

How digital camera works

Introduction

 \mathbb{H} Digital cameras are very much like the still more familiar 35mm film cameras. Both contain a lens, an aperture, and a shutter. The lens brings light from the scene into focus inside the camera so it can expose an image. The aperture is a hole that can be made smaller or larger to control the amount of light entering the camera. The shutter is a device that can be opened or closed to control the length of time the light enters.

Digital still cameras

DSC must determine exposure before taking picture.
After taking picture:
Improve image quality.
Compress.
Save as file.

Digital still camera architecture

BSC uses CPU for general-purpose processing, DSP for image processing.

- **#** Internal memory buffers the passes on the image.
- \approx Display is lower resolution than image sensor.

☐ Image must be downsampled.

Image processing

#Must perform basic processing to get usable picture:

- △ Bayer->RGB interpolation.
- #DSCs perform many functions formerly
 performed by photoprocessors for film:
 - \square Image sharpening.
 - △Color balance.

Digital colors

What are digital colors ?What are color spaces ?Why do we have different color spaces?

What are Colors?

*The colors that humans and cameras perceive are determined by the nature of the light reflected from an object!

%Green objects reflect
%green" light!

Spectrum

Blackbody Radiation

FIGURE 3-7

(a) The Planck function, or blackbody radiation curve; (b) Wien's law; (c) the Stefan-Boltzmann law.

Blackbody radiation—radiation emitted by a body that emits (or absorbs) equally well at all wavelengths

Basic laws of Radiation

➡ Wien's Law

$$\lambda_{max} \cong \frac{3000 \ \mu m}{T(K)}$$

Stefan Boltzman Law.

$F = \sigma T^4$

F = flux of energy (W/m²) T = temperature (K) σ = 5.67 x 10⁻⁸ W/m²K⁴ (a constant)

Sun and Earth

Computers as Components

Sun and Earth

	Т (К)	λ _{max} (μm)	region in spectrum	F (W/m²)
Sun	6000	0.5	Visible (green)	7 x 10 ⁷
Earth	300	10	infrared	460

• Blue light from the Sun is removed from the beam by Rayleigh scattering, so the Sun appears yellow when viewed from Earth's surface even though its radiation peaks in the green

FOUR PRIMARY COLOR GROUPS

Additive colors are created with light. You project a red light through a red screen or on a monitor or television. The additive primaries are red, green and blue (RGB). If you combine red, green and blue light you get white.

Subtractive colors apply to print and pigment. In this case color exists because the pigment absorbs some light rays and reflects others. If we use red paint the pigment absorbs or subtracts all light rays other than red, which it reflects back to the eye. The subtractive primaries are magenta, yellow, cyan and black (CMYK). If you combine M, Y & C you get black.

Artist's primaries consist of red, yellow, and blue. From these primary colors the secondary colors orange, green and purple can be mixed from combinations of two primaries. The result when all three primaries are mixed is black **Psychological colors** consist of red, yellow, blue, green and the achromatic pair, black and white. This is the group we were taught as children. All colors can be described verbally as a mixture o: these four psychological primaries.

http://www-cvrl.ucsd.edu/

Additive/Subtractive Color

Additive Color (RGB): Sum of light of different wave lengths. That light reaches our eye directly.

Examples: TV, Multimedia Projector

Subtractive Color (CMY): White Color is emitted by the sun and is only partly reflected from an object!

△Red paint absorbs red, but reflects others

△Yellow paint absorbs blue, but reflects red and green
△Examples: Paint

R+G+B=White? Black?

So why don't we get white, when we use paint? Subtractive Color!

But why does it work for the TV?

Additive Color!

Computers as Components

Red, Green, Blue

#R,G,B are called **Primary Colors #**R,G,B where chosen due to the structure of the human eye **#**R,G,B are used in cameras

Color and Intensity are mixed RGB to Chromaticities

• Used in Computer Vision: normalised RGB

Another way of separating color and intensity: HSI

- H=Hue S=Saturation I=intensity
- H and S may characterize a color: Chromaticities
- **Hue**: associated with the dominant wavelength in the mixture of light waves, as perceived by an observer.

– Hue is color attribute that describes a pure color

- **Saturation**: relative purity; inverse of the amount of white light mixed with hue
 - Example: Pure colors are fully saturated. Not saturated are for example pink (red+white)

YUV Color Space

¥YUV: used in commercial color TV broadcasting and video signals ₩We need a format that decouples grayscale and color: HSI ₩Poor-man's" HSI Much easier to compute from RGB, than HSI

YUV Color Space

A single pixel consists of three components. Each pixel is a **Vector**

Example YUV

Original Image

Computers as Components U-Component

Intensity

V-Component 21

Observer/Sensor

 \Rightarrow Reflected light spectrum is represented by a 3 element vector

Human eye

Computers as Components

Cross section of human retina

Computers as Components

inner limiting membrane -

24

Cones and Rods

Computers as Components

25

Rods and Cones

Rods	Cones	
Achromatic: one type of pigment	Chromatic: three types of pigment	
Slow response (long integration time)	Fast response (short integration time)	
High amplification High sensitivity	Less amplification Lower absolute sensitivity	
Low acuity	High acuity	

Rods and Cones

The Retina

Cone responses

Spectral response of cones in typical human eye

Cone responses

Hs-cones absorb short wavelength light best, with peak response at 450 nm (blue)

∺i-cones absorb intermediate wavelengths best, with peak response at 540 nm (green)

₭L-cones absorb long wavelength light best, with peak response at 580 nm (red)

Cone responses

Hereic Construction State S

Cur *perception* of which color we are seeing (*color sensation*) is determined by *how much s, i and L responses occur to light of a particular intensity distribution*.

Rule: To get the *overall response of each type of cone*, multiply the *intensity* of the light at each wavelength by the response of the cone at that wavelength and then add together all of the products for all of the wavenumbers in the intensity distribution.

Examples of two different ways we see white

Light color	Brightness	S-cone response	I-cone response	L-cone response
460 nm blue	1	60	5	2
575 nm yellow	1.66	0	1.66 x 33	1.66 x 35
Mixtur e (perceived	l as white)	60 + 0 = 60	$5+1.66 \times 33 = 60$	$2+1.66 \times 35 = 60$

#Our *sensation* of color depends on how much *total S, i & L cone response* occurs due to a *light intensity-distribution*

*Multiply* the intensity distribution curve by each response curve to determine how much total S, i, and L response occurs

≥ E.g., 460 nm blue of intensity 1 and 575 nm yellow of intensity 1.66

Computers as Components

Examples of two different ways we see white

₩ We experience the sensation white when we have equal total S, i & L responses

*The blue excites mainly scones but also a bit of icones and a bit of L-cones
*The yellow excites i-cones and (slightly more) L-cones but no S-cones
*The result is an *equal*

response of s-cones, i-cones and L-cones (details)

Computers as Components

Spectral response of cones in typical human eye

A normal person see yellow

H We also experience the sensation *vellow* when 575 nm light reaches our eyes

₩What really gives us the sensation of *yellow* is the almost equal response of *i and L cones* together with no s-cones.

Computers as Components

Spectral response of cones in typical human eye

When only red and green lights are superimposed

Light color	Brightness	S-cone respons e	I-cone response	L-cone response
530 nm green	1	negligi ble	41	28
650 nm red	2.15	negligi ble	2.15 x 2	2.15 x 9
Mixture	(perceived as yellow)	negligi ble	41 +2.15 x 2 =45	28 +2.15 x 9 =47
575 nm yellow	1.35	negligi ble	1.35 x 33 = 45	1.35 x 35 = 47

Computers as Components

When two lights are mixed

- ₭530 nm green of intensity 1 and 650 nm red of intensity 2.15
- *The green excites mainly icones but also L-cones, while the red excites mainly L-cones but also i-cones
- *The total respone of s & icones due to the spectral green and red is the same as the total response due to spectral yellow
- In general need 3 wavelength lights to mix to any color

Spectral response of cones in typical human eye

A normal person see it as yellow

₩We also experience the sensation <u>yellow</u> when 575 nm light reaches our eyes

Spectral response of cones in typical human eye
FOUR PRIMARY COLOR GROUPS

Additive colors are created with light. You project a red light through a red screen or on a monitor or television. The additive primaries are red, green and blue (RGB). If you combine red, green and blue light you get white.

Subtractive colors apply to print and pigment. In this case color exists because the pigment absorbs some light rays and reflects others. If we use red paint the pigment absorbs or subtracts all light rays other than red, which it reflects back to the eye. The subtractive primaries are magenta, yellow, cyan and black (CMYK). If you combine M, Y & C you get black.

Artist's primaries consist of red, yellow, and blue. From these primary colors the secondary colors orange, green and purple can be mixed from combinations of two primaries. The result when all three primaries are mixed is black **Psychological colors** consist of red, yellow, blue, green and the achromatic pair, black and white. This is the group we were taught as children. All colors can be described verbally as a mixture o: these four psychological primaries.

http://www-cvrl.ucsd.edu/

The four psychological primaries

In addition to the additive primaries (RGB) and the subtractive primaries (CMY) there is another set of (4) primary colors, called the psychological primaries

►Blue

Green

⊡Yellow

Red (really closer to magenta)

All hues can be verbally described as combinations of these colors. For example,

- Yellowish red or green
- Bluish green or red
- # BUT we don't recognize hues
 (forbidden colors) such as
 - Reddish green
 - Yellowish blue
- **ℋ** Opponent hues
 Med and green

△ Yellow and blue

Color naming of hues on the chromaticity diagram

#Hue: how much
green, red, blue or
yellow is "in" them
#We don't need orange,
purple or pink:

➢orange can be thought of as yellow-red

≥ purple can be thought of as red-blue

≥ pink has the same hue as red but differs only in lightness

Color naming of hues on the chromaticity diagram

Break up the diagram into 4 different regions by drawing two lines whose endpoints are the psychological primary hues

- 580 nm "unique" yellow and 475 nm "unique" blue
- 500 nm "unique" green and the other is "red" (*not* unique or spectral - really more like *magenta*)

Opponent nature of yellow-blue perception

In the direction of the yellow line from 475 nm blue towards 580 nm yellow, we see more yellowness of each color and less blueness.

₩We call this perception our <u>y-b channel</u>

Xellow & blue are *opponents*

Opponent nature of red-green perception

Hoving parallel to the red line from 500 nm green towards nonspectral red we see more redness in each color and less greenness.

%We call this perception our *r-g channel*

Red and green are *opponents*

Opponent nature of yellow-blue perception

%The lines cross at white, where both yb & r-g are neutralized

How might the *three types of cones* be "wired" to neural cells to account for our perception of hues

Here 3 kinds of cones are related to r-g and y-b by the way they are connected to neural cells (such as ganglion cells)

Cones of each kind are attached to 3 different neural cells which control the two chromatic channels, y-b and r-g, and the white vs black channel called the achromatic channel (lightness)

How might the *three types of cones* be "wired" to neural cells to account for our perception of hues

How might the *three types of cones* be "wired" to neural cells to account for our perception of hues

 \mathbb{H} "wiring" is the following:

- When light falls on the *L-cones* they tell all 3 neural cells to *increase* the electrical signal they send to the brain
- When light falls on the *i-cones* they tell the r-g channel cell to decrease (inhibit) its signal but tell the other cells to increase their signal
- When light falls on the *s-cones* they tell the y-b channel cell to decrease (inhibit) its signal but tell the other cells to increase their signal

Yellow-Blue channel

The neural cell for the y-b chromatic channel has its signal

inhibited when (bluE) light excites the s-cone INTERPRETED AS BLUE

enhanced when light
excites the i & L cones
INTERPRETED AS
YELLOW

Red-Green channel

The neural cell for the r-g chromatic channel has its signal
 inhibited when (green) light falls on the i-cone INTERPRETED AS GREEN

enhanced when light
excites the s and L cone
INTERPRETED AS
MAGENTA
(Psychological red)

Achromatic channel

Herein a character and the sector of the sector and the sector of the sector and the sector a

Hue changes

#The gradual changes in hue: pure red \rightarrow yellowish red (oranges) \rightarrow pure yellow \rightarrow greenish yellow \rightarrow pure green \rightarrow bluish green \rightarrow pure blue \rightarrow reddish blue (purples) \rightarrow pure red. Also note, that many hues are non-spectral (pure red, purples).

How is image formed?

There are basically three types of light receptors (imagers) used within all generally available digital cameras at present:

☐Imagers

- **⊠**CCD Charge Coupled Device
- CMOS Complementary Metal Oxide Semiconductor
- ➢ Foveon a chip of transparent quartz containing 3 layers of CMOS

A CMOS image sensor

A CCD sensor

CCD (Charge-Coupled Device)

Charge-Coupled Device

Camera Circuit Board

₩ With the CMOS imager both the 'Photon-to-Electron' conversion and the 'Electron-to-Voltage' conversion is done within the pixel, leaving less room for the light receptive part of the sensor. This means the CMOS chip has less area to actually receive the light and normally some form of micro-lens is needed to capture the light the pixel would otherwise miss.

CMOS (Complementary Metal Oxide Semiconductor)

Complementary Metal Oxide Semiconductor Device Camera Circuit Board Row Drivers/Access Connector Timing Clock Generation Amplification Drivers Bias Decoupling Bias Oscillator * Generation Column Digital Analog-to-Digital Gain Image Signal Conversion Out Electron-to-Voltage Photon-to-Electron conversion conversion

Mosaic Images

 Digital cameras capture images using a color filter array (CFA)

Only 1 color is captured in each sensor

Most commonly used CFA pattern - Bayer Pattern
 Computers as Components

Micro-lens

Hicro-lens technology is used to help capture more light and bend it away from the circuitry on the chip and towards the light sensitive parts of the pixel.

How is a digital image generated?

 normally, a simple linear interpolation is used to get the "missing" color values

... and in some more detail...

CMOS vs CCD

Comparison of CCD and CMOS image sensors:

CMOS	
Lower performance in past, but now providing comparable quality	
Moderate Dynamic range	
Noisier, but getting better quickly	
Newer technology	
Relatively low power consumption	
More reliable due to integration of chip	
Larger pixel size (larger sensors – easier to use within current camera technology)	
All circuitry on chip	
Lower Fill Factor	
CMOS creates a digital signal on chip	