fabrication?
- Fan-outs correct? Crosstalk signals within specification? Current drops within specification? Noise levels ok? Power dissipation acceptable?
- Many of these issues are not significant at a chip level for an FPGA but may be an issue for the system that incorporates the FPGA

Parasitic Extraction

- Extract geometric information from design to determine capacitance
- Yields a much more realistic model of signal performance and delay
- Are the speed (timing) and power goals of the design still met?
- Could trigger another redesign/resythesize cycle if not met

Design Sign-off

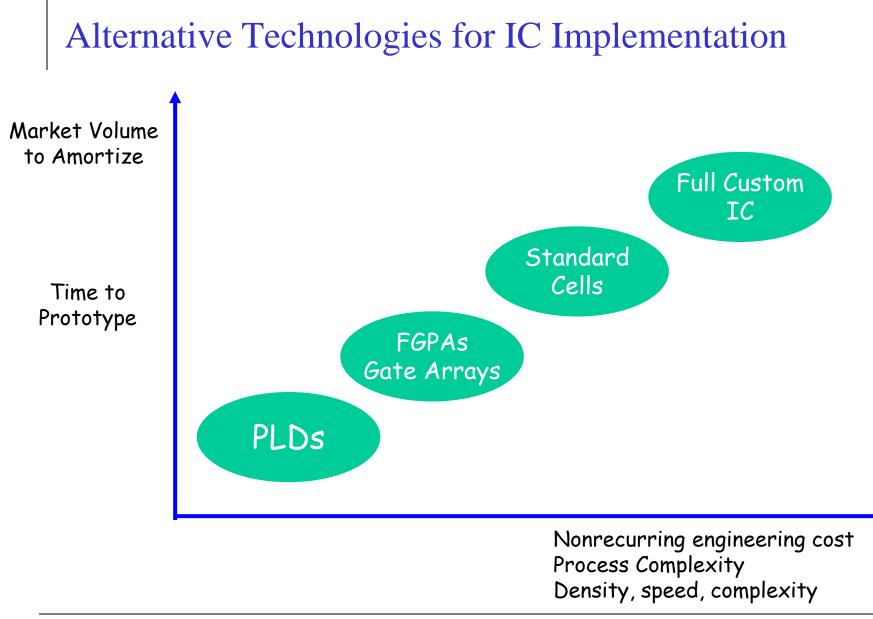
- All design constraints have been met
- Timing specifications have been met
- Mask set ready for fabrication

SIA Roadmap—Technology Trends

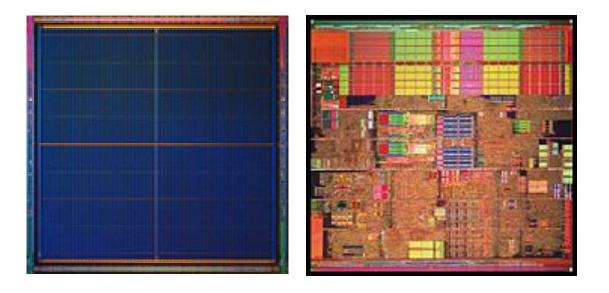
	1999	2001	2003	2006	2009	2012
Transistor Gate Length	0.14 μ m	0.12 μ m	0.10 μ m	0.07 μ m	0.05 μm	0.035 μm
Transistors per cm²	14 million	16 million	24 million	40 million	64 million	100 million
Chip Size	800 mm²	850 mm²	900 mm²	1000 mm ²	1100 mm²	1300 mm²

Alternative Technologies

Standard Chips


- Commonly used logic functions
- Small amount of circuitry, order 100 transistors
- Popular through the early 1980s
- Programmable Logic Devices
 - Generalized structure with programmable switches to allow (re)configuration in many different ways
 - PALs, PLAs, FPGAs
 - FPGAs go up 10+ million transistors
 - Widely used today
- Custom-Designed Chips
 - Semi-custom: Gate Arrays, Standard Cells
 - Full-custom

Comparison of Implementation Technologies


- Full Custom Chips
 - Largest number of logic gates and highest speed
 - Microprocessors and memory chips
 - Created from scratch as a custom layout
 - Significant design effort and design time
- Standard Cell (ASIC) Variation
 - Gate arrays: prefab'd gates and routing channels
 - Can be stockpiled
 - Customization comes from completing the wiring layer
 - Library cells: predesigned logic, custom placed and routed
 - All process layers are fabricated for a given design
 - Design time is accelerated, but implementation time is still slow

Comparison of Implementation Technologies

- Field Programmable Gate Arrays
 - Combines advantages of ASIC density with fast implementation process
 - Nature of the programmable interconnect leads to slower performing designs than that possible with other approaches
 - Appropriate for prototyping, where speed to implementation is the key factor.
 - Or where density is important but the unit volumes are not large enough to justify the design effort and costs associated with custom-designed approaches

Die Photos: Vertex vs. Pentium IV

FGPA Vertex chip looks remarkably well structured

Very dense, very regular structure

Full Custom Pentium chip somewhat more random in structure

Large on-chip memories (caches) are visible