Levels of abstraction

informal

formal, more precise

how to implement function, interconnected components

Levels of abstraction (HW)

Top-down vs. bottom-up

- △start from most abstract description;
- work to most detailed.

#Bottom-up design:

○ work from small components to big system.

Real design uses both techniques.

Design goals

*Functionality and user interface.
*Performance.
Overall speed, deadlines.
*Power consumption.
*Manufacturing cost.
*Other requirements (physical size, etc.)

Stepwise refinement

₭ At each level of abstraction, we must:
▲ analyze the design to determine characteristics of the current state of the design;
▲ refine the design to add detail.
▲ verify the design to ensure that it meets all goals

Requirements

³ Plain language description of what the user wants and expects to get. ∺May be developed in several ways: \bigtriangleup talking directly to customers; \bigtriangleup talking to marketing representatives; Mockup: user interface of a system's requirement

 \boxtimes providing prototypes to users for comment.

Functional vs. non-functional

[#]Functional requirements: \square output as a function of input. ³KNon-functional requirements: \bigtriangleup time required to compute output; \bigtriangleup size, weight, etc.; \square power consumption; \bigtriangleup reliability;

Sample requirements form

name purpose inputs outputs functions performance manufacturing cost power physical size/weight

Example: GPS moving map requirements

Hoving map obtains position from GPS, paints map from local database.

GPS moving map needs

Functionality: For automotive use. Show major roads and landmarks.

- ₭ User interface: At least 400 x 600 pixel screen.
 Three buttons max. Pop-up menu.
- **Performance:** Map should scroll smoothly. No more than 1 sec power-up. Lock onto GPS within 15 seconds.
- **Cost:** \$120 street price = approx. \$30 cost of goods sold. = $4 \sim 5 \times 10^{-5}$ x the cost of all components

GPS moving map needs, cont'd.

***Physical size/weight:** Should fit in hand. ***Power consumption:** Should run for 8 hours on four AA batteries.

GPS moving map requirements form

name	GPS moving map
purpose	consumer-grade
	moving map for driving
inputs	power button, two
	control buttons
outputs	back-lit LCD 400 X 600
functions	5-receiver GPS; three
	resolutions; displays
	current lat/lon
performance	updates screen within
	0.25 sec of movement
manufacturing cost	\$ 30 cost-of-goods-sold
power	100 mW
physical size/weight	no more than 2: X 6:,

Specification

A more precise description of the system:
Should not imply a particular architecture
provides input to the architecture design process.

∺May include functional and non-functional elements.

₩May be executable or may be in mathematical form for proofs.

GPS specification

Should include:

- △data received from GPS;
- Map data;
- ☐user interface;
- operations required to satisfy user requests;
 background operations needed to keep the system running.

Architecture design

#What major components go satisfying the specification?

Hardware components:

△CPUs, peripherals, etc.

Software components:

Major programs and their operations.

Hust take into account functional and non-functional specifications.

Block diagram for GPS moving map

Still quite abstract!

Computers as Components

Hardware architecture for GPS moving map

Software architecture for GPS moving map

Designing hardware and software components

∺Must spend time architecting the system before you start coding.

Some components are ready-made, some can be modified from existing designs, others must be designed from scratch.

System integration

Put together the components.
Many bugs appear only at this stage.
Have a plan for integrating components to uncover bugs quickly, test as much functionality as early as possible.

₭Embedded computers are all around us.
▲Many systems have complex embedded hardware and software.

Embedded systems pose many design challenges: design time, deadlines, power, etc.

Design methodologies help us manage the design process.