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i Linear System Representation

Differential Equation

y» ()= (" @), y" P @), YO, (), u" (D), u ()
Impulse Response t

y(t) = L G(t,r)u(r)dr
Transfer Function

y(s) = G(s) u(s)

State Space Equation
x(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
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Linear System Representation

Definition 2.1: The state x(t,) of a system at time {; is the
information at t, that, together with the input u(t), fort>t,,
determines uniquely the output y(t)for all t >t .

Example e
T : +1
u(t) @ |9 Ve Y(©)
Voltage Output
Source Voltage

y(t) can be uniquely determined for any input u(t)
If initial values of induction current and capacitor voltage at t,
—— State: i, (t,), V.(t,)

y(t,), Y(t)
Xl(tO)’ X2 (tO)

Linear Systems 3

Perception and Intelligence Laboratory
School of Electrical Engineering at SNU



Causality and Lumpedness

Causal System (Nonanticipatory System)

The current output depends on only the past and current inputs
but not on the future inputs

Lumped System (Finite Dimensional System)
The number of state variables is finite
If infinite, Distributed System

vy,
T : +1
u(t) @ Ing Vo' y(t)
Voltage Output
Source Voltage
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Linear Systems

Linear System
Satisfying superposition principle: additivity + homogeneity

X; (to) .
For = V. (t),t>t,,1=12
u.(t),t>t,
a, X (1)) + a, X, (1
then )+ 2%() }:a1y1(to)+a2y2(to)’t2to
ayU, (t,) + a,u, (L), t >t
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Linear Systems

Zero-input Response

x(l) — vy (t),t>t
u(t) =0,t>t, Yaltht =l

Zero-state Response

Xo) =01 (t),t >t
u(t),t>t, Va2l

By additivity

X(t)

u(t),t >t }: Ya (1) + Y, (0,121

Response = Zero-input Response+Zero-state Response
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Linear Systems

Input-Output Description
Assume Initial state is zero.
Define piecewise continuous function of input:

u(t) = Y u(t)s, (t-t)A u(t)
where | W
(0, t<t

! —> £\ t

o, (t-t)=<1/A, t<t<t+A
0, t=t +A

\

U(t)5, (t—t)A :u(ti)%A —u(t)
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Linear Systems

Input-Output Description

Let 9.(t,%) be the output for the input o, (t—1) | i.e.
5,(t-t) —> 9,(t.t)

By homogeneity
S, (t—t)u(t)A — g, (t,t)u(t)A

By additivity
Z&A (t—t)u(t)A - Z g, (t,t)u(t)A

~ u(t) ~ y(t)
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Linear Systems

Input-Output Description

The output y(t) for the input u(t)
y(t) ~ 3 9. (t)u(t)A

y@®) =lim>_ g, (t.t)u(t)A

y(t)=[ g(t.7)u(r)dr

where

o(t—7) > g(t,7): Impulse Response
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Linear Systems

Input-Output Description

Causal 9(t,7z)=0, for t<r

Relaxed at t,:initial state at t, is O

y(t) =

Linear Systems

[ g(t.o)u(r)dr

._too g(t,7)u(r)dz < causal
s g(t,r)u(f)dﬂj; g(t, 7)u(r)dr

'tt g(t,7)u(zr)dz < relaxed
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Linear Systems

Input-Output Description

MIMO System
t
y(t) = LOG(t,r)u(r)dr
where

_gll(t’z-) glp(tlr)—

G(t,r) = 0, (t,7) g,,(t7)

| 9au(t,7) Ogp (1, 7) |
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Linear Time Invariant Systems

Linear Time Invariant (LTI)
A system is said to be time invariant if

X(ty)

O Lot }:>y(t),t2t0

and any T, we have
X(t, +T)

=Vy{t-T)t>t +T
u(t—T),t2t0+T} =Tt
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Linear Time Invariant Systems

If the system is LTI,

g(t,z)=g(t+T,z+T)
=g(t-7,0) (let T=-7)

=g(t-7)

Output of LTI system
t t
y(t)=[ g(t-r)u(r)dz = | g(r)u(t-r)dr

Perception and Intelligence Laboratory
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Linear Time Invariant Systems

Example) unity-feedback system
gt)=ac(t-1)+a’s(t-2)+a’s(t—3)+...

=Y a%s(t-3)

Output .
y(t) = [ g(t-r)u(r)dr =Y & [ s(t-r-i)u(z)dz

=3 alu(t-i)

u(t) () < E Unit time y()
/7\/ 2 delay .
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Linear Systems

Transfer Function

g(s): Laplace transform of g(t)
9(s) = #(9) = [, g(t)e "t
y(s) =] ( jot g(t—7)u(r)dr)e'dt < relaxed

= [ (] gt—r)u(z)dr)e *'dt «< causality

~ [“gWedv[ u(@e *dr ev=t-rt=ver
y(s) = g(s) u(s)

Transfer Function Matrix: MIMO case
y(s) = G(s)u(s)
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Linear Systems

Properness of Transfer Function

g(s) = N(s)/D(s)

—g(s) proper < deg D(s) > deg N(s)
< ((o0) = zero or constant

—g(s) strictly proper < deg D(s) > deg N(s)
< g(0) = zero

—g(s) biproper < deg D(s) =deg N(s)
< g(o0) = non-zero constant

—g(s) improper < deg D(s) <deg N(s)
<[ g(0) [= o
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Linear Systems

Properness of Transfer Function Matrix

—G(S) is (strictly) proper
if all entries are (strictly) proper

—G(S) is biproper
If G(s) Is square and
both G(s) and G *(s) are proper
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Linear System

State Space Equation
X(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
Laplace Transform
sX(s) - x(0) = Ax(s)+ B u(s)
y(s) = C x(s) + D u(s)
Which implies
X(s) = (sl—= A)™* x(0) + (sl—= A) B u(s)
y(s) = C(sl— A) " x(0)+ C(sl—= A)*Bu(s) + D u(s)
Transfer Function Matrix
G(s)=C(sl-A)'B+D
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Linearization

Nonlinear System
x(t) = f(x(t),u(t),t)
y(t) = h(x(t),u(t),t)
Linearization at an operating point x,(t),u,(t)
X(t) = X, (t) + X(t), u(t)=u,(t)+u(t)
X(t) = X, (t) + X(t) = f (X, +X,u, +T,t)
of _ of

= f(Xx,,U,,t)+ X + u+0(.)
o ox,  ou,
—
X(t) = AX + BU
of _ of _
where A=——X, B = u+0(.)
0X, ou,
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Implementation and Examples

Op-Amp Circuit Implementation: P. 17
Figure 2.7,

Examples: (p. 18 -29)
Cart with inverted pendulum,
Satellite in orbit,
Hydraulic tanks,
RLC circuits
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Discrete-Time Systems

Sampling Period: T

ulk]=u(kT), ylk]=y(kT)
x[k]= x(kT)

Linear System: homogeneity, additivity
Response= Zero-state response + Zero-input response

Impulse Sequence

1 if k=0
o[k] = .
0 If k=0
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Discrete-Time Systems

Input Sequence

ufk]= > u[m]s[k —m]

M=—o0o0

Impulse Response Sequence
o[k —m]— g[k,m]
By homogeneity
o[k —mJu[m] — g[k, mJu[m]

By additivity galusald
elaxe
> Slk—mlu[m] > Y g[k,m]u[m] o

Input-Output Description )
y[kl1= > glk,mJu[m] = ylk] = Z glk —m]u[m]

Linear Systems Perception and Intelligence Laboratory
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Discrete-Time Systems

Z-Transform

y(z) = #(y[k]) = > y[k]z™
k=0
Discrete Transfer Function

y@) =3 (> glk-mu[m])z “mz"

k=0 m=0

g[k —m]z-*™ i a[m]z ™

[l
8 ZMS

=Y g[l]z 'Z u[m]z™"

o))
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i Discrete-Time Systems

State-Space Equations
X[k +1] = A[k]x[k]+ B[k]Ju[k]

ylk]= C[k]x[k]+ DIk ]u[k]

Z-Transform of x[k +1]

F(k+1]) = S X[k +1]2°* = 23 X[k +1]2

k=0

= 2(Y x{11z”" + x[0] - X[0])
= z(x(z) — x[0])
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Discrete-Time Systems

Z-Transform of State-Space Equations
zX(z)—zx[0] = Ax(z) + Bu(z)
y(z) =C x(z)+ D u(z)
X(z) = (z1- A)"zx[0]+ (z1- A) B u(z)
y(z)=C(z1-A)"zx[0]+ (C(z1- A)"'B+ D) u(z)

If zero initial state
y(z)=(C(z1-A)"'B+D)u(z)

Transfer Function

G(2)=C(z1-A)'B+D

Perception and Intelligence Laboratory
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Discrete-Time Systems

Example: compound interest calculation

Impulse Response
Interest: 0.015%
uf[0]=1, u[i]=0, 1=12,
g[k]= (1.00015)"
Output )
y[k]=>_ (1.00015)“ "u[m]
m=0

Transfer Function

g(z) =) (1.00015)“z™* =>" (1.00015z7")"
k=0 k=0
B 1 B Z
1-1.00015z7" z—-1.00015
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Concluding Remarks

Example: compound interest calculation

System Type Internal External
Description Description

Distributed, Linear ot
(Causal, Relaxed) y(t)=| Y (t,7)u(z)dz
Lumped, Linear X = A(t)x + B(t)u y(t) = ot o (t, )u(r)dz
(Causal, Relaxed) y = C(t)x+ D(t)u Jotg T
Distributed, Linear, y(t) = i g(t—7)u(r)dr
Time-invariant y(s) = '((;)(3) u(s)
Rumped, Linear, X = Ax+ Bu y(t) = r g(t—7)u(r)dr
Time-invariant y =Cx+Du y(s) = G (s) u(s)
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