
Computers as Components 1 © 2008 Wayne Wolf

Overheads for Computers as

Components 2nd ed.

ARM subroutine linkage

Branch and link instruction:
BL foo

Copies current PC to r14.

To return from subroutine:

MOV r15,r14

Computers as Components 2 © 2008 Wayne Wolf

Overheads for Computers as

Components 2nd ed.

Nested subroutine calls

Nesting/recursion requires coding
convention:

f1 LDR r0,[sp] ; read arg from stack

 ; call f2()

 STR lr,[sp, #-4]! ; push f1’s return adrs

 STR r0,[sp, #-4]! ; push arg to f2 on stack

 BL f2 ; branch and link to f2

 ; return from f1()

 ADD sp,#4 ; pop f2’s arg off stack

 LDR pc,[sp,#4]! ; pop return address

Computers as Components 3

ARM-Thumb procedure call

standard (ATPCS)

The first four integer arguments are passed in the
four ARM register: r0, r1, r2, r3

Subsequent integer arguments are placed in the
FD stack, ascending in memory.

Function return value is passed in r0

argument 4

argument 5

argument 6

…

sp

sp+4

sp+8

argument 0

argument 1

argument 2

r0

r1

r2

argument 3 r3

return value

Computers as Components 4

ARM procedure call standard

For functions with 4 or more arguments, both the
caller and the callee must access the stack for
some arguments.

Note that for C++ the first argument to an object
is the this pointer. This argument is implicit and
additional to the explicit arguments.

If a C function needs more than four arguments,
or a C++ function more than three explicit
arguments, then it is more efficient to use a
structure as a grouped arguments and pass a
structure pointer.

Computers as Components 5

Example: STM--LDM pair

 ; pre

STMIB sp!, {r1-r3}

MOV r1, #1

MOV r2, #2

MOV r3, #3

;mid

LDMDA sp!, {r1-r3}

;post

pre r13=0x00009000

 r1=0x00000009

 r2=0x00000008

 r3=0x00000007

post r13=0x00009000

 r1=0x00000009

 r2=0x00000008

 r3=0x00000007

mid r13=0x0000900c

 r1=0x00000001

 r2=0x00000002

 r3=0x00000003

mem32[0x0000900c]=0x00000007

mem32[0x00009008]=0x00000008

mem32[0x00009004]=0x00000009

mem32[0x00009000]=0x0000000A

mem32[0x0000900c]=0x0000000D

mem32[0x00009008]=0x0000000C

mem32[0x00009004]=0x0000000B

mem32[0x00009000]=0x0000000A

Computers as Components 6

Stack operations

(pop,push) for each addressing mode

Full ascending:

 (pop, push): (LDMFA, STMFA)=(LDMDA, STMIB)

Full descending:
 (pop, push) : (LDMFD, STMFD)=(LDMIA, STMDB)

Computers as Components 7

Load-store multiple instructions

Addressing mode (N is the number of
addresses in the register list)

 (start addrewss, end address, Rn!)

IA: increment after: Rn, Rn+4N-4, Rn+4N

IB: increment before: Rn+4, Rn+4N, Rn+4N

DA: decrement after: Rn, Rn-4N+4, Rn-4N

DB: decrement before: Rn-4, Rn-4N, Rn-4N

<LDM|STM>{<cond>}{addressing_mode}{S} Rn{!},<registers>{^}

Computers as Components 8

 BL SUB1

label0 . .

SUB1 STMFD sp!,{r0-r2,r14} ; save work & link register

 BL SUB2

 . .

 LDMFD sp!, {ro-r2,pc} ; restore work regs & link

 . .

SUB2 . .

 MOV pc, r14 ; return

Nested subroutine calls

Computers as Components 9

Stack Examples

STMFD sp!,{r0,r2,r14}

r14
r2

r0 SP

Old SP

LDMFD sp!,{r0,r2,pc}

SP

Computers as Components 10

CPUs

Input and output.

Supervisor mode, exceptions, traps.

Co-processors.

Caches.

Memory management.

CPU performance

CPU power consumption.

Example: data compressor

Computers as Components 11

I/O devices

Usually includes some non-digital
component. (ADC and DAC 필요)

Typical digital interface to CPU:

CPU

status

reg

data

reg

m
ec

h
an

is
m

Computers as Components 12

Application: 8251 UART

Universal asynchronous receiver
transmitter (UART) : provides serial
communication.

8251 functions are integrated into
standard PC interface chip.

Allows many communication parameters
to be programmed.

Computers as Components 13

Serial communication

Characters are transmitted separately:

time

bit 0 bit 1 bit n-1

no

char

start stop ...

Computers as Components 14

Serial communication

parameters

Baud (bit) rate.

Number of bits per character (5-8).

Parity/no parity.

Even/odd parity.

Length of stop bit (1, 1.5, 2 bits).

Computers as Components 15

Sample points

 Example: 10 bits/ character (1 stop bit, 8 bits, no parity bit, 1 stop bit)

time

bit 0 bit 1 bit 7

no

char

start stop ...

1.5 BT 1.5 BT 8.5 BT 9.5 BT Synch

point
framing error if not 1

0.5 BT

Computers as Components 16

8251 CPU interface

CPU 8251

status

(8 bit)

data

(8 bit)

serial

port

xmit/

rcv

8251 interrupts CPU

1. when receiving a character is done

2. when sending a character is finished

Computers as Components 17

Programming I/O

Two types of instructions can support I/O:

special-purpose I/O instructions;

memory-mapped load/store instructions.

Intel x86 provides in, out instructions.

Most other CPUs use memory-mapped
I/O.

I/O instructions do not preclude memory-
mapped I/O.

Computers as Components 18

ARM memory-mapped I/O

Define location for device:
 DEV1 EQU 0x1000

Read/write code:

LDR r1,#DEV1 ; set up device adrs

LDR r0, [r1] ; read DEV1

LDR r0,#8 ; set up value to write

STR r0, [r1] ; write value to device

Computers as Components 19

Peek and poke

Traditional HLL interfaces:

int peek(char *location) { /* read */

 return *location; }

void poke(char *location, char newval) { /* write */

 (*location) = newval; }

Computers as Components 20

Busy/wait output

Simplest way to program device.
Use instructions to test when device is ready.

current_char = mystring;

while (*current_char != ‘\0’) {

 poke(OUT_CHAR,*current_char);

 while (peek(OUT_STATUS) != 0); /* polling or busy-wait */

 current_char++;

}

/* busy-wait function checks the device status until it changes
to 0 */

Computers as Components 21

Simultaneous busy/wait

input and output

#define IN_DATA 0x1000

#define IN_STATUS 0x0001

#define OUT_DATA 0x1100

#define OUT_STATUS 0x1101

while (TRUE) {

 /* read */

 while (peek(IN_STATUS) == 0); /* busy-wait ; new char arrived? */

 achar = (char) peek(IN_DATA);

 poke(IN_STATUS,0); /* reset */

 /* write */

 poke(OUT_DATA, achar);

 poke(OUT_STATUS,1);

 while (peek(OUT_STATUS) != 0); /* busy-wait; char sent? */

}

Computers as Components 22

Interrupt I/O

Busy/wait is very inefficient.

CPU can’t do other work while testing device.

Hard to do simultaneous I/O.

Interrupts allow a device to change the
flow of control in the CPU.

Causes a subroutine call to handle device.

Interrupt handler, device driver

Computers as Components 23

Interrupt behavior

Based on subroutine call mechanism.

Interrupt forces next instruction to be a
subroutine call to a predetermined
location.

Return address is saved to later resume
executing foreground program.

Computers as Components 24

Interrupt physical interface

CPU and device are connected by CPU bus.

CPU and device handshake with interrupt
request and acknowledgement:

device asserts interrupt request;

CPU asserts interrupt acknowledge when it can
handle the interrupt.

An PIC (programmable interrupt controller)
connects multiple external interrupts to one of
the two ARM interrupt requests (IRQ, FIQ)

Computers as Components 25

Interrupt interface

CPU

status

reg

data

reg

m
ec

h
an

is
m

P
C

intr request

intr ack

data/address

IR

Computers as Components 26

Character I/O handlers

Example 3.4: use interrupts as a basic replacement for

busy-wait

void input_handler() { /* interrupt handler */

 achar = peek(IN_DATA);

 gotchar = TRUE;

 poke(IN_STATUS,0);

}

void output_handler() { /* react for a char sent */

/* do nothing */ }

Computers as Components 27

Interrupt-driven main program

main() {

 while (TRUE) {

 if (gotchar) { /* check input status */

 poke(OUT_DATA,achar);

 poke(OUT_STATUS,1);

 gotchar = FALSE;

 }

 }

 }

 /* still the foreground program does not do useful work */

Computers as Components 28

Interrupt I/O with buffers

Use a queue between read and write
routines to make them run independently.

 a queue

io_buf: a character string

buf_start, buf_end: head, tail

status: set to 0 if io_buf overflows (error)

Computers as Components 29

Interrupt I/O with buffers

Queue for characters:

head tail head tail

a

Computers as Components 30

Interrupt I/O with buffers

Queue for characters: full

b c d e f g

head tail

a

full = ((tail+1) ==head)

Computers as Components 31

Interrupt I/O with buffers

Queue for characters:

b c d e f g h

head tail

Computers as Components 32

Buffer-based input handler

#define BUF_SIZE 8

char io_buf[BUF_SIZE];

int buf_head=0, buf_tail=0;

int error =0;

void empty_buffer() {

 buf_head == buf_tail;

}

void full_buffer() {

 (buf_tail+1) % BUF_SIZE == buf_head;

}

Computers as Components 33

Buffer-based input handler

int nchars () { /* return # of chars in the buffer */

 if (buf_tail >= buf_head) return buf_tail – buf_head;

 else return BUF_SIZE + buf_tail - buf_head;

}

void add_char(char achar) { /* add a char into the buffer */

 io_buf[buf_tail++] == achar;

 if (buf_tail == BUFF_SIZE) buf_tail = 0;

}

char remove_char() { /* take a char from the buffer */

 char achar;

 achar = io_buffer[buf_head++];

 if (buf_head == BUF_SIZE) buf_head = 0;

}

Computers as Components 34

Buffer-based input handler

#define IN_DATA 0x1000

#define IN_STATUS 0x1001

void input_handler() {

 char achar;

 if (full_buffer()) error = 1;

 else { achar = peek(IN_DATA); add_char(achar); }

 poke(IN_STATUS,0);

 if (nchars == 1) {

 /* the buffer was empty, start a new output action by itself */

 poke(OUT_DATA,remove_char();

 poke(OUT_STATUS,1);

 }

}

Computers as Components 35

Buffer-based output handler

#define OUT_DATA 0x1100

#define OUT_STATUS 0x1101

void output_handler() {

 if (!empty_buffer()) {;

 poke(OUT_DATA,remove_char();
 poke(OUT_STATUS,1); }

 }

main() {

/* free to do useful work */

/* do nothing for io operations */

}

Computers as Components 36

I/O sequence diagram

:foreground :input :output :queue

empty

a

empty

b

bc

c

Computers as Components 37

Interrupts

Interrupts allow a lot of concurrency,
which can make efficient use of the CPU.

An interrupt can occur at any time

What if you forget to change registers?

Foreground program can exhibit mysterious
bugs.

Bugs will be hard to repeat---depend on
interrupt timing.

Computers as Components 38

CPU checks Interrupts

At the beginning of execution of every
instruction to be able to response quickly to
service requests form the devices.

If an interrupt exists, CPU does not fetch the
instruction pointed to by PC.

Instead CPU set PC to a predefined location,
which is the beginning of the interrupt handling
routine.

The starting address of the interrupt handler is
usually given as a pointer rather than defining
a fixed location for the handler.

Computers as Components 39

Calling convention using stack

The interrupt handler must return to the
foreground program without disturbing its
machine state.

The subroutine call mechanism is typically based
on utilizing the stack.

Computers as Components 40

Priorities and vectors

Two mechanisms allow us to make
interrupts more specific:

Priorities determine what interrupt gets CPU
first.

Vectors determine what code is called for
each type of interrupt.

Mechanisms are orthogonal: most CPUs
provide both.

Computers as Components 41

Prioritized interrupts

CPU

device 1 device 2 device n

L1 L2 .. Ln

interrupt acknowledge log2n bits

Prioritized interrupt lines

Computers as Components 42

Vectored Interrupt flow

1. An interrupt occurs.
2. The ARM processor branches to the IRQ

interrupt vector.
3. Read the VICADDRESS Register and branch to

the interrupt service routine. This can be done
using an LDR PC instruction. Reading the
VICADDRESS Register updates the hardware
priority register of the interrupt controller.

4. Stack the workspace so that IRQ interrupts can
be re-enabled.

5. Enable the IRQ interrupts on the processor so
that a higher priority can be serviced.

Computers as Components 43

Vectored Interrupt flow

6. Execute the Interrupt Service Routine (ISR).
7. Clear the requesting interrupt in the peripheral,

or write to the VICSOFTINTCLEAR Register if the
request was generated by a software interrupt.

8. Disable the interrupts on the processor and
restore the workspace.

9. Write to the VICADDRESS Register. This clears
the respective interrupt in the internal interrupt
priority hardware.

10. Return from the interrupt. This re-enables the
interrupts.

Computers as Components 44

Interrupt prioritization

Masking: interrupt with priority lower than
current priority is not recognized until
pending interrupt is complete.

Non-maskable interrupt (NMI): highest-
priority, never masked.

Often used for power-down.

Computers as Components 45

Example: Prioritized I/O

:interrupts :foreground :A :B :C

B

A,B

C

A

Computers as Components 46

Interrupt vectors

Allow different devices to be handled by
different code.

Interrupt vector table:

handler 0

handler 1

handler 2

handler 3

Interrupt

vector

table head

Computers as Components 47

Interrupt vector acquisition

:CPU :device

receive

request

receive

ack

receive

vector

ack

vector

Computers as Components 48

Generic interrupt mechanism

intr?
N

Y

Assume priority selection is
handled before this
point.

N

ignore

Y

ack

vector?

Y

Y

N
timeout?

Y
bus error

call table[vector]

intr priority > current priority?

continue

execution

N

Computers as Components 49

Interrupt sequence

CPU acknowledges request.

Device sends vector.

CPU calls handler.

Handler processes request.

CPU restores state to foreground
program.

Computers as Components 50

Sources of interrupt overhead

Handler execution time.

Interrupt mechanism overhead.

Register save/restore.

Pipeline-related penalties.

Cache-related penalties.

Computers as Components 51

ARM interrupts

ARM7 supports two types of interrupts:

Fast interrupt requests (FIQs).

Interrupt requests (IRQs).

Interrupt table starts at location 0.

Computers as Components 52

ARM interrupt procedure

CPU actions:

Save PC

Copy CPSR to SPSR.

Change the processor mode in new CPSR

Interrupts (FIQ or IRQ) are disabled

Force PC to vector.

Computers as Components 53

ARM interrupt procedure

Handler :
Save context

Identifies the external interrupt source and
executes the appropriate ISR

Reset the interrupt

Restore context

Return form handler
Restore CPSR from SPSR

interrupt disable flags.

pc=lr-4

Computers as Components 54

IRQ interrupt procedure

 an IRQ interrupt is raised when the processor is in
user mode.

 CPSR=nzcvqjift_usr : both IRQ and FIQ are
enabled

 User mode CPSR is saved into SPSR. Set new CPSR

 new CPSR = nzcvqjIft_irq

 SPSR_irq = nzcvqjift_usr

 r14_irq=pc

 pc= 0x18

Computers as Components 55

Link register offsets

 Reset: lr is not defined on a reset

 Data abort : (lr – 8) points to the instruction
that caused the abort

 FIQ, IRQ: (lr – 4) points to address from the
handler

 Prefetch abort: (lr – 4) points to the
instruction that caused the abort

 SWI, Undefined Instruction: lr points to the
next instruction after the SWI or undefined
instruction

Computers as Components 56

Return form IRQ or FIQ handler

 Because there S at the end of the instruction and pc is
the destination register, cpsr is automatically resotred
form spsr.

handler

 <handler codes>

 . . .

 SUBS pc, r14, #4 ; pc=r14 -4

handler

 SUB r14, r14, #4 ; r14 -= 4

 . . .

 <handler codes>

 . . .

 MOVS pc, r14 ; return

Computers as Components 57

Return form IRQ or FIQ handler

handler

 SUB r14, r14, #4 ; r14 -= 4

 STMFD r13!, {r0-r3, r14} ; store context

 . . .

 <handler codes>

 . . .

 LDMFD r13!, {r0-r3, pc} ; restore context and return

>

 symbol in the instruction forces cpsr to be restored
from spsr.

>

Computers as Components 58

ARM interrupt latency

Worst-case latency to respond to interrupt
is 27 cycles:

Two cycles to synchronize external request.

Up to 20 cycles to complete current
instruction.

Three cycles for data abort.

Two cycles to enter interrupt handling state.

Computers as Components 59

A three-level nested interrupt

Normal execution

Interrupt enabled interrupt (1)

interrupt (2)

Interrupt handler

interrupt (3)

