Embedded System
Application

4190.303C
2010 Spring Semester

ARM Processor Core

Naehyuck Chang
Dept. of EECS/CSE
Seoul National University

naehyuck@snu.ac.kr

20104 3 82 2

»
200
%

V

2

LL_(((_((
&“ NN
&

=
wn=
=
>

,_
>

-

S

N
)‘%

mailto:naehyuck@snu.ac.kr
mailto:naehyuck@snu.ac.kr

ARM Processor Core - Introduction

€ Architecture

@
@

©

9
¢
9

Versions 1 and 2 — Acorn RISC, 26-bit address

Version 3 — 32-bit address, CPSR, and SPSR

Version 4 — half-word, Thumb (compressed instruction)

Version 5 — Digital Signal Processing, Java byte code Extensions
Version 6 — SIMD, Thumb-2, Multiprocessing

Version 7 — extended SIMD, improved floating point support

€ Processor cores
ARM7TDMI (Thumb, debug, multiplier, ICE) — version 4T, low-end ARM core, 3-stage pipeline

&€ CPU Core: co-processor, MMU, AMBA

9
¢
9

ARMI9TDMI — 5-stage pipeline o
ARM10TDMI - version 5

ARM11 - 8-stage pipeline, version 6
Cortex - version 7

ARM 710, 720, 740
ARM 920, 940
ARM11 MPCore, Cortex -A,R,M Series

20104 3 82 2

ELPL

Embedded ow-Power
aboratory

RISC and CISC microprocessors

¢ RISC: Reduced Instruction Set Computer
¢ CISC : Complex Instruction Set Computer

)

¢ 80% programs use only 20% of instructions

)

¥ Reduce instructions and emulate infrequently used instructions with multiple
instructions

¢ Reduced instructions — simple hardware — fast operation

)

¢ Mostly 1 clock per instruction

¢ Equal instruction length

¢ External bus width and internal bus width must be the same

€ Memory access is allowed only for load/store instructions

¢ Arithmetic and logical operations are done by registers

€ No microprograms for fast operation

@ Use of registers is a primary concern of performance: compiler technology

r
DAY
(2w}
) 4
%

Y
)é

e Y8~
A

P Embedded ow-Power
E aboratory

T
el g T4
Bl
L
W

20104 3% 8 ¥e

32 bit RISC’s Data Types

@ Byte halfword, and word (aligned)

*)
&

(@)

Signed and unsigned integers
All data operations are performed on word quantities

Load and store operations transfer bytes, halfwords, and words to and from memory
(zero- or sign-extending)

ARM instructions are exact one word and aligned on a 4-byte boundary (Thumb
instructions are exact one halfword)

Q Memory and address

UL
“L»%

Wiy

ﬂAAXLLA

A flat space of 2”32 bytes

Little-endian (1st byte is the least significant byte) or big-endian (1st byte is the most
significant byte)

ARM can support either one or both (need a hardware input to configure the
endianness)

P Embedded ow-Power
E aboratory

20104 33 8¢l &4

Effect of Endianess

¢ Little endian: Least significant byte of a word is stored in bits 0-7 of an
addressed word.

1] 20 19 1211 109 § it B e v I |

Word at address A

Halfword at address A+2 Halfword at address A

Byte at address A+3 Byte at address A+2 Byte at address A+ Byte at address A

¢ Big endian: Least significant byte of a word is stored in bits 24-31.

3] 24 23 16 15 8 7 0

Word at address A

Halfword at address A Halfword at address A+2

Byte at address A Byte at address A+ Byte at address A+2 Byte at address A+3

P Embedded ow-Power
5 E ¥ 1aboratory

20104 3 82 2

Endianess Example

¢ This has no real relevance unless data is stored as words and then accessed in
smaller sized quantities (halfwords or bytes).
€ Which byte / halfword is accessed will depend on the endianess of the system

involved.
rO = 0x11223344
T
11 22 | 33 ! 44
Little-endian ‘: Big-endian
| | I 1 l
r1 = 0x100 11 22 33 44 44 33 22 11 r1 = 0x100
j LDRB r2, [r1 \
| | | | | [
00 00 00 44 00 00 00 11
r2 = 0x44 r2 = 0x11
SR Embedded | ow-P
4] 6 B S —

! L
/‘l“A)xiﬁg(

20104 3 82 2

ARM core

€ ARM core dataflow model

Data
Al | Instruction
decoder
Sign extend

Write

r15 no

Result

Register file
r0-r15

v

Barrel shifter

ALU

Address register

,‘ Incrementer j

P Embedded ' ow-Power
. E ! l aboratory

20104 3% 82 Y2

The Barrel Shifter

¢ ARM has a barrel shifter which provides a mechanism to carry out shifts as part
of other instructions.

Operand 1 Operand 2 ... Reg|Sterl Optlona”y Wlth Shlft
. operation applied.
l % Shift value can be either be:
Barrel 5 bit unsigned integer

Shifter specified in bottom byte of
‘ another register.

Immediate value

ALU can be rotated right through an
even number of positions.

assembler will calculate rotate

Result for you from constant.

S EIND

v"L‘ 0

\9‘:%
W7

v 9

YA Y
Y »
Y 04
e 77

20104 3 82 2

P cmbedded ow-Power
E aboratory

Pipeline operation

¢ Non-pipelined operation

55555

: m?“

2899

555
CRR”

==] N
NN
=

? PRIV

P -mbedded ow-Power
E aboratory

€ Pipelined operation

ESSY

%Y

E%
|EE

(Y
I ’,r‘?r\
=
Hcce%S

)
Yl
X
{

20104 3 82 2

The Instruction Pipeline

®)

¢ The ARM uses a pipeline in order to increase throughput (the speed of the flow
of instructions to the processor)

¢ PC points to the instruction being fetched
¢ 3 stages (ARM7) and 5 stages (ARM9TDMI)

fetch decode execute
fetch » decode » execute » buffer/data » write-back
PC PC-4 PC-8 access memory write result
if needed to register
DUEND -
Sl Embedded ow-Power
%@_ﬁ 10 E P aboratory

20104 3 82 2

Processor Modes

©

True multi-user systems
Mode changes may be made under software control or may be caused by

external interrupts or exception processing.

©

—4

Q
=14

Most application programs will execute in user mode.
Other privileged modes will be entered to service interrupts or exceptions or to

access protected resources:

Processor mode

Description

1

o O & W

User

FIQ

IRQ
Supervisor
Abort
Undefined

System

(usr)
(fiq)
(irq)
(svc)
(abt)
(und)

(sys)

the normal program execution mode

designed to support a high-speed data transfer or channel process
used for general-purpose interrupt handling

a protected mode for the operating system

used to implement virtual memory and/or memory protection

used 1o support software emulation of hardware coprocessors

used to run privileged operating system tasks
(Architecture Version 4 only)

20104 3 82 2

P Embedded ow-Power
11 E ! l aboratory

Register Organization

¢ Many registers bt (st Tat vt X L
¢ Reduce memory access | ' T T
¢ Difficult to fully utilize

¢ Register banks

¢ Registers are arranged into several banks,
being governed by the processor mode

¢ Reduce mode switching overhead
¢ Each mode can access
¢ A particular set of R0-R12 registers

¢ A particular R13 (SP: stack pointer) and R14
(LR: link register)

¢ R15 (the program counter)
€ CPSR (the current program status register)

¢ Privileged modes can also access a particular
SPSR (saved program status register)

1§

LSSy
N
Efen
M
=33
Sl

E P Embedded ow-Power

12 aboratory

Yl
X
{

20104 3 82 2

Register Example: User to FIQ Mode

User Mode FIQ Mode

Registers in use -
Progranq flow ProgreiﬂowException handling

I,

Registirs in use

-

r0 . r0
ri Q Exception ri
r2 § r2
r3 r3
r4 r4
r5 3 5 : r5
ré Reduces stack (memory) operations ré
r/ - r7
= 8 fiq EXCEPTION = r8_fig
r9 ro_fig 0 r9_fig
r10 r10_fig e 10 M—
ril ril_fig : ril ri1 fig
ri2 r12_fig : ri2 |_r12 fig |
r13 (sp) r13_fig : r13 (sp) |_r13 fig |
r14 (Ir) r14 fiq : r14 (Ir) r14 fi
r15 (pc) = / r15 (pC)
Return address calculated from User mode
PC value and stored in FIQ mode LR cpsr

F.
P

User mode CPSR copied to FIQ mode SPSR
Embedded ow-Power
E l, Pt aboratory

20104 3 82 2

Program Status Registers (CPSR & SPSRs)

31 28 8 4

1ttt 117ttt 11 1 17 17 17 ©7 17 1"1 T T 1
N|lZ|C|V I|F| T| Mode

SV

Copies of the ALU status flags (latched if the
instruction has the "S" bit set).

o

¢ Condition Code Flags M[4:0] Mode
¢ N = Negative result from ALU flag.
. 10000 User
¢ Z = Zero result from ALU flag.
¢ C = ALU operation Carried out 10001 FIQ
¢ V = ALU operation oVerflowed 10010 IRQ
¢ Interrupt Disable bits. 10011 sSvC
7 I =1, disables the IRQ. 10111 Abort
¢ F =1, disables the FIQ.
o . : 11011 Undef
¢ T Bit: Processor in ARM (0) or Thumb (1)
@ Mode Bits: processor mode WL System
9"5‘5’\:{’3,’ m w-Power
o) 14 B e v

20104 3 82 2

The Program Counter (R15)

¢ When the processor is executing in ARM state:
¢ All instructions are 32 bits in length
¢ All instructions must be word aligned

Y Therefore the PC value is stored in bits [31:2] with bits [1:0] equal to zero (as
instruction cannot be halfword or byte aligned).

¢ R14 is used as the subroutine link register (LR) and stores the return address
when Branch with Link (BL) operations are performed, calculated from the PC.

¢ Thus to return from a linked branch

MOV rl5, rl4
MOV pc, 1r

S EIND
A -\’J
SR I,
v=)
\V.EE.\J

E P Embedded ow-Power
Yl 15
I 2E

aboratory

20104 3 82 2

Stacks

¢ A stack is an area of memory which grows as new data is “pushed” onto the
“top” of it, and shrinks as data is “popped” off the top.

~
)

¢ Two pointers define the current limits of the stack.

¢ A base pointer (frame pointer): used to point to the “bottom” of the stack (the first
location).

¢ A stack pointer: used to point the current “top” of the stack.

PUSH
{1,2,3} I— POP
SP 3 Result of
2 Sp——> pop = 3
1 1 5
SP BASE—> BASE——>
BASE ——> I—I

QUEIND
Sl Embedded ow-Power
%@J&g 16 E P aboratory

20104 3 82 2

Stack Operation

¢ Traditionally, a stack grows down in memory, with the last “pushed” value at
the lowest address.

¢ ARM also supports ascending stacks which grows up through memory.
¢ The value of the stack pointer can either:

¢ Point to the last occupied address (Full stack) and so needs pre-decrementing (i.e.
before the push)

¢ Point to the next occupied address (Empty stack) and so needs post-decrementing
(i.e. after the push)

¢ The stack type to be used is given by the postfix to the instruction:
¢ STMFD / LDMFD : Full Descending stack
¢ STMFA / LDMFA : Full Ascending stack.
¢ STMED / LDMED : Empty Descending stack
¢ STMEA / LDMEA : Empty Ascending stack

¢ Note: ARM Compiler will always use a Full descending stack.

", P =mbedded ow-Power
frud) E

17 aboratory

ol &\

20104 3% 8 ¥e

Stack Examples

Old SP—

&—

STMFD sp!,
{r0,r1,r3-r5}

Old SP—

EP—

STMED sp!,
{r0,r1,r3-r5}

Old SP—

STMFA sp!,
{r0,r1,r3-r5}

Old SP

STMEA sp!,
{r0,r1,r3-r5}

ELPL

Embedded ow-Power
Laboratory

Stacks and Subroutines

¢ One use of stacks is to create temporary register workspace for subroutines.

¢ Any registers that are needed can be pushed onto the stack at the start of the

subroutine and popped off again at the end so as to restore them before
returning to the caller :

STMFD sp!,{r0-r12, Ir} ; stack all registers
........ ; and the return address

LDMFD sp!,{r0-r12, pc} ; load all the registers
; and return automatically

¢ If the pop instruction also had the 'S’ bit set (using ‘') then the transfer of the
PC when in a privileged mode would also cause the SPSR to be copied into the
CPSR (see exception handling module).

S EIND

S 2

\9‘:%
W7

Y N
YA Y
;A‘JA LLS(19

20104 3 82 2

P -mbedded ow-Power
E aboratory

Exception Handling and the Vector Table

¢ Exception

¢ External interrupts

¢ Divide by zero, overflow, etc.

¢ Software interrupt
¢ Location of exception handling routines

¥ Fixed location

¢ Reset $00000000, NMI $00000004, etc.

¢ Variable location with the vector table

€ Vector entry is fixed, e.g. $0 is reset, $4 is NMI, etc.

¢ Jump to address values in the vector table: reset ($00000000)

@ If reset vector is set to $1000, Jump to $1000 when reset is asserted
¢ For safe return

¥ Save all the previous contexts including registers

¢ Save the program counter of the original next instruction

¢ Privilege mode

)

¥ User mode program — exception — exception routine w/privilege mode — return to
the user mode program w/user mode

Program flow Program flow

Q Exception handling

Exception

-O-O-O0-00

Q

2

E P Embedded ow-Power

20 aboratory

Yl
X
{

r
AN

(2vi)

LS
Fccd

NSy
Bl
(25 T

20104 3 82 2

Exception Handling and the Vector Table

€ When an exception occurs,
¢ Copies CPSR into SPSR_<mode>
¢ Sets appropriate CPSR bits
¢ Enter ARM state if necessary
¢ Mode field bits
¢ Interrupt disable flags if appropriate.
¥ Maps in appropriate banked registers
¥ Stores the “return address” in LR_<mode>
¥ Sets PC to vector address

¢ To return, exception handler needs to:
¢ Restore CPSR from SPSR_<mode>
¢ Restore PC from LR_<mode>

2

E P Embedded ow-Power

21 aboratory

Yl
X
{

r
VY

(2vi)

LS
Pl

NSy
Bl
(25 T

20104 3 82 2

Exception Handling and the Vector Table

Exception type Exception mode Vector address
Reset Supervisor 0x00000000

Undefined instructions Undefined 0x00000004

Software Interrupt (SWI) Supervisor 0x00000008

Prefetch Abort (Instruction fetch memory Abort 0x0000000c

abort)

Data Abort (Data Access memory abort) Abort 0x00000010

IRQ (Interrupt) IRQ 0x00000018

FIQ (Fast Interrupt) FIQ 0x0000001c¢

. BALPR o

N
=
Y

2010 3& 8¢ Eed

Exception Handling and the Vector Table

¢ Exception priority

Priority Exception

1 (Higher) Reset

2 Data abort

3 FIQ

4 IRQ

5 (Lowest) Undefined instruction
Software interrupt

S EIND

s "\0

= %

V Y
W7

Vv M
Y "
il 14
I 2E

20104 3 82 2

23

ELP

Embedded ow-Power
aboratory

ARM Instruction Set Format

¢ Instruction word

. B NVDBA B2 8V8 1549132111009 876 5423210
length is 32-bits
Cond |0|0]!]| Opcode |S Rn Rd Operand 2 Data Processing /
H H PSR Transfer
¢ 36 instruction formats

Cond |0(0|O|0OJO|O]AIS Rd Rn Rs 1(0]0]1 Rm Muitiply

Cond |0(0|O|O|1]UJA|S| RdHi RdLo Rn 1|0]0]1 Rm Multiply Long

Cond |O|O]|O|1]O|B]OJO Rn Rd ojojo|o|1/0]0]|1 Rm Single Data Swap

Cond |O(OJO|1]OJO)1|O |00ttt t|1|1|1|1|1|1|0|0]O|1 Rn Branch and Exchange

Cond |O(O]|O|PJUIO|WIL Rn Rd 0|0|O(O|1|S|H]|1 Rm Halfword Data Transfer:
register offset

Cond |O(O]|O|PJU]T|W]L Rn Rd Offset | 1|S|H| 1| Offset | Halfword Data Transfer:
immediate offset

Cond |O(1]!|P|U|B|W|L Rn Rd Offset Single Data Transfer

Cond |O|1]1 1 Undefined

Cond |1(0]|0|P|UIS|WIL Rn Register List Block Data Transfer

Cond |1(0]1]|L Offset Branch

Cond |[1[1]0|PJUINIWIL Rn CRd CcP# Offset Coprocessor Data
Transfer

Cond |1(1]1/0] CPOpc CRn CRd CP# CP |0] CRm Coprocessor Data
Operation

Cond |1|1|1]|0)cPOpdL| CRn Rd CcP# CP |1| CRm | Coprocessor Register
Transfer

Cond |1(1]1]1 Ignored by processor Software Interrupt

NIVIIBODBBSNDNNNDNBITEI5413211MT109 87 6 543210

Embedded ow-Power
24 ! l 'L _aboratory

Conditional Execution

¢ Branches to be executed conditionally

¢ Using the condition evaluation hardware, ARM effectively increases number of
instructions

N

¢ All instructions contain a condition field which determines whether the CPU will
execute them

¥ Non-executed instructions soak up 1 cycle
¢ Still have to complete cycle so as to allow fetching and decoding of following instructions

¢ Removes the need for many branches, which stall the pipeline (3 cycles to
refill)

¢ Allows very dense in-line code, without branches

€ The time penalty of not executing several conditional instructions is frequently less
than overhead of the branch or subroutine call that would otherwise be needed

%Y

P Embedded ow-Power
E aboratory

E%
|EE

(Y
(5 ‘;V‘?I\
=i
Hcce%S

I
¥
K

N

25

20104 3 82 2

Data Processing Instructions

¢ All sharing the same instruction format.
¢ Contains:
¢ Arithmetic operations
¢ Comparisons (no results - just set condition codes)
¥ Logical operations
¥ Data movement between registers
¢ ARM is a load/store (register) architecture

®)

¥ These instructions only work on registers and NOT on memory.

¢ Perform a specific operation on one or two operands.
¢ First operand always a register - Rn

~

¢ Second operand sent to the ALU via barrel shifter.

:&ﬁ;‘g E P Embedded ' ow-Power
Y 26 aboratory

/‘A».(LL‘}'\

20104 3 82 2

Load/Store Instructions

¢ The ARM is a Load / Store Architecture:

¢ Does not support memory to memory data processing operations.
¢ Must move data values into registers before using them.

¢ This might sound inefficient, but in practice it isn't:
¥ Load data values from memory into registers.

¥ Process data in registers using a number of data processing instructions which are
not slowed down by memory access.

¢ Store results from registers out to memory.
¢ The ARM has three sets of instructions which interact with main memory.
These are:
¢ Single register data transfer (LDR / STR).
¢ Block data transfer (LDM/STM).
¢ Single Data Swap (SWP).

:&ﬁ;‘g E P Embedded ow-Power
Y 27 aboratory

/‘A».(LL‘}'\

20104 3 82 2

Block Data Transfer (1)

7~
&/

The Load and Store Multiple instructions (LDM / STM) allow between 1 and 16

registers to be transferred to or from memory.
¢ The transferred registers can be either:
€ Any subset of the current bank of registers (default).
€ Any subset of the user mode bank of registers when in a privileged mode (postfix
instruction with a '/’).
31 28 27 24 23 22 21 20 19 16 15 0
L L b rrr T 1P TP 1P 1P 1T 17 1T 11
Cond 10 0|P|U|S WI L Rn Register list
|]|]
e I I
Condition field Base register Each bit corresponds to a particular
Up/Down-bit Load/Store bit _ register. For example:
0 = Down; subtract offset from base 0 = Store to memory . _ Bit 0 set causes r0 to be transferred.
1 = Up ; add offset to base 1 = Load from memory Bit 0 unset causes r0 not to be transferred.
Write- back bit At least one register must be
Pre/Post indexing bit 0 = no write.back transferred as the list cannot be empty.
0 = Post; add offset after transfer, 1 = write address into base
1 = Pre ; add offset before transfer PSR and force user bit

0 = don’t load PSR or force user mode
1 = load PSR or force user mode

E P’ Embedded ow-Power
4 .

28 aboratory

20104 3 82 2

Block Data Transfer (2)

¢ Base register used to determine where memory access should occur.

¢ 4 different addressing modes allow increment and decrement inclusive or exclusive of
the base register location.

¢ Base register can be optionally updated following the transfer (by appending it with
an'l,

¢ Lowest register number is always transferred to/from lowest memory location
accessed.

€ These instructions are very efficient for
¢ Saving and restoring context
@ Useful to view memory as a stack.
¢ Moving large blocks of data around memory

¢ Useful to directly represent functionality of the instructions.

%Y

r

AN
o)
Y

¥

P Embedded ow-Power
E aboratory

T
el g T4
(53 5 AN
W

29

20104 3% 8 ¥e

Direct functionality of Block Data Transfer

€ When LDM / STM are not being used to implement stacks, it is clearer to

specify exactly what the functionality of the instruction is:

*)
&

i.e. specify whether to increment / decrement the base pointer, before or after the

MeMmMOory access.

¢ In order to do this, LDM / STM support a further syntax in addition to the stack
one:

(&)]
(&)

(&)

S EIND
S 20

Ry
i

Y A
' 07
/d“A)xLL“\

STMIA / LDMIA : Increment After
STMIB / LDMIB : Increment Before
STMDA / LDMDA : Decrement After
STMDB / LDMDB : Decrement Before

30

20104 3 82 2

P cmbedded ow-Power
E aboratory

Example: Block Copy

¢ Copy a block of memory, which is an exact multiple of 12 words long, from the
location pointed to by r12 to the location pointed to by r13. r14 points to the
end of block to be copied.

; rl2 points to the start of the source data

; rl4d points to the end of the source data

; rl3 points to the start of the destination data

Loop LDMIA 1rl12!', {rO-rll} ; load 48 bytes
STMIA rl13!, {rO-rll} ; and store them

CMP rl2, rl4 ; check for the end
BNE loop ; and loop until done R i
R I HHERER
\
~ .] r4—— :
Q@ This loop transfers 48 bytes in 31 cycles '“,\‘,i;‘,’;’ﬁ'r;g
€ Over 50 Mbytes/sec at 33 MHz

1§

LS5y
N
Efen
M
=33
Sl

E P Embedded ow-Power

31 aboratory

I
¥
K

N

20104 3 82 2

Software Interrupt (SWI)

31 28 27 24 23 0

L L L L L I O L L
Cond |11 11| Comment field (ignored by Processor)

I

Condition Field
¢ In effect, a SWI is a user-defined instruction.

¢ It causes

¢ an exception trap to the SWI hardware vector

¢ a change to supervisor mode,

¢ the associated state saving), and the SWI exception handler to be called.

¢ The handler can then examine the comment field of the instruction to decide
what operation has been requested.

¢ By making use of the SWI mechanism, an operating system can implement a
set of privileged operations, which, applications running in user mode can
request.

D EIND
EERNG
Gap¥

ypelny
Wy 32

I

E P Embedded ow-Power
aboratory

20104 3 82 2

Thumb instructions

¢ T (Thumb)-extension shrinks the ARM instruction
set to 16-bit word length

)

¢ 35-40% saving in amount of memory compared to 32-
bit instruction set

¢ Extension enables simpler and significantly cheaper
realization of processor system. Instructions take
only half of memory than with 32-bit instruction set
without significant decrease in performance or
increase in code size. R10

R11

9@ Extension is made to instruction decoder at the R12
processor pipeline R13(SP) =

R14(LR) LR

¢ Registers are preserved as 32-bit but only half of R1S(PC) PC
them are used

-
J = O
n
-

D D P®DO®D
N & W N s

o

R6

O 00 N o H W B

CPSR CPSR

2

E P Embedded ow-Power

33 aboratory

¢
R
A

r
VY

(2vi)

LS
Fccd

NS5y
B
|55 T

20104 3 82 2

Thumb instructions

¢ ARM and Thumb instruction formats

Thumb code
15 0

00110 | Rd | 8-bitimmediate

—r

Major op-code :
denoting format 3 m:lgg"cwwg Destination and Immediate
romcmmsessen SRR sicergde vake

31 l || || | 0
1110 | 00 | 1/ 0100 | 1 | ORd | ORd | 0000 8-bit immediate

| ARM code
Always condition code

Embedded ow-Power
34 ! l 'L Laboratory

2010 3& 8¢ Eed

Thumb instructions

¢ Instruction word length shrunk to 16- oo - - - - - - - -

. ' [o]ojo] oOp Offsets Rs Rd Move shuftad rogester
blts 2 ojojo]r]1]1|Op Rvotset3] Rs Rd Addisutaract
¢ Instructions follow their own syntax * |ofe|1[o | = Oftsoch et
but each instruction has it’s native ¢ [ofrfefofofof ow Rs | Rd | ALoperatons
. . 5 H1 o Hi register oparabions
ARM instruction counterpart oftfefeof] [fre Rers | Re™ | anch euchange
6 ojtjojol Rd Words PC-rolatve load
¢ Due to shrinking some functionality is + TTTTooT T | m | oot wmmous
IOSt 8 lol1]olain]ls]lt! ro Rb Rd ;:’:?':::a‘;"'”“""""
2 19 different Thumb instruction o [olr[r[efc] omes R | Re | Lostwoewenimmede
formats w0 [TTo[ofolt] omes R | Ra | Losmor mateors
11 |1]o0]o] | L Rd . Words SP-relative load'store
12 [1]ol1]oisP] R4 Words Load adcress
13 [1]0]1 1'0 0 o-o s] SWord7 Add offsel 10 stack pointer
4 |1]ofr|riL]r]olR Rast Push/pop registers
15 |1]1]o]olL Rb Rist Muttple load/store
16 [1]1]0] Cond Soffsets Condtional beanch
177 |al1)olelr)e]e Vakse8 Software Interrupt
18 |1|1)1]o]o Oftset11 Unconditional beanch
19 |11]1]1]H Oftsat Long branch with ink
Embedded -P
. ELPY sy

2010 3& 8¢ Eed

