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Controllability

Definition: Controllability
{A, B} is said to be controllable if for any x,, X,
3 an u(t) that transfers x, to X, In a finite time.

Otherwise, {A, B} is said to be uncontrollable.
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Controllability

Example : Uncontrollable Case
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Controllability

Theorem
The followings are equivalent
1. {A B} is controllable

_ U Ar rAA'T . t A(t—7) rA A (t—7)
2. Wc(t)_joe BB'e dr_joe BB e "t dz
IS nonsingular.
3.C = [B AB AZB---A”‘lB]has rank n.
4, [A — 2l B]has full row rank for all A

5. If Re{4,} <0 Vi, then AW, +W_A" = BB’ has unique and

positive definite. The solution is called
Controllability Gramian expressed as

W_ (o0) = j:eAfBB'eA’fdr.

Perception and Intelligence Laboratory
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Controllability

(Pf. 1<>2)
(<) If W, (t) > 0 (nonsingular) — controllable
x(t) =e"x(0)+ [ 'e*“Bu(r)dr
X(0) = %o, X(t)) =%
Let u(t)=-Be"“ W (t)| e*x, - x|
X(t,) =ex, — j;l e & BB'e I d AW, (L) [e”l X, — XJ
=X

Perception and Intelligence Laboratory
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Controllability

(Pf. 1<>2)
(=) by contradiction
Assume {A, B} is controllable but W_(t,) is singular.

Jouo=#0 > W, (t)vo=0

t '
o'W, () = I 0'efTIBBR e pd e
0

J;
0

Be"& =0V re [O,tl]
x(0) =e v, x(t,) =0

O=v+ j;l e I Bu(r)dr

2
B’eA(tl_T)uH dr=0

O_ ’ b, A(t,—7) o
=v'v+| v'e Bu(r)dz =v'v

This is contradict.

Perception and Intelligence Laboratory
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Controllability

(Pf. 2<>3)
(=) If W_(t) nonsingular — C has full rank
v'W_(t)o =0 means v=0 ..... ™)

v'e™B=0

n—1
e™ => ;A" (using minimal poly)
i=0

u’eAthu'[B AB ---A”—lB] ; =0 ....(*%

If C has not full rank,
d o' # 0 that satisfy (**), this contracts (*).
Hence C has full rank.

Perception and Intelligence Laboratory
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i Controllability

(Pf. 2<>3)

(<) If W, singular — C does not have full rank
F0'#0 50W,0=0
v'|BAB ---A"'B|=0

[B AB ---A”‘lB]has not full rank.

Perception and Intelligence Laboratory
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i Controllability

(Pf. 3<>4)

(=) If C has full rank — [ A— A1 B] has full rank
Ifnot, 3g=#0 >

q[A- 41 B]=0
= gA=40, qB=0
QA" = gAA = 4%q,- A" = ¢
q| B AB--A"'B |=| qB 4qB---4""qB | =0
C has not full rank (contradict).

Perception and Intelligence Laboratory
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Controllability

(Pf. 3<>4)
(<) [A—Al B] has full rank — C has full rank

If p[C]<n, p[A—Al B]<n atsome A
By Theorem 6.6, if p[C]=n—-m, 3P =0 >

A=PAP " = A 'E‘”} B= PB:[E}

0 A 0
Letqlﬂézﬂ’lquql(ﬂé_ﬂll):O
Letq=[0q,]
N R | _ 'K‘c_/’z’ll 'KIZ gc _
gl A- Al B__[Oql][O A_al O }_o

= p([ﬂ—ﬂil I§) <n
By Theorem 6.2, controllability is invariant by
equivalence transformation.

= p([A-A41 B)<n

Linear Systems 10
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Controllability

(Pf. 1<> 2<> 5)

{A,B} controllable

< p(C)=n
< By Controllary 5.5, 3 unique W, >0 >
AW, +W_A=-BB’ ...(*) for A with negative real part

In addition, by Theorem 5.6,

W, (o) = joooeAfBB’eA'fdr IS unique solution of (*).

Linear Svstems Perception and Intelligence Laboratory
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Controllability

Example 6.3

Can we apply a force to bring the platform from
X,(0)=10, x,(0)=-1 to equilibrium with 2 seconds?

l?u 5

g |

Damping Damping Spring
coefficient coefficient constant
1 1
pis 1
77 TS

X, +2X =U, X,+X,=U

) —-05 O oy 0.5 y

X = x

0 -1 1
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Controllability

Example 6.3 (cont)
(B AB]= 0.5 -025| 5
P =P 1 1 |7
— controllable
To find control u(t) in [0, 2],

(] I

0.2162 0.3167
0.3167 0.4908

—0.5(2-t) -1 10
u(t) =—[0.5 1]{e em)}wcl(z{e eZM—J

— —58.82e°%" +27.96¢"

Perception and Intelligence Laboratory
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Controllability

Example 6.3 (cont)
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Controllability

Example 6.4

x-:[‘ol _C)Jx+[ﬂu

1 -1
p[B AB]=p[1 _le

—> uncontrollable

X2

x|l

Damping Damping Spring
coefficient coefficient Cionstant
1
7 i T
Linear Systems 5 Perception and Intelligence Laboratory
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Controllability

Controllability indices

Define U, =| BiAB:---A'B | k=0,1,2---

(U =U__, :controllability matrix)

If {A B} is controllable,

< pU, ,=n<3 n LIcolumns among np columns

U, =|b b,---b, i Al ---Ab, i Afh - A'b |

Note) If A'b, is LD to its left-hand-side(LHS) vectors,
A“b., k > j, is LD to its LHS vectors
Ab, =ab +ab, +-+a Ab
(Azb2 =, Ab + o, Ab, +---+a  Ahy

Note) column search algorithm (Appendix A in 2nd Ed.)

Perception and Intelligence Laboratory
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Controllability

Define r, := number of LD columns in {A'b,,---, A'b }
=>0<L<R<r,---<p
=>du >
O<r,<n <r<pr,=r,=-=p
<> du >
pUg<pU, <--<pU =pU, =pU -
=1fpU, , =n, {A B} is controllable.
= w1 controllability index

Perception and Intelligence Laboratory
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Controllability

Rearrange of U

{bp Aby, A%, - Ay b A Aﬂp‘lbp}

p=max{ s, iy, {44, 4y} controllability indices
= If > 4 =n, {A B} is controllable

Claim:

ﬂé,uﬁ min(n, n—p+1)

P
where n is degree of minimal polynomial.
p is rank of B.
Linear Systems '8 Perception and Intelligence Laboratory

School of Electrical Engineering at SNU



Controllability

Pf)
N n< p,u:>££,u

i) A=, A"+
A"B=,A"'B+ +a.BisLD toits LHS vectors
= u<n
1ii) The rank of [B AB --- A“‘lB] Increases at least one
whenever 4 increases by one, for example,
p|B AB A’B|-p[B AB]=1.
The largest x is achieved when the rank increases just by one

In every increase of 4. 1.e.,
pP+u —1<n=u <n-p+1.

Perception and Intelligence Laboratory
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Controllability

Corollary 6.1

{ A, B} is controllable iff

Chpu= [B AB - A”‘ﬁB] has rank n.
Theorem 6.2

Controllability is invariant by any equivalence transformation.
Pf)

C=|B AB A"'B |

C-[B AB  A"'B]

=|PB PAP'PB ... PA"'P'PB|

— P[B A”‘lB] = PC, P :nonsingular

= p(C) = p(C).

L ar Systoms . Perception and Intelligence Laboratory

School of Electrical Engineering at SNU



Controllability

Example 6.5
0 1 0 0] [0 0]
.13 0 0 2 1 0
X = X+ u
0O 0 0 1 0 0
0 -2 0 0] |0 1
1 0 00
y = X
0 0 1 0
0 0 1 0 0 2]
10 0 2 -1 0
C.pa=|B AB A’B|=
P 00 0 1 -2 0
01 2 0 0 -4

pu=2 C, =B AB AB A’B |

Perception and Intelligence Laboratory
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Controllability

Theorem 6.3
The set of controllability indices is invariant
by any equivalence transformation and any ordering of columns in 5.

Pf)

i)o(C,) = p(C,) by theorem 6.2

~ 0O 1
i) B=BM (M = px p pumutation matrix, M :L O})

U, =[B- AB]
=U, diag{M,M M}
nonsingular
= 1 =pU,) = p(Uk)
Linear Systems o Perception and Intelligence Laboratory

School of Electrical Engineering at SNU



HW 6-1

Problem 6-2, Text, p. 180

Perception and Intelligence Laboratory
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$ What do you have to get ?

|deal candidates should have excellent mathematical and
programming skills, outstanding research potential in machine
learning (e.g, recurrent networks, reinforcement learning,

evolution, statistical methods, unsupervised learning,
the recent theoretically optimal universal problem solvers,
adaptive robotics), and good ability to communicate results.

General intellectual ability:
Analytical / theoretical skills:
Programming skills:
Experimental skills:
Motivation:

Written communication skills:
Verbal communication skills:
Ability to organise workload:
Originality / creativity:

Social skills:

Perception and Intelligence Laboratory
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Observability

Definition 6.01

{A,C} is said to be observable if
for any unknown x(0), 3 finite t, > O such that
u&y e|0,t, ] suffices to find x(0).

Example 6.6

1Q [ 10

y (
Ny = y
() i

1Q 12

Linear Systems 25

When u =0, y =0 always
regardless of initial state x(0).
—> unobservable

Perception and Intelligence Laboratory
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Observability

Example 6.7

Whenu =0, x(0)=a=0, x,(0)=0, the output y(t) =0.
There is no way to determine the initial state [a, O]

form y(t) and u(t).
—> unobservable

Linear Svstems Perception and Intelligence Laboratory
4 26 School of Electrical Engineering at SNU



Observability

Observability Matrix
y(t) = Ce™x(0)+C j; eI Bu(z)d 7 + Du(t)
y = Ce”'x(0) where y = y(t) —u,,
t
and u, =C [0 eI Bu(r)dz + Du(t).

y C

Yy’ CA

¥ =1 . |e"x(0) =0e"x(0).
Vn—l _CAn—l_

If p(O)=n, p(0e”™)=n (--e" is nonsingular).
Hence the solution x(0) is uniquely determined. = Observable.
O is called Observability Matrix.

Linear Svstems Perception and Intelligence Laboratory
4 27 School of Electrical Engineering at SNU



Observability

Theorem 6.4
The state is observable iff the n xn matrix

W, (t) = J'; e?"C'Ce™dr

IS nonsingular v t > 0.

Pf)
(<) Ce™x, =y (1)
L A A
j; e™'C'Ce™dtx, = [ e"'Cy(t)dt
4 ’ .
X, = [WS ()] jo e'Cy(t)dt, for any fixed t,.
Linear Systems o8 Perception and Intelligence Laboratory

School of Electrical Engineering at SNU



Observability

Pf _continued)

(=) W,(t) issingular — X, is not observable.
— 3 v = 0 such that W, (t,)v =0.

0=0W,(t)v= j;l v'e?"C'Ce”™vdr

4
=,
—>Ce*v=0Vte[0t]
—>y({t)=Ce™v=0forx®P0)=0=0
y(t) =Ce” x,(0) =0 for xX**(0) =0
— 3 two different initial states for y(t) = 0.
—> not observable.

2
CeAru‘ dr

Perception and Intelligence Laboratory
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Observability

Theorem 6.5 (Theorem of duality)
{A, B} is controllable iff (A, B’) is observable.

Pf)
{A, B} is controllable iff
W_(t) = j;eATBB’eA'sz- is nonsingular for all t > 0.
{A', B’} is observable iff
W, (t) = J.;eATBB’eA'Tdr is nonsingular for all t > 0.
W_ (1) =W, (1).
e St y Perception and Intelligence Laboratory

School of Electrical Engineering at SNU



Observability

Theorem 6.01 : The following statements are equivalent.
1. {A,C} is observable.

2. W, (t) = J';eA'TC’CeAde is nonsingular ¥ t > 0.

C

CA
3. The ngxn observability matrix O =| . has rank n.

4. The (n+g)xn matrix { } has full rank at every eigenvalue A of A

5. If Re{4,(A)} <0, 3 W, >0 such that
AW, +W,A=-C'C, W, = !imWO (t) : Observability Gramian.

Perception and Intelligence Laboratory
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Observability

Observability index Vv

Linear Systems

C
CA

Cl An—l

C An—l

32

CAV—l

Perception and Intelligence Laboratory
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Observability

Linearly Independent Vectors in O

- ¢, | Observability indices:
E {Vl TR Vq } .
v—1
c,A™
; observability index:
v =max(v,---v,).
Cq
Vq 1
_Cq A a
Linear Systems 33 Perception and Intelligence Laboratory
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Observability

Claim

%SVS min(m,n—q +1)
where p(C) =7Q.

Corollary 6.01

{A,C} is observable iff

where p(C) =1Q.

Linear Systems

C
CA

CA" 1

34

Perception and Intelligence Laboratory
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Observability

Theorem 6.02
Observability property is invariant by equivalence transformstion.

Theorem 6.03

The set of observability indices of {A, C} is invariant
under equivalence transformation and any reordering of the rows of C.

Perception and Intelligence Laboratory
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HW 6-2

Problem 6.11, in Text, p.181

Perception and Intelligence Laboratory
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Canonical Decomposition

Equivalence Transformation (Remind)

X = Ax+ Bu
y =Cx+ Du
Let X = Px, where P is a nonsingular matrix. Then
X = AX + Bu
y =CX + Du
with A= PAP*,B=PB,C=CP*,D =D.
They are equivalent. i.e.,
{A,B,C,D} <« {A,B,C,D}.
And C=PC, O=0P i.e,
Stability, Controllability, Observability are preserved.

Linear Svstems Perception and Intelligence Laboratory
4 37 School of Electrical Engineering at SNU



Canonical Decomposition

Canonical Decomposition

Theorem 6.6
If p(C)=p|B AB - A"B|=n,<n
Let Q=P =[q,---0, Gy -Gy |
g, 1=1,....,n LI column vectors in C
g;, 1=n+1..,n LI vectorstoq,, i=1,..,.n, .
Then X=Px leads to

><| Xl

b

15 2
v-[e. ] 5|

Linear Systems 38

Perception and Intelligence Laboratory
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Canonical Decomposition

Theorem 6.6 (continued)
where
A_:n xn
A_:(n—n)x(n—n,)
And the n, dimensional subequation
X.=AX_+B_.u
y=C_X_+Du
Is controllable and has the same transfer function matrix
as the original state equation.

Perception and Intelligence Laboratory
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Canonical Decomposition

Pf)

Linear Systems

Q:P_lzl:ql...qnl,...qn:l

{n} x—2->x

QT x=Q¥x%

fg,} Xx—2>X%, & :rep.of Ag, w.rt.{q,}
Ag =[g, - q,]a
Aqg;,i =1,...n, is linearly dependent on its LHS vectors, i.e.,
{q,,1=1,...n,} (see 6.2.1) and they are linearly independent
on{qg;,i=n+1,..,n} Hence &' =[a, ...&, 0..0],i=1,..,n,.
A[ql qn]:[ql qn][al “'anl an]

AQ = QA

~[q,,a, '--qn]ﬁ; Aﬂlﬂ.

Cc

Perception and Intelligence Laboratory
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Canonical Decomposition

Pf _continued)

B=PB

B=P_1§:Q§:|:Q1i""qnl "'q”]{

All columns in [B AB
as a results, B is spaned by {ql

C=

©

ol

AB -]
B

c

B, - Al

.. O

Oj>|

< Ol

A”‘lB } n,

B,
0

.--]are spaned by {ql

Ay, |
dn, |-

n—n

-p(C)=p(C.)=n,

C(sl-A)'B+D =C_(sl-A.) "B, + D (see p.160)

Linear Systems

41
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Canonical Decomposition

Example 6.8
(1 1 0] [0 1]
x=|0 1 O|x+|1 Oju y=[1 1 1]x

01 1| |0 1]

Since p(B)=2, [B AB] is used instead of [B AB A°B].
0O 1 1 1]

p[BAB]=p|1 0 1 O0|=2<3—uncontrollable.
0 1 1 1

0
0, B=PB=|0 1|, C=CP™*=[1 2 1]
1 0 0

Perception and Intelligence Laboratory
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Canonical Decomposition

Theorem 6.06 _ [ p, |
C
CA
If p(O) = p =n, <n, letQ*=P=| p, |,
CAn-l
- i D, |
where
P, 1=1,..,n, LI column vectors in O
p., iI=n,+1..n LI vectorstop,, i=1,..,n,.

Then X=Px leads to

X, X B
X 21 A 86
X,
y = ] _|+Du
Xs
Perception and Intelligence Laboratory
43 School of Electrical Engineering at SNU
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Canonical Decomposition

Theorem 6.6 (continued)
where

A :n,xn,
A.:(n—n,)x(n—n,)

And the n, dimensional subequation
X, =AX, +Byu
y=C_X_ +Du

IS obsevable and has the same transfer function matrix

as the original state equation.

Perception and Intelligence Laboratory
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Canonical Decomposition

Theorem 6.7
Every state equation can be transformed into

iCO 'Z‘co O '&13 O YCO ECO
ic6 _ '&21 'Z\CCT Z\ZB '&24 iCﬁ + ECG u
i_o 0 0 Z\_o 0 X 0
X, | | O 0 A, Ag |l X, 0
y = _CCO O 650 O:'Y + DU
XCO — ACOYCO + ECOLI
y=C_X,, + Du.
—> controllable and observable.

G(s)=C_(sl-A_) "B, +D.

Linear Svstems Perception and Intelligence Laboratory
4 45 School of Electrical Engineering at SNU



Canonical Decomposition

Kalman Decomposition

= cCO
u Y

- cCO e
e E
I |
I o l
I |
=l |
s |
| Shoes |
I co I
I |
R . |

Perception and Intelligence Laborator
Linear Systems 46 P g Y
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Canonical Decomposition

Example 6.9
(0 -05 O 0] [05] =2 "
.|t o o o0 0 it
X = X+ u < X1 — J
O O -05 O 0 ey i
0O O o -1 0 2 L=1 19% Bilaf=l
y -7 hE
y=[0 0 0 1]x+u. } —— s
) ] 6,=2
Controllable part is * § &
, 0 -05 0.5 i
X, = X+ u ¢ 0
1 O 0 e +—0
y:[o O]XC'HJ. 1o 19
Controllable and observable part is ¥ CD y
y=u 1 1
! —

/ Syst Perception and Intelligence Laboratory
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Conditions in Jordan Form

Jordan-form Dynamical Equations.

X =Jx+Bu

y =Cx+Du

J =diag(J,, Jz):[‘]l O}
0 J,

Ji =diag(yy, Jip, Ji3), I, =diag(d,y, J,,)
b,;: the row of B corresponding to the last row of J;.

Cg;- the column of C corresponding to the first column of J;.

Perception and Intelligence Laboratory
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Conditions in Jordan Form

Example 6.10
(4, 1 0 0 0O O O] (0 0 O]
o 4 0 O O 0 oO 1 0 O
O 0 4 O O O O 0 1 0| «<|[b,,]
X={0 0 0 A4 O O O |x+|0 0 1|u<|b,, [:=B}
O 0 0 0 4 1 O 1 1 2| «|by
O 0 0 0O O 4, 1 O 1 0
|0 0 0 0 0O 0 4] 0 0 1 <—_b,21].:B'2

If the rows of B! are LI, {J, B} is controllable.

Perception and Intelligence Laboratory
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Conditions in Jordan Form

(1 1 2 0 0 2 O]
y=/1 0 1 2 0 1 1|x
1 0 2 3 1 2 2]

T T T 7
I:Cfll Ct1o Cf13:||:cf21:|
=C/ :=C]

r (i) : number of Jordan block for 4. , for example.
r(l) =3, r(2) =1.

If the columns of C are LI, {J, C} is observable.

Perception and Intelligence Laboratory
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Conditions in Jordan Form

Theorem 6.8

1) JFE is controllable iff for each i,
the rows of r(i) x p matrix

bIi1

B| - bIi2

are linearly independent to each other.

_blir(i)_
2) JFE is observable iff for each i,
the columns of gx r (i) matrix

Cl=|Cam Cu, == Cgy | are LIto each other.

Perception and Intelligence Laboratory
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Conditions in Jordan Form

Pf)
p[Al-A:B]=n, forall 4.
For A,
0 -1 b111_
0 -1 b211
0 D1,
[/'lil—AfB]: 0O -1 (I
0 b1,
;ll _/12 -1 b121
o /‘il _ﬂz b|21

plAl-AB]=n<>b,, and b, is Ll.

Perception and Intelligence Laboratory
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Discrete Time Case

Discrete-Time State Equation

Theorem 6.D1
The followings are equivalent to each other;

1. {A, B} is controllable
2. Wy [n-1]= Z(A) BB'(A)™ : nxn matrix

IS nonsmgular
3. C, =[B AB .- A”‘lB]has rank n
4. p|A —Al B]=n V4
5. If |4, (A)] <1, 3 W, >0 such that

W, — AW, A’ = BB’

Wy =Wy [oo]

Perception and Intelligence Laboratory
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Discrete Time Case

Note)
n-1
x[n]= A"x[0]+ > A" "Bu[m]
m=0
u[n—1]]
x[n]-A'x[0]=|B AB -+ A"'B]||
| u[o] |
X =C,u
L£(C,) =n<>uisunique
By Theorem 3.8
Y
B'A’
p(Cy)=n<>pW, [n-1]=p[B - ATB]| =n
_B!(Ar)n—l—

Perception and Intelligence Laboratory
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Discrete Time Case

Theorem 6.D0O1
The followings are equivalent to each other;

1. {A,C} is observable
n-—1

2. Wy, [n=1]=> (A)"C'C(A)™ :nxn matrix
m=0

IS nonsingular

C

CA A -2l
3.0, = has rank n, 4. p[ c }zn VA(A)

_CAn_l_
5. If |4 (A)| <1, 3 W, >0 such that
Wy, — AW, A=C'C, W, =W, [oo].

Perception and Intelligence Laboratory
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Discrete Time Case

Controllability to the origin & reachability

- Controllability from any X, to any X,
- Controllability from any x, = 0 to x; =0
- Controllability from any x,=0 to any x; =0

= reachability
(0 1 O] [0 |
x[k+1]={0 0 1| x[k]+|0|u[k]
|0 0 0] 1 0|

L(C,) =0: not controllable
x[3] = A°x[0] =0 controllable to origin

Perception and Intelligence Laboratory
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Discrete Time Case

x[k+1]:[§ ﬂx[k]{ﬂu[k]

x,[0]=a, x,[0]=p
u[0]=2a+p —>x[1]=0
controllable to origin

not reachable

p(Cy)=1
Controllability after sampling
X = AX(t) + Bu(t)
ulk]=u(kT)=u(t) for kT <t <(k+DT
X[k +1] =KY[k]+§u[k]

>

_e" B =j0T e dtB = MB

Linear Svstems Perception and Intelligence Laboratory
4 o7 School of Electrical Engineering at SNU



Discrete Time Case

Theorem 6.9
Suppose {A, B} is controllable.
Sufficient condition for {K, I§} to be controllable is that

‘Im[ﬂ’- _/11] #27zm/T form=1,2, -
whenever Re| 4, — 4; | =0.

For single input case, the condition is necessary as well.

Note) — g+ i A =ela+inT
Let h=a J_'B ﬂ_l :
h=a—)f A, = S
If Im[A4, —4,]1=28=2mx/T, then T=mx/p
ﬂ—l:e/u :eaT, /?_'2 _ ekl — gt

_>/’l_1:/12

Perception and Intelligence Laboratory
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Discrete Time Case

A
A 0
2 _ controllable
|l
0 , p[A-A4l1 B]=n
n ﬂ’n L
4
A, 0 -
2 _ Since 4, = 4,
| p[A-Z1 B]=n-1
0 3
i Ao JLE
Linear Systems - Perception and Intelligence Laboratory

School of Electrical Engineering at SNU



Discrete Time Case

Pf. of Theorem 6.9
Controllability is invariant by ET

— can be proved by Jordan form

/11 1 *  x
/'11 1 0 *  x
A 0 1
A - B =
A 1 1
22 1 *  x
i 0 A, 1 0]
controllable
Linear Systems 50 Perception and Intelligence Laboratory
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Discrete Time Case

Pf. of Theorem 6.9 (cont.)

o7 TehT T2eAT/2 |
e’ Te™' 0
_ il
A= 0 e’
e®'  Te™'
0 o’
L - |
01
B=MB=M|11
*
_10_
Linear Systems 61 Perception and Intelligence Laboratory
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Discrete Time Case

Pf. of Theorem 6.9 (cont.)

If 1| 4 —4; |#27zm/T for Re| 4 — 4; |=0,
e’ = e’
If M is nonsingular, {A, B} is controllable.

To show M is nonsingular,
AT —1)/A for A, #0
mii:J‘Teﬂirdz’: (e )/l' or A4 =
0 for 4. =0

= 0,
If 28T #2zm (~-m, =0only for o, =0 & ST =7zm).

Linear Svstems Perception and Intelligence Laboratory
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Discrete Time Case

Example 6.12

Consider

S+2 B S+2
$2+3s2+7s+5 (s+1)(s+1+ j2)(s+1— j2)
Using (4.41), the state equation is

g(s) =

-3 -7 -5 1
X=|1 0] O [x+[0]u

0 1 0| 10
y=[0 1 2]x

4 —A4;=2,4>T=#2zm/2=7zmand T # 27zm/4 =0.5zm.

The second condition includes the first one.
The discretized equation is controllable iff T = 0.5zm.

Perception and Intelligence Laboratory
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Time Varying Case

LTV State Equation
X =A)x(t)+B()u(t)
y =C(t)x(t)

Theorem 6.11
{A(t),B(t)} is controllable at t, iff
3 a finite t, > t, such that
W, (ty,t,) = [ @ (t, 7)B(2)B'(7)'(t,, 7)d

IS nonsingular,
where ®©(t, 7) is the state transition matrix.

Perception and Intelligence Laboratory
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Time Varying Case

Pf. of Theorem 6.11
(<)
W, (t,.t,) is nonsingular — { A(t), B(t)} is controllable at t,
4
X(t,) = D(t,, t,)X, +th @(t,, 7)B(r)u(r)dz

We claim that the input
u(t) = -B'(t)D'(t, )W ™ (t,, t))[DP(t,, t,) X, — X,]
will transfer x, to x,. Then

X(t,) = d(t,,t, )X, — jfcp(t 7)B(7)B'(2)D'(t,, 7)d

W _1c (to d tl)[q)(tvto)xo — X1]
= X;.

Perception and Intelligence Laboratory
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Time Varying Case

Pf. of Theorem 6.11 (cont.)

(=) (By contraction)
W, (t,,t,) is nonsingular <— { A(t), B(t)} is controllable at t,
Assume W_(t,,t,) be singular even if controllable,
3 v =0 such that W_(t,,t,)v=0, so

VW (t,, 1)V = jf VD(t,, 7)B(r)B'(2)D'(t,, 7)vd 7

= [*|B'()@'(t, o)V dz =0, V7 in [t,,t,].

This implies B'(z)®'(t,,z)v=0, V7 in [t,,t].
If controllable, 3 u(t) that transfer x, = ®(t,,t,)v to X, =0. i.e.,

0 =d(t,t,)P(t,,t)v+ f d(t,,7)B(r)u(z)dz.
Its premultiplication by v’ yields
0=Vv'v+ jf V'O(t, 7)B()u(z)dz = v'v.

This contradicts v = 0.
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Linear Systems 66 School of Electrical Engineering at SNU



Time Varying Case

Controllability condition without ®(t,7)
Define M, (t) = B(t)
M1 (©) = —ADM,, (0 +-M, O

Theorem 6.12

Let A(t), B(t) be (n—1) times continuously differentiable.
{A(t),B(t)} is controllable at t, if
there exists a finite t, > t, such that

p[MO(tl) M, () --- Mn—l(tl)]:n'

Perception and Intelligence Laboratory
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i Time Varying Case

m

Claim _D(t,,t)B(t) = D(t,, )M, (t)
P o ) d
5[(1)(t1,t)B(t)] = [D(t,,1)] B(t) + D(t,, 1) " B(t)
— (1) [—A(t)Mo(o W Mo(tﬂ
— q)(tl’t)Ml(t)
o™ B b, B
e D(t,1)B(t) = D(t, )M, (1) acI>(t2,t) = —D(t,, 1) Al)
19,
ECD(UZ) = ADD(t,t,)
(D(tZ’t) = CD(t’tz)_l
Linear Systems 68 Perception and Intelligence Laboratory
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Time Varying Case

Pf) (By contraction)

(not controllable - p[M,,...,M,_, | <n)
Assume W_(t,,t) be singular V t, > t,.
3 v =0 such that
W, (t,.4)o =0

VW, (t,,t)o = Ltl V'O(t,7)BB'®'(t,r)vdr

_ f |B'(z)@'(t,, 7)v|'dz = 0.

Perception and Intelligence Laboratory
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Time Varying Case

Pf) (cont.)

This implies
B'(r)®'(t,r)o=0Vrelt, t]
v'O(t,7)B(r) =0.

By m — times derivatives,

'O, 7)M_(r)=0

= O'D(t,, r)[l\/lo(r) ERE \Y n_1(2')] =0.
Since V'®(t,,7) =0,
p[My(@) -+ M L(2)]<n forall z>t,.
Linear Systems -0 Perception and Intelligence Laboratory
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Time Varying Case

Example 6.13
Consider
t -1 0 0
X=0 -1 t|x+|1]|u.
O 0 t 1
We have M, =[0 1 1] and compute
1 —t
M1=—A(t)Mo+il\/I0= 0 |, M2=—A(t)Ml+iM1= t?
dt dt )
—t t°-1
The determinant of
0 1 —t
[M;, M, M,]=|1 0 t*
1 -t t°-1

is t* +1. This implies the system is controllable at every t.
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Time Varying Case

Example 6.14
Consider
1 0] 1
X = 0 2 X + Ju —> controllable by Corollary 6.8.

How about the following time varying case:

1 0] [ et
X = X+ u
_O 2_ eZt

Controllability Grammian is

e” (t _to) e’ (t _to)

e (t—t,) e"(t —to)}'

Its determinant is zero for all t,,t, hence uncontrollable.

Wc (to ’t) = |:

Perception and Intelligence Laboratory
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Time Varying Case

Theorem 6.011
{A(t),C(t)} is controllable at t, iff

3 a finite t, > t, such that
b ' '
W, (to.1,) = | @'(t,, 2)C'()C(r) (L, 7)d7

IS nonsingular.
Theorem 6.012
Let A(t), C(t) be (n—1) times continuously differentiable.
{A(t),C(t)} is observable at t, if
there exists a finite t, > t, such that
[ N, (L) ]
N, (L) | , where N, (t) = C(t)

Nipa ) = Ny A+ N, 0,

| N n-1 (tl)_

Perception and Intelligence Laboratory
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HW 6-3

Problem 6.21 in Text P. 183
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