
Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-1

Chapter 15: Design Examples

Prof. Soo-Ik Chae

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-2

Objectives

After completing this chapter, you will be able to:

 Describe basic structures of mP systems

 Understand the basic operations of bus structures

 Understand the essential operations of data transfer

 Understand the design principles of GPIOs

 Understand the design principles of timers

 Understand the design principles of UARTs

 Describe the design principles of CPUs

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-3

A Basic mP System

Memory

GPIOTimerUART

CPU

System clock

Decoder

Data bus

Address bus

Control bus

System bus

Datapath

Controller

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-4

Bus Structures

 A bus is a set of wires used to transport information between

two or more devices in a digital system.

 Types of buses:

 tristate bus

• When realizing by using tristate buffers.

 multiplexer-based bus

• When realizing by using multiplexers.

 The tristate bus is often called bus for short.

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-5

A Tristate Bus

 Tristate bus

 A bidirectional interface drives a signal T to the bus and

samples a signal on the bus onto an internal signal R.

 Only one module is allowed to transmit signal on the bus.

RE

RT

TE

RE

RT

TE

RE

RT

TE

Module 1 Module 2 Module n

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-6

A Tristate Bus Example

// a tristate bus example

module tristate_bus (data, enable, qout);

parameter N = 2; // define bus width

input enable;

input [N-1:0] data;

output [N-1:0] qout;

wire [N-1:0] qout;

// the body of tristate bus

assign qout = enable ? data : {N{1'bz}};

endmodule

qout_1[0]

qout_1[1]

qout[1:0]
[1:0]

enable

data[1:0]
[1:0] [0][0]

[1][1]

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-7

A Bidirectional Bus Example

// a bidirectional bus example

module bidirectional_bus (data_to_bus, send, receive, data_from_bus, qout);

parameter N = 2; // define bus width

input send, receive;

input [N-1:0] data_to_bus;

output [N-1:0] data_from_bus;

inout [N-1:0] qout; // bidirectional bus

wire [N-1:0] qout, data_from_bus;

// the body of tristate bus

assign data_from_bus = receive ? qout : {N{1'bz}};

assign qout = send ? data_to_bus : {N{1'bz}};

endmodule

un2_qout[0]

un2_qout[1]

data_from_bus_1[0]

data_from_bus_1[1]

qout[1:0]
[1:0]

data_from_bus[1:0]
[1:0]

receive

send

data_to_bus[1:0]
[1:0] [0][0]

[1][1]

[0][0]

[1][1]

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-8

A Multiplexer-Based Bus

Multiplexer-based bus

 It can avoid the large amount of capacitive load.

 It has much less the propagation delay than the tristate

bus when the number of modules attached to it is large

enough.

MUX tree

Module n

T
1

T
2

T
n

T
n-1

MUX tree

Module 1

T
1

T
2

T
n

T
n-1

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-9

Bus Arbitration

 The operation that chooses one transmitter from multiple

ones attempting to transmits data on the bus is called a bus

arbitration.

 The device used to perform the function of bus arbitration is

known as a bus arbiter.

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-10

Daisy-Chain Arbitration

 소자가 직렬로 연결되고 신호가 한 소자에서 다른 소자로
통과하는 버스를 따라 신호를 전달하는 방식. 데이지 체인(daisy
chain) 체계는 버스 상의 소자의 전기적 위치에 기반하여 소자의
우선 순위를 할당한다.

(a) Daisy-chain arbitration

Module 1 Module 2 Module n

R
eq

G
ra

n
t

R
eq

G
ra

n
t

R
eq

G
ra

n
t

c_
o
u
t

c_
in

c_
o

u
t

c_
in

c_
o

u
t

c_
in

http://upload.wikimedia.org/wikipedia/commons/c/cf/Daisy_chain.svg

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-11

Centralized arbitration

Module 1
Req

Grant

Req

Grant

Module 2

Req

Grant

Module n

B
u
s

ar
b
it

er

B
u
s

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-12

Daisy-Chain Arbitration

Fixed priority: composed of a priority

encoder and a decoder

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-13

Daisy-Chain Arbitration

Variable priority: use a shift register

to generate a priority

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-14

Round-Robin Arbitration

next_pi = anyg·pi + g(i-1) mod n

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-15

Data Transfer Modes

 Data transfer modes:

 synchronous mode

 asynchronous mode

 Regardless of data transfer modes, the actual data can be

transferred in:

 parallel: a bundle of signals in parallel

 serial: a stream of bits

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-16

Synchronously Parallel Data Transfers

 Each data transfer is in synchronism with clock signal.

 Bus master: A device generates address and command.

 Bus slave: A device receives the address and the

command from the bus.

 Synchronous bus transfers can be further divided into two

types:

 Single-clock bus cycle

 Multiple-clock bus cycle

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-17

Synchronously Parallel Data Transfers

(a) Single-clock bus cycle

(b) Multiple-clock bus cycle

clk

Address and

 command

Data

Bus cycle Bus cycle

Bus cycle Bus cycle

clk

Address and

 command

Data

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-18

Synchronously Serial Data Transfers

 In synchronous serial data transfer, the clock signal is

sending along with the data.

 Explicitly clocking scheme

• The clock signal is sent along with data explicitly as a separate

signal.

 Implicitly clocking scheme

• The clock signal is encoded into the data stream.

• The clock signal is then extracted at the receiver before sampling

the data.

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-19

Synchronously Serial Data Transfers

 Examples of synchronously serial data transfer

D0 D1 D2 D3 D4 D5 D6 D7Data

Clock

(a) Serial data transfer with explicitly clocking

(b) Serial data transfer with implicitly clocking (NRZ code)

1 1 1 1

0 0 0 0

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-20

Asynchronous Data Transfers

 Each data transfer occurs at random

 The data transfer may be controlled by using:

 strobe scheme

 handshaking scheme

 Both strobe and handshaking are used extensively on

numerous occasions that require the transfer of data between

two asynchronous devices.

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-21

Strobe

 Only one control signal known as strobe is needed.

 The strobe signal is enabled by either the source device or

destination device, depending on the actual application.

(a) Source-initiated transfer (b) Destination-initiated transfer

Source Destination

Data bus

Strobe

Source Destination

Data bus

Strobe

: source's action

Data Valid

Strobe
SampleReady

: destination's action

Data Valid

Strobe
Sample

Request

It presumes that the requested device is ready for transferring data

once it receives the request, which is not the case in reality.

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-22

Handshaking

 In the handshaking transfer, four events are proceeded in a

cycle order:

1. ready (request):

2. data valid:

3. data acceptance:

4. acknowledge:

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-23

Source-initiated transfer

1

Source Destination

Data bus

Valid

Ack

: source's action

Data Valid

Valid

Ack

2

3

4

: destination's action

1

1. ready:

2. data valid:

3. data acceptance:

4. acknowledge:

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-24

 In the handshaking transfer, four events are proceeded in a

cycle order:

1. ready: The destination device deasserts the acknowledge

signal and is ready to accept the next data.

2. data valid: The source device places the data onto the

data bus and asserts the valid signal to notify the

destination device that the data on the data bus is valid.

3. data acceptance: The destination device accepts (latches)

the data from the data bus and asserts the acknowledge

signal.

4. acknowledge: The source device invalidates data on the

data bus and deasserts the valid signal

Source-initiated transfer

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-25

Destination-initiated transfer

Source Destination

Data bus

Valid

Req

Data Valid

Valid

Req

1

4

3

2

: source's action : destination's action

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-26

 In the handshaking transfer, four events are proceeded in a
cycle order:

1. request: The destination device asserts the request signal
to request data from the source device.

2. data valid: The source device places the data on the data
bus and asserts the valid signal to notify the destination
device that the data is valid now.

3. data acceptance: The destination device accepts (latches)
the data from the data bus and asserts the request signal.

4. acknowledge: The source device invalidates data on the
data bus and deasserts the valid signal to notify the
destination device that it has removed the data from the
data bus

Destination-initiated transfer

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-27

Asynchronously Serial Data Transfers

 The clock signal is not sent with data.

 The receiver generates its local clock that is then used to

capture the data being received.

When there is no data to be sent, the transmitter continuously

sends 1s in order to maintain a continuous communication

channel.

 The receiver monitors the channel continuously until the

start bit is detected.

1 (Mark)

0 (Space)

Start bit Data bits Stop bit

time
LSB MSB

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-28

Asynchronously Serial Data Transfers

 Sampling at the same frequency

 Sampling using 4 times frequency

Center

RxD

RxC

Sampling pulse

RxD

RxC

Sampling pulse

Center

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-29

Timers

 Important applications:

 time-delay creation

 event counting

 time measurement

 period measurement

 pulse-width measurement

 time-of-day tracking

 waveform generation

 periodic interrupt generation

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-30

Timers

(a) Hardware model

(c) Function table

(b) Programming model

Latch

Timer

MSB

MSB LSB

LSB

Mode M0M1

017 2~

0715 8
outTimer

data_bus

reset_n

clk

cs

r_w

A1~A0

gate

2

cs r_w Function

0

1 1

1 1

Chip unselected

Read Latch register

A1 A0

00

Read timer register10

1 0

1 0

Write Latch register00

1 0 Write mode register

The latch register stores the initial value to be

loaded into the timer for counting down.

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-31

Basic Timer Operations

 A counter is called a timer if it is operated at a known clock

of fixed frequency.

 In practice, the timers used in most µC systems are counters

with programmable operation modes.

 The basic operation modes of a timer are as follows:

 terminal count (binary/BCD event counter)

 rate generation

 (digital) monostable (or called one-shot)

 square-wave generation

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-32

Terminal Count

(a) A waveform example of terminal-count mode

(b) Block diagram of terminal-count mode

(c) Generate one-cycle timer_load pulse

clk

gate

out

5 4 3 2 1 0

Latch register = 5

Disable

Latch

timer

Data bus
wr

rd

out

gate

clk

timer_load

generator

timer_enable
timer_stop

out and

timer_stop

generator

timer_load

latch_load

wr

timer_load 1

timer_load 0

wr

S0

S1

0

1

0 1

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-33

Rate Generation

 The out terminal outputs one clock pulse for every N clock

pulses.

 The gate input should be fixed at the logic 1 to enable the

timer.

 It is implemented by being reloaded the timer register from

latch register whenever the terminal count is reached.

clk

gate

out

Latch register = 4

3 2 1 0(4)0(4)3 2 14

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-34

Retriggerable Monostable (One-Shot) Operation

(b) Block diagram of one-shot mode

(a) A waveform example of one-shot mode

clk

gate

out

5 4 3 2 1 0
Latch

register = 5

Retriggered
5 4

Start to count

Latch

timer

Data bus

wr
rd

out

gate
clk

timer_load

generator

timer_enable

timer_load
J

CK

Q

K

timer is 0

latch_load

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-35

UART

 Universal Asynchronous Receiver Transmitter

 Serial Data Transmission

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-36

68HC11 Microcontroller

 UART Registers

 RSR Receive Shift Register

 RDR Receive Data Register

 TDR Transmit Data Register

 TSR Transmit Shift Register

 SCCR Serial Communications Control Register

 SCSR Serial Communications Status Register

 UART Flags

 TDRE Transmit Data Register Empty

 RDRF Receive Data Register Full

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-37

UART Block Diagram

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-38

UARTs

 UART is a device used to provide serial data ports used to

communicate with serial devices.

 The hardware model includes

 the CPU interface

 the I/O interface

 The software model consists of four registers:

 receiver data register (RDR)

 transmitter data register (TDR)

 status register (SR)

 control register (CR)

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-39

UARTs

(a) Hardware model

(c) Programming model

UART

data_bus

reset_n

cs

r_w

rs

RxD

TxD

clk

(b) Function table

cs r_w rs Function

0

1 1 0

1 0 0

1 1 1

1 0 1

Chip unselected

Read SR

Write CR

Read RDR

Write TDR

07

SR

CR

123456

OE PEFE RF TE

RIE TIE baud-sel0 0 0

000

07

RDR

TDR

123456

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-40

UARTs

 Design issues

 baud rate: 300 to 19200, or even more

 sampling clock frequency: RxC = n TxC (n= 1,4,16,64)

 stop bits: 1, 1.5, 2 bits

 parity check

• Even: the number of 1s of information and parity is even.

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-41

Transmitter Operation

 Microcontroller waits until TDRE = '1'

 Loads data into TDR

 Clears TDRE

 UART transfers data from TDR to TSR

 Sets TDRE

 UART outputs start bit ('0') then shifts TSR right eight times followed by

a stop bit ('1')

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-42

Transmitter SM Chart

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-43

A Transmitter of UARTs

 The essential component of the transmitter is a shift register.

 The transmitter is composed of

 a transmitter shift data register (TSDR)

 a TDR empty flag (TE)

 a transmitter control circuit

 a TDR

 parity generator TxD

Transmitter control TDR

0

TSDR

P

Parity generator

TxC

TE

11

Data bus

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-44

A Transmitter of UARTs

(a) CPU operations (b) TSDR operations

TE

Write data into TDR;

Clear TE;

0

1

TE
1

0

Shift TSDR;

BitCnt 0;

Shift TSDR;

BitCnt BitCnt +1;

BitCnt < m-1

TSDR TDR;

10

idle

shift

set_TE 1;

set_TE 0;

set_TE 0;

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-45

UART transmitter

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-46

UART transmitter

even parity

start bit

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-47

Receiver Operation

 UART waits for start bit

 Shifts bits into RSR

 When all data bits and stop bit are received

 RSR loaded into RDR

 Set RDRF

 Microcontroller waits until RDRF is set

 Read RDR

 Clear RDRF

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-48

Sampling RxD

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-49

Receiver SM Chart

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-50

A Receiver of UARTs

 The essential component of the receiver is also a shift

register.

 The receiver is composed of

 a RDR

 a receiver shift data register (RSDR)

 a status register

 a receiver control circuit

RDR

RSRRxD Receiver control

FE OE PE

RxC

Data bus

P1

RF

0

RcvSR

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-51

A Receiver of UARTs

(b) RSDR operations

(a) CPU operations

RF

Read data from RDR;

Clear RF;

0

1

RxD
1

0

BckCnt n/2-1;

BckCnt BckCnt -1;

BckCnt != 0

0

Shift RSDR;

BitCnt BitCnt + 1;

BckCnt != 0

1

0

BitCnt <= m-1

BckCnt n-1;

RDR RSDR[7:0];

set_FE !RxD;

idle

detected

At reset

BitCnt 0;

BckCnt BckCnt -1;

shift

BckCnt BckCnt -1;

if (BitCnt < m-1)

parity RxD ^ parity;

BckCnt n - 1;1

0
set_PE parity;

BckCnt n/2-1;

BitCnt 0;

set_RF 1;

if (RcvSR[0] == 1)

set_OE 1;

1

Assume that even parity, 1

stop, 8-bit data are used.

Oversampling rate

is n. The frame size

excluding the stop bit is m.

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-52

UART receiver

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-53

UART receiver

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-54

UART receiver

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-55

UART receiver

shift

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-56

Baud-Rate Generators

 The baud-rate generator provides both clock sources: TxC

and RxC, for transmitter and receiver modules, respectively.

 Two most widely used approaches to designing baud-rate

generators:

 Multiplexer-based approach

 timer-based approach

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-57

Baud Rate Generator

Select Bits BAUD Rate

000 38,462

001 19,231

010 9615

011 4808

100 2404

101 1202

110 601

111 300.5

300.5 x 8 x 256 x 13 =8000512

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-58

Baud-Rate Generators

(a) Multiplexer-based baud-rate generator

(b) Timer-based baud-rate generator

Data bus

Baud_rate

clk

wr

Load

Baud_rate_timer

Baud_rate_timer_load

Timer_load

generator

Modulo n TxC

Baud_rate_timer_out

RxC

(TxCxn)

clk Modulo M Modulo 256

Prescale_counter Baud-rate counter

Modulo nTxC 8-to-1 MUX
Select

(baud_sel)

RxC

(TxCxn)

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-59

Baud-rate generator

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-60

Baud-rate generator

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-61

UART top

(b) Function table

cs r_w rs Function

0

1 1 0

1 0 0

1 1 1

1 0 1

Chip unselected

Read SR

Write CR

Read RDR

Write TDR

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-62

UART top

RIE

TIE

RF

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-63

CPU Basic Operations

(a) CPU basic operations (b) More detailed CPU operations

Execute the instruction

Fetch an instruction

Decode the instruction

Fetch memory operand

Store the result

Fetch an instruction

Execute the instruction

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-64

The Software Model of CPU

 The software model of CPU:

 the programming model

 instruction formats

 addressing modes

 instruction set

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-65

The Programming Mode

General-purpose registers

0

15 01

R0 (PC)

V N Z C

15 9 8 7 0123

R2 (SR)

0

15 01

R1(SP)

R0 (PC)

R1 (SP)

R2 (SR)

R15

R4

R3

16-bit

operation

Byte operation
Reg. As Constant Comments

R2 ---

R2

00

(0)

R2

01

0x0004

R2

10

0x0008

R3

11

0x0000

R3

R3

R3

00

01

10

11

0x0001

0x0010

0xFFFF

Register mode

Absolute address mode

+4, bit processing

+8, bit processing

0, word processing

+1, bit processing

+2, bit processing

-1, word processing

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-66

Instruction Formats

 Any instruction is composed of two major parts:

 Opcode defines the operations of the instruction.

 Operand specifies the operands to be operated by the

instruction.

(a) Double-operand instruction format

(b) Single-operand instruction format

(c) Jump instruction format

Opcode

15 14 13 12

Rd/s

11 10 9 8 7 6 5 4 3 2 1 0

AdB/W

Opcode

15 14 13 12

Cond.

11 10 9 8 7 6 5 4 3 2 1 0

10-bit offset

Opcode

15 14 13 12

Rs Rd

11 10 9 8 7 6 5 4 3 2 1 0

AsB/WAd

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-67

Addressing Modes

 Addressing modes are the ways that operands are fetched.

 register

 indexed

 register indirect

 immediate

As/Ad

Register mode

Comments

00/0

01/1

10/-

11/-

Addressing mode Syntax

Indexed mode

Symbolic mode

Absolute mode

Register indirect mode

Autoincrement mode

Immediate mode

Rn

X(Rn)

ADDR

&ADDR

@Rn

@Rn+

#N

(Rn+X) points to the operand.

Register contents are operand.

(PC+X) points to the operand.

X(SR) points to the operand.

Rn points to the operand.

Rn points to the operand and

increments 1 or 2.

@PC+.

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-68

The Instruction Set

 Double-operand instruction set

Mnemonic

MOV(.B) src, dst

Operation

dst src

ADD(.B) src, dst

SUB(.B) src, dst

SUBC(.B) src, dst

ADDC(.B) src, dst

CMP(.B) src, dst

DADD(.B) src, dst

BIC(.B) src, dst

BIS(.B) src, dst

BIT(.B) src, dst

XOR(.B) src, dst

AND(.B) src, dst

dst src + dst

dst src + dst + C

dst .not.src + dst + 1

dst .not.src + dst + C

dst - src

dst src + dst + C (decimal)

dst .and. src

dst .not.src .and. dst

dst src .or. dst

dst src .xor. dst

dst src .and. dst

N Z V C Op code

- - - -

* * * *

* * * *

* * * *

* * * *

* * * *

* * * *

* * 0 *

* * 0 *

- - - -

* * * *

- - - -

0x4xxx

0x5xxx

0x6xxx

0x8xxx

0x7xxx

0x9xxx

0xAxxx

0xBxxx

0xCxxx

0xDxxx

0xExxx

0xFxxx

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-69

The Instruction Set

 Single-operand instruction set

Mnemonic

RRA(.B) dst

Operation

Arithmetic shift right, C LSB

RRC(.B) dst

SWAPB

RETI

PUSH(.B) src

SXT dst

Rotate right through carry

SP SP - 2, @SP src

Swap bytes

dst[15:8] dst[7]

N Z V C Op code

* * 0 *

* * * *

- - - -

- - - -

- - - -

* * * *

0x110x

0x100x

0x120x

0x128x

0x130x

0x118x

CALL dst SP SP - 2, @SP PC + 2,

PC dst

SR TOS, SP SP + 2,

PC TOS, SP SP + 2,

* * 0 *

0x108x

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-70

The Instruction Set

 Jump instruction set

Mnemonic

JNE/JNZ label

Operation

Jump to label if zero bit is reset

JEQ/JZ label

JNC label

JL label

JC label

JMP label

N Z V C Op code

- - - -

- - - -

- - - -

- - - -

- - - -

- - - -

0x20xx

0x24xx

0x2Cxx

0x30xx

0x34xx

0x38xx

JN label

- - - -

0x28xx

JGE label

0x3Cxx- - - -

Jump to label if zero bit is set

Jump to label if carry bit is set

Jump to label if carry bit is reset

Jump to label if negative bit is set

Jump to label if (N .xor. V) = 0

Jump to label if (N .xor. V) = 1

Jump to label unconditionally

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-71

A Datapath Design

ALUFunc

2

Memory
ALU

A

B

SE
1610

IR
 r

eg
is

te
r

D
st

R

Reg. file

PC

SP

dst

src

10-bit offset

IRload

0
1

Dregsrc

RFWDsrc

RFdataWR

ALUBsrc

ALUAsrc

0

1

0

1

2

3

0
1
2

S
rc

R

0

1

0

1

0
1
2

MAsrc

MRW DstRsrc
SrcRload

DstRload

2

4

(See text)

4

Flags

(To R2)

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-72

ALU Functions

Instruction

MOV(.B) F A

ADD(.B)

SUB(.B), CMP(.B)

SUBC(.B)

ADDC(.B)

DADD(.B)

BIC(.B)

BIS(.B)

AND(.B), BIT(.B)

XOR(.B)

A+B

A+B+C

A+ not B + 1

A+ not B + not C

A+6H, A+60H conditional

A and B

not A and B

A or B

A xor B

m3 m2 m1

0 0 0

m0

0

ALU function

RRA(.B) Arithmetic shift right into C

Rotate right through CRRC(.B)

SWAP Swap byte

F B

Mode selection

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

B/W

-

-

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0

Mnemonic

pass A

add(b/w)

addc(b/w)

sub(b/w)

subc(b/w)

dadd(b/w)

and(b/w)

bic(b/w)

or(b/w)

xor(b/w)

asrc(b/w)

rotatec(b/w)

swap

pass BMOV(.B)

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-73

A Control Unit

 The decoder-based approach

 An opcode decoder is used after the instruction fetch

phase.

 Each instruction is then executed accordingly.

 The resulting states required is rather large.

Opcode

Fetch

IR M[PC]
PC PC + 2

MOV

Execute the operation

AND

Execute the operation

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-74

A Control Unit

 Single-operand

instruction

 A better approach is to group

the instruction in accordance

with addressing modes and

the operations of instructions.

Opcode == 1xxx

Fetch

IR M[PC]
PC PC + 2

As

DstR M[PC]
PC PC + 2

DstR DstR+Rn

DstR M[Rn]

10

If (n == 0) W = 1;
DstR M[Rn]

Rn Rn + 2W

110100

MDO 1

MDO 1

MDO 1

Execute instructions

Opcode == 1xxx
00

1

Double-operand

instructions
Jump instructions

T0

T1

T2

T3 ~T4

Chapter 15: Design Examples

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 15-75

A Control Unit

 The operations of T3 and T4 are determined separately by

each instruction.

RRA

SrcR M[DstR]

MDO =0 Rd ARS(Rd)

M[DstR] ARS(SrcR)MDO =1

RRC

SrcR M[DstR]

MDO =0 Rd Rotate(Rd)

M[DstR] Rotate(SrcR)MDO =1

PUSH

SrcR M[DstR]

MDO =0 SP SP -2

M[SP] SrcRMDO =1

M[SP] Rs

SP SP -2

(0001_0001_00)

(0001_0000_00)

(0001_0010_00)

T3 T4

