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Objectives

After completing this chapter, you will be able to:
¢ Describe ASIC/VLSI design flow

“» Understand the RTL and physical synthesis flow
“* Understand the principle of logic synthesis tools
“+ Understand issues of language translation

¢ Describe the considerations of clock signals

¢+ Describe the considerations of reset signals

¢+ Describe the partition issues for synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-2



Chapter 12: Synthesis

An ASIC/VLSI Design Flow
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An RTL Synthesis Flow
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A Physical Synthesis Flow
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Logic Synthesis Environment

¢ The following must be provided to synthesis tools:
= design environment
= design constraints
= RTL code
= technology library

RTL code

y

Technology library |—» Synthesizer

Design environment

/\

Design constraints
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Design Environment
» Specify those directly influence
design synthesis and optimization results
¢ The external operating conditions (PVT)
Include

= manufacturing process
worst case: setup-time violations
best case: hold-time violations

= operating conditions: voltage and temperature
¢ 1/O port attributes contain

= drive strength of input port

= capacitive loading of output port

= design rule constraints: fanin, fanout

¢ Statistical wire-load model provides a wire-load model for

processing the pre-layout static timing analysis.
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Design Environment
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Design Constraints

¢+ Clock signal specification

= period, duty cycle

= transition time, skew
“* Delay specifications

= Input delay, output delay

= maximum, minimum delay for combinational circuits
“* Timing exception

= false path : instruct the synthesis to ignore a particular

path for timing optimization

= multicycle path: inform the synthesis tool regarding the
number of clock cycles that a particular path requires to
reach its endpoint

¢+ Path grouping: bundle together critical paths in calculating a
cost function
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Input Delay and Output Delay
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Logic Synthesis Tools: Front end

¢ Parsing phase
= checks the syntax of the source code
= creates internal components
¢+ Elaboration phase (to construct a complete description of the
Input circuit)
= connects the internal components
= unrolls loops
= expands generate-loops
= sets up parameters passing for tasks and functions
= and so on
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Logic Synthesis Tools: Back end

> analysis/translation prepares for technology-independent
logic synthesis.

= managing the design hierarchy
= extracting finite-state machine (FSM)
= exploring resource sharing
= and so on.
“* logic synthesis (logic optimization) creates a new gate
network which computes the functions specified by a set of
Boolean functions, one per primary output.

“* netlist generation generates a gate-level netlsit.
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Logic Synthesis (Logic Optimization)

“* Major concerns when synthesizing a logic gate network:
= functional metric: such as fanin, fanout, and others.
= non-functional metric: such as area, power, and delay.
“» Two phases of logic synthesis:
= technology-independent logic optimization
= technology-dependent logic optimization

“* The process of translating from technology-independent to
the technology-dependent gate network is called library
binding.
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Technology-Independent Logic Optimization

“+ Technology-independent logic synthesis

= Simplification rewrites a single function in the network to
the literals of that network.

= Restructuring network creates new function nodes that
can be used as common factors and collapses sections of
the network into a single node.

= Restructuring delay changes the factorization of a
subnetwork to reduce the number of function nodes
through which delay-critical signal must pass.
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Technology Mapping

A two-step approach

= The network Is decomposed into nodes with no nodes
more than Kk inputs, where Kk is determined by the fan-in
of each LUT.

= The number of nodes is reduced by combining some of
them taking into account the special features of LUTSs.

L O—1) L ) !

| |
v —"—\ g ¢ v g
w—op S ' 8 w B
y - . e
X — _\ f, X — l 3\
DD DD :
« 4 LUTs are required. (k=4) « only 3 LUTs are needed.
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Technology Mapping

“* FlowMap method

= Using a k-feasible cut algorithm breaks the network into
LUT-sized blocks.

= Using heuristics to maximize the amount of logic fit into
each cut to reduce the number of logic elements or LUTS

required.
k=8 k=5 k=3 k=2
u L
" 5 . -
Yy —] : : _
Z W g _D— Three LUTSs are required.
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Synthesis-Tool Tasks

¢+ Synthesis tools at least perform the following critical tasks:
= Detect and eliminate redundant logic
= Detect combinational feedback loops
= Exploit don’t-care conditions
= Detect unused states
= Detect and collapse equivalent states
= Make state assignments
= Synthesize optimal, multilevel logic subject to constraints.
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Language Structure Translations

¢ Language structure translation
= Synthesizable operators

= Synthesizable constructs
assignment statement
If .. else statement
case statement
loop structures
always statement

= Memory synthesis approaches
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Synthesizable Operators

Arithmetic Bitwise Reduction Relational
+: add ~ NOT & : AND >: greater than
- : subtract & : AND |- OR <: less than
* multiply | 1OR ~& : NAND >=: greater than or equal
/ - divide AN XOR ~| *NOR <=: less than or equal
% : modulus ~N A~ XNOR A XOR Equality
**: exponent ~", A~ XNOR :
: : ==: equality
Shift |- Logical I=: inequality
. - case equality . :
<< Ieﬂ Shlf-t - &&: AND Miscellaneous
>> : right shift ===: equality | : OR :
<<<:arithmetic left shift | ,__. inequality INOT { }: concatenation o
>>>: arithmetic right shift {const_expr{ }}: replication
? . . conditional
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Synthesizing if-else Statements

+» Features of if-else statement:

= The if-else statement infers a priority-encoded, cascaded
combination of multiplexers.

= For combinational logic, we need to specify a complete
if...else structure, otherwise, a latch will be inferred.

= For sequential logic, we need not specify a complete
if ...else structure, otherwise, we will get as a notice
removing redundant expression from synthesis tools.

always @(enable or data) always @(posedge clk)
If (enable) y = data; //infer a latch If (enable) y <= data;

elsey <=vy; [l aredundant expression
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Synthesizing case Statements

** Features of case statement:
= A case statement infers a multiplexer.

= The consideration of using a complete or incomplete
specified statement is the same as that of if...else
statement.
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Latch Inference --- Incomplete if-else Statements

/[ creating a latch example.
module latch_infer_if(enable, data, y); -

. lat
input enable, data; et D T
output y; c °
reg v, y

// the body of testing program.
always @(enable or data)

If (enable) y = data; //due to lack of else part, synthesizer infer a latch fory.
endmodule

Coding style:
 Avoid using any latches in your design.

« Assign outputs for all input conditions to avoid inferred latches.
For example:

always @(enable or data)
y = 1’b0; //initialize y to its initial value.
If (enable) y = data;
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Latch Inference --- Incomplete case Statements

/Il Creating a latch example
module latch_infer_case(select, data, y);

input [1:0] select;
input [2:0] data; ﬁgj 3
output reg v; unl_select 4 g |, lat
// The body of 3-to-1 MUX i c o=
always @(select or data) 2| y
case (select) y_1
2'b00: y = data[select];
2'b01: y = data[select]; m

2'b10: y = data[select]; unl select 3
I/ The following statement is used to avoid inferring a latch
/[ default: y = 2'b11;
endcase
endmodule
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Ignored Delay Values --- An Incorrect Version

/[ a four phase clock example --- Generated incorrect hardware
module four_phase clock wrong(clk, phase_out);
input clk;
output reg [3:0] phase_out; // phase output
// the body of the four phase clock
/[ all delay values are ignored by the synthesis tool
always @ (posedge clk) begin
phase_out <= 4'n0000; . 106

phase out <=#5 4'b0001; phase_ouf3:0
phase_out <= #10 4'b0010;
phase_out <=#15 4'b0100; ‘
phase_out <= #20 4'b1000; Lek
end
endmodule

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley

12-25



Chapter 12: Synthesis

Ignored Delay Values --- A Correct Version

/[ a four phase clock example --- synthesizable version

module four_phase_clock_correct(clk, phase_out);

input clk;

output reg [3:0] phase_out; // phase output

// the body of the four phase clock

always @ (posedge clk)

case (phase_out)

4'b0000: phase _out <= #5 4'b0001;
4'b0001: phase out <= #5 4'b0010;
4'b0010: phase_out <= #5 4'b0100;
4'h0100: phase_out <= #5 4'b1000;
default: phase out <= #5 4'b0000;

endcase e
endmodule

>

Dj_ D[3:0] Q[3:0]
phase_out[3:0]

ase_out22

FELE

o

p
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Mixed Use of posedge/level Signals

/[ an example to illustrating the mixed usage of posedge/negedge signal.
I/ The result cannot be synthesized. Try it in your system !!
module DFF_bad (clk, reset, d, 0);
input clk, reset, d;
output reg Q;
// the body of DFF
always @(posedge clk or reset)
begin
iIf (reset) g <=1'b0;
else q<=d;
end
endmodule

Error: Can't mix posedge/negedge use with plain signal references.
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Mixed Use of posedge/negedge Signals

/[ an example to illustrate the mixed usage of posedge/negedge signal.
/[ try it in your system !!

module DFF_good (clk, reset_n, d, g);

input clk, reset n, d;

output reg Q;

// the body of DFF

always @(posedge clk or negedge reset_n)

begin R —b
if ('reset_n) g <=1'b0; B —{D Q- o
else q<=d; R

end Lreset n _>=> 3

endmodule q
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Loop Structures

/[ an N-bit adder using for loop.
module nbit_adder_for( x, y, c_in, sum, ¢_out);

parameter N = 4; // define default size
input [N-1:0] x, y;
input c_in;

output reg [N-1:0] sum;
output reg c_out;
reg Co;
integer I;
I specify the function of an n-bit adder using for loop.
always @(x or y or c_in) begin
co=c_in;

for(1=0;i<N;i=i+1)

{co, sum[i]} = x[i] + y[i] + co; Ig :
c_out =co; end 394 o~
endmOdUIe o un19_sum[1:0]

un61_sum([1:0]

|
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Memory Synthesis Approaches

“+ Random logic using flip-flops or latches
= |Is independent of any software and type of ASIC.
= |s independent of easy to use but inefficient in terms of

area.
“* Register files in datapaths

= use a synthesis directive or hand instantiation.

“* RAM standard components
= are supplied by an ASIC vend
= depend on the technology.

“* RAM compilers

I

A flip-flop may take up 10 to 20
times the area of a 6-transistor
static RAM cell.

= are the most area-efficient approach.
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Register file

module register_file(data_outl, data_out2, data_in,
read addrl, read addr2, write_addr,
write_enable, clk, reset_n);
output [31:0] data_outl, data_out?2;
input [31:0] data_in;
input [3:0] read addrl, read addr2, write_addr;
input write_enable, clk, reset_n;
reg [31:0] register[15:0];
reg [3:0] init
assign data_outl = register[read_addrl1];
assign data_out2 = register[read_addr2];
always @ (posedge clk) begin
If ('reset_n) begin
for (init =0; init <16; init = init + 1)
register [init] <=32b’0;
end else if (write_enable)
register[write_addr] <= data_in;

end
endmodule
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ROM

module ROM_256x8(data, addr);
output [7:0] data;

input [7:0] addr;

reg [7:0] ROM[255:0];

assign data = ROM[addr];

initial $readmemb(“ROM.txt”, ROM, 0,255);
endmodule

ROM.txt is expected to be in the same directory in which the project is located.
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SRAM

module sync_ SRMA(output reg [7:0] out, input [7:0] in, input [7:0] addr,
input wr, clk, rst_n);

reg [7:0] mem [0:255];,
reg [8:0] initaddr;

always @ (posedge clk) begin
if (Irst_n) begin
for (initaddr = O; initaddr < 256; initaddr = initaddr + 1) begin
mem[initaddr] <= 8°d0;
end
end else if (wr) mem[addr] <=in;

end synchronous read

_— synchronous reset!

synchronous write

always @(posedge clk) out <= mem[addr];

endmodule
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Coding Guidelines for Synthesis

¢ Goals of coding guidelines:
= Testability
= Performance
= Simplification of static timing analysis

= Gate-level behavior that matches that of the original RTL
codes.
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Guidelines for Clocks

¢ Using single global clock

“» Avoiding using gated clocks

“+ Avoiding mixed use of both positive and negative edge-

triggered flip-flops

“* Avoiding using internally generated clock signals

Do DT s

»
>

Q : Combinational logic

Module A [P CK Module B [P CK
clk
(a) An ideal clock scheme
Do eHCTD oo
Module A [P CK Module B [P CK
clk_n
clk 'ﬁboi clk

(b) An example of using both positive and negative edge-

triggered flip-flops

\ 4

Top module
» Module A
eIk A odule
Clock »| Module B
generator
clk B

(c) Using a separate clock module

at the top level.
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Guidelines for Resets

K/

*» The basic design issues of resets are:

= Asynchronous or synchronous?

= An internal or external power-on reset?
= More than one reset, hard vs. soft reset?

* The basic writing styles for both asynchronous and synchronous reset are
as follows:

always @(posedge clk or posedge reset) | | always @(posedge clk)

If (reset)..... If (reset).....
else ..... else .....
Asynchronous reset Synchronous reset

++ The only logic function for the reset signal should be a direct clear of all
flip-flops.
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Guidelines for Resets

** Synchronous reset
= |s easy to implement.
It is just another synchronous signal to the input.
= requires a free-running clock
In particular, at power-up, for reset to occur.
% Asynchronous reset
= is harder to implement.

since reset is a special signal like clock, it requires a tree of buffers to be
inserted at place and route.

= does not require a free-running clock.
= does not affect flip flop data timing.

= makes static timing analysis (or cycle-based simulation) more
difficult.

= makes the automatic insertion of test structure more difficult.
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Guidelines for Resets

“ Avoid internally generated conditional resets.

always @ (posedge gate or negedge reset_n or posedge timer _load clear)
if (Ireset n || timer _load clear) timer load <= 1’b0;
else timer load <= 1’bl;

“* When a conditional reset is required:
= to create a separate signal for the reset signal.

= to isolate the conditional reset logic in a separate logic
block.

assign timer load reset = Ireset_n || timer_load_clear;
always @ (posedge gate or posedge timer load reset)
if (timer_load reset) timer load <= 1’b0;
else timer load <= 1’bl;
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Partitioning for Synthesis

“* Keep related logic within the same module.

— Comb. logic

clk

DQ Comb. logic Comb. logic DQ
D CK A B D CK
Module A Module B
(a) Bad style
—»{( Comb. logic DQ Comb. logic DQ >
CK A+B D CK
Module A Module B

clk

(b) Good style
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“* Register all outputs.

clk

Partitioning for Synthesis

Comb. logic

Module A

D Q

D CK

Comb. logic

D Q

D CK

Module B

* Separating structural logic from random logic.
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Partitioning for Synthesis

“» Synthesis tools tend to maintain the original hierarchy.

w —:E
" — |
DQ >
Y _E S CK
2 = |_ (a) Resources in different
clk modules cannot be shared.
W _:E W ~
X DQ > y DQ >
y —H ——:{
! _1'>/ b CK X b CK
[ =
clk clk

(b) Resources in the same module can be shared.
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