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Linear System Representation

Differential Equation

Impulse Response

Transfer Function

State Space Equation 

2Linear Systems
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Linear System Representation

Definition 2.1: The state        of a system at time     is the 
information at     that, together with the input       , for        ,  
determines uniquely the output       for all        .   
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Causality and Lumpedness

Causal System (Nonanticipatory System)
The current output depends on only the past and current inputs 
but not on the future inputs 

4Linear Systems

Lumped System (Finite Dimensional System)
The number of state variables is finite
If infinite, Distributed System
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Linear Systems

Linear  System 
Satisfying superposition principle: additivity + homogeneity
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Linear Systems

Zero-input Response
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By additivity

Response = Zero-input Response+Zero-state Response
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Linear Systems

Input-Output Description
Assume initial state is zero.
Define piecewise continuous function of input:
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Linear Systems

Input-Output Description
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Let              be the output for the input             , i.e. ( , )ig t tΔ ( )it tδΔ −
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Linear Systems

Input-Output Description
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The output          for the input              
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Linear Systems

Input-Output Description
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Linear Systems

Input-Output Description

11Linear Systems

MIMO System 
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Linear Time Invariant Systems

12Linear Systems

Linear Time Invariant (LTI)
A system is said to be time invariant if

and any   , we have  
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Linear Time Invariant Systems

13Linear Systems

If the system is LTI,
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Linear Time Invariant Systems

14Linear Systems

Example) unity-feedback system
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Linear Systems

Transfer Function 
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Laplace transform of 
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Linear Systems

Properness of Transfer Function 
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Linear Systems

Properness of Transfer Function Matrix
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Linear System

State Space Equation 

18Linear Systems
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Linearization 

Nonlinear System 
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Implementation and Examples 

Op-Amp Circuit Implementation: P. 17
Figure 2.7,  

20Linear Systems

Examples: (p. 18 -29)
Cart with inverted pendulum, 
Satellite in orbit, 
Hydraulic tanks,
RLC circuits
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Discrete-Time Systems

Sampling Period: T

21Linear Systems
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Discrete-Time Systems

22Linear Systems
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Discrete-Time Systems

23Linear Systems

Z-Transform 
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Discrete-Time Systems
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Z-Transform of 
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Discrete-Time Systems

25Linear Systems

Z-Transform of State-Space Equations  
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Discrete-Time Systems

26Linear Systems

Example: compound interest calculation

Interest: 0.015%
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System Type Internal 
Description

External 
Description

Distributed, Linear
(Causal, Relaxed)

Lumped, Linear
(Causal, Relaxed)

Distributed, Linear,
Time-invariant

Rumped, Linear,
Time-invariant

Concluding Remarks
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Example: compound interest calculation
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