
Naehyuck Chang
Dept. of EECS/CSE

Seoul National University
naehyuck@snu.ac.kr

E
L
P

L
E

m
b

e
d

d
e

d
 L

o
w

-P
o

w
e

r

L
a

b
o

ra
to

ry

Embedded System
Application

4190.303C
2010 Spring Semester

ARM Processor Core

2010년 3월 8일 월요일

mailto:naehyuck@snu.ac.kr
mailto:naehyuck@snu.ac.kr

ELPL
Embedded Low-Power

Laboratory2

ARM Processor Core - Introduction

Architecture
Versions 1 and 2 – Acorn RISC, 26-bit address
Version 3 – 32-bit address, CPSR, and SPSR
Version 4 – half-word, Thumb (compressed instruction)
Version 5 – Digital Signal Processing, Java byte code Extensions
Version 6 – SIMD, Thumb-2, Multiprocessing
Version 7 – extended SIMD, improved floating point support

Processor cores
ARM7TDMI (Thumb, debug, multiplier, ICE) – version 4T, low-end ARM core, 3-stage pipeline
ARM9TDMI – 5-stage pipeline
ARM10TDMI – version 5
ARM11 - 8-stage pipeline, version 6
Cortex - version 7

CPU Core: co-processor, MMU, AMBA
ARM 710, 720, 740
ARM 920, 940
ARM11 MPCore, Cortex -A,R,M Series

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory3

RISC and CISC microprocessors

RISC: Reduced Instruction Set Computer
CISC : Complex Instruction Set Computer

80% programs use only 20% of instructions
Reduce instructions and emulate infrequently used instructions with multiple
instructions

Reduced instructions → simple hardware → fast operation
Mostly 1 clock per instruction

Equal instruction length

External bus width and internal bus width must be the same
Memory access is allowed only for load/store instructions

Arithmetic and logical operations are done by registers
No microprograms for fast operation
Use of registers is a primary concern of performance: compiler technology

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory4

32 bit RISC’s Data Types

Byte, halfword, and word (aligned)
Signed and unsigned integers
All data operations are performed on word quantities
Load and store operations transfer bytes, halfwords, and words to and from memory
(zero- or sign-extending)
ARM instructions are exact one word and aligned on a 4-byte boundary (Thumb
instructions are exact one halfword)

Memory and address
A flat space of 2^32 bytes
Little-endian (1st byte is the least significant byte) or big-endian (1st byte is the most
significant byte)
ARM can support either one or both (need a hardware input to configure the
endianness)

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory5

Effect of Endianess

Little endian: Least significant byte of a word is stored in bits 0-7 of an
addressed word.

Big endian: Least significant byte of a word is stored in bits 24-31.

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory

This has no real relevance unless data is stored as words and then accessed in
smaller sized quantities (halfwords or bytes).

Which byte / halfword is accessed will depend on the endianess of the system
involved.

6

Endianess Example

Big-endianLittle-endian

r1 = 0x100

r0 = 0x11223344
11 22 33 44

11 22 33 44 44 33 22 11

00 00 00 44 00 00 00 11

r2 = 0x44 r2 = 0x11

STR r0, [r1]

LDRB r2, [r1]

r1 = 0x100

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory

ARM core

ARM core dataflow model

7

Sign extend

Instruction
decoder

Data

Register file
r0-r15

Barrel shifter

ALU

Address register

Incrementer

MAC

ReadWrite

N

Result
Rdr15

pc

Rn A Rm B

A B Acc

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory

ARM has a barrel shifter which provides a mechanism to carry out shifts as part
of other instructions.

8

The Barrel Shifter

Operand 1

Result

ALU

Barrel
Shifter

Operand 2  Register, optionally with shift
operation applied.

 Shift value can be either be:
 5 bit unsigned integer
 specified in bottom byte of

another register.

 Immediate value
 can be rotated right through an

even number of positions.
 assembler will calculate rotate

for you from constant.

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory9

Pipeline operation

Non-pipelined operation

Pipelined operation

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory10

The Instruction Pipeline

The ARM uses a pipeline in order to increase throughput (the speed of the flow
of instructions to the processor)

PC points to the instruction being fetched

3 stages (ARM7) and 5 stages (ARM9TDMI)

fetch

buffer/data

executedecode

fetch write-backexecutedecode

 PC PC-4 PC-8 access memory write result
 if needed to register

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory11

Processor Modes

True multi-user systems
Mode changes may be made under software control or may be caused by
external interrupts or exception processing.
Most application programs will execute in user mode.
Other privileged modes will be entered to service interrupts or exceptions or to
access protected resources:

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory12

Register Organization

Many registers
Reduce memory access
Difficult to fully utilize

Register banks
Registers are arranged into several banks,
being governed by the processor mode
Reduce mode switching overhead

Each mode can access
A particular set of R0-R12 registers
A particular R13 (SP: stack pointer) and R14
(LR: link register)
R15 (the program counter)
CPSR (the current program status register)
Privileged modes can also access a particular
SPSR (saved program status register)

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory

Register Example: User to FIQ Mode

spsr_fiq
spsr_fiq

cpsr

r7

r4
r5

r2
r1
r0

r3

r6

r15 (pc)
r14_fiq
r13_fiq
r12_fiq

r10_fiq
r11_fiq

r9_fiq
r8_fiq

r14 (lr)
r13 (sp)

r12

r10
r11

r9
r8

User mode CPSR copied to FIQ mode SPSR

cpsr

r15 (pc)
r14 (lr)
r13 (sp)

r12

r10
r11

r9
r8
r7

r4
r5

r2
r1
r0

r3

r6

r14_fiq
r13_fiq
r12_fiq

r10_fiq
r11_fiq

r9_fiq
r8_fiq

Return address calculated from User mode
PC value and stored in FIQ mode LR

Registers in use Registers in use

EXCEPTION

User Mode FIQ Mode

Program flow Program flow

Exception

Exception handling

Reduces stack (memory) operations

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory14

Program Status Registers (CPSR & SPSRs)

Condition Code Flags
N = Negative result from ALU flag.
Z = Zero result from ALU flag.
C = ALU operation Carried out
V = ALU operation oVerflowed

Interrupt Disable bits.
I = 1, disables the IRQ.
F = 1, disables the FIQ.
T Bit: Processor in ARM (0) or Thumb (1)

Mode Bits: processor mode

Copies of the ALU status flags (latched if the
instruction has the "S" bit set).

N ModeZ C V

2831 8 4 0

I F T

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory15

When the processor is executing in ARM state:
All instructions are 32 bits in length
All instructions must be word aligned
Therefore the PC value is stored in bits [31:2] with bits [1:0] equal to zero (as
instruction cannot be halfword or byte aligned).

R14 is used as the subroutine link register (LR) and stores the return address
when Branch with Link (BL) operations are performed, calculated from the PC.
Thus to return from a linked branch

The Program Counter (R15)

MOV r15, r14
MOV pc,lr

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory16

Stacks

A stack is an area of memory which grows as new data is “pushed” onto the
“top” of it, and shrinks as data is “popped” off the top.

Two pointers define the current limits of the stack.
A base pointer (frame pointer): used to point to the “bottom” of the stack (the first
location).
A stack pointer: used to point the current “top” of the stack.

SP
BASE

PUSH
{1,2,3}

1

2

3

BASE

SP

POP

1 2

Result of
pop = 3

BASE

SP

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory17

Stack Operation

Traditionally, a stack grows down in memory, with the last “pushed” value at
the lowest address.

ARM also supports ascending stacks which grows up through memory.

The value of the stack pointer can either:
Point to the last occupied address (Full stack) and so needs pre-decrementing (i.e.
before the push)
Point to the next occupied address (Empty stack) and so needs post-decrementing
(i.e. after the push)

The stack type to be used is given by the postfix to the instruction:
STMFD / LDMFD : Full Descending stack
STMFA / LDMFA : Full Ascending stack.
STMED / LDMED : Empty Descending stack
STMEA / LDMEA : Empty Ascending stack

Note: ARM Compiler will always use a Full descending stack.

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory

Stack Examples

r5
r4
r3
r1
r0

STMFD sp!,
{r0,r1,r3-r5}

SP

Old SP

STMED sp!,
{r0,r1,r3-r5}

SP

Old SP

STMFA sp!,
{r0,r1,r3-r5}

SP

Old SP

STMEA sp!,
{r0,r1,r3-r5}

SP

Old SP

r5
r4
r3
r1
r0

r5
r4
r3
r1
r0

r5
r4
r3
r1
r0

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory

One use of stacks is to create temporary register workspace for subroutines.
Any registers that are needed can be pushed onto the stack at the start of the
subroutine and popped off again at the end so as to restore them before
returning to the caller :

If the pop instruction also had the ‘S’ bit set (using ‘^’) then the transfer of the
PC when in a privileged mode would also cause the SPSR to be copied into the
CPSR (see exception handling module).

 STMFD sp!,{r0-r12, lr} ; stack all registers

 ; and the return address

 LDMFD sp!,{r0-r12, pc} ; load all the registers

 ; and return automatically

19

Stacks and Subroutines

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory20

Exception Handling and the Vector Table

Exception
External interrupts
Divide by zero, overflow, etc.
Software interrupt

Location of exception handling routines
Fixed location

Reset $00000000, NMI $00000004, etc.

Variable location with the vector table
Vector entry is fixed, e.g. $0 is reset, $4 is NMI, etc.
Jump to address values in the vector table: reset ($00000000)

If reset vector is set to $1000, Jump to $1000 when reset is asserted

For safe return
Save all the previous contexts including registers
Save the program counter of the original next instruction

Privilege mode
User mode program → exception → exception routine w/privilege mode → return to
the user mode program w/user mode

Program flow Program flow

Exception

Exception handling

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory21

Exception Handling and the Vector Table

When an exception occurs,
Copies CPSR into SPSR_<mode>
Sets appropriate CPSR bits

Enter ARM state if necessary

Mode field bits
Interrupt disable flags if appropriate.

Maps in appropriate banked registers
Stores the “return address” in LR_<mode>
Sets PC to vector address
To return, exception handler needs to:

Restore CPSR from SPSR_<mode>

Restore PC from LR_<mode>

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory

Exception Handling and the Vector Table

22

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory23

Exception Handling and the Vector Table

Exception priority

Priority Exception

1 (Higher) Reset

2 ! ! ! ! ! ! Data abort

3 ! ! ! ! ! ! FIQ

4! ! ! ! ! ! IRQ

5 (Lowest) Undefined instruction
Software interrupt

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory24

ARM Instruction Set Format

Instruction word
length is 32-bits
36 instruction formats

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory25

Conditional Execution

Branches to be executed conditionally
Using the condition evaluation hardware, ARM effectively increases number of
instructions

All instructions contain a condition field which determines whether the CPU will
execute them
Non-executed instructions soak up 1 cycle

Still have to complete cycle so as to allow fetching and decoding of following instructions

Removes the need for many branches, which stall the pipeline (3 cycles to
refill)

Allows very dense in-line code, without branches
The time penalty of not executing several conditional instructions is frequently less
than overhead of the branch or subroutine call that would otherwise be needed

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory26

Data Processing Instructions

All sharing the same instruction format.
Contains:

Arithmetic operations
Comparisons (no results - just set condition codes)
Logical operations
Data movement between registers

ARM is a load/store (register) architecture
These instructions only work on registers and NOT on memory.

Perform a specific operation on one or two operands.
First operand always a register - Rn
Second operand sent to the ALU via barrel shifter.

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory27

Load/Store Instructions

The ARM is a Load / Store Architecture:
Does not support memory to memory data processing operations.
Must move data values into registers before using them.

This might sound inefficient, but in practice it isn’t:
Load data values from memory into registers.
Process data in registers using a number of data processing instructions which are
not slowed down by memory access.
Store results from registers out to memory.

The ARM has three sets of instructions which interact with main memory.
These are:

Single register data transfer (LDR / STR).
Block data transfer (LDM/STM).
Single Data Swap (SWP).

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory

Block Data Transfer (1)

The Load and Store Multiple instructions (LDM / STM) allow between 1 and 16
registers to be transferred to or from memory.
The transferred registers can be either:

Any subset of the current bank of registers (default).
Any subset of the user mode bank of registers when in a privileged mode (postfix
instruction with a ‘^’).

28

Each bit corresponds to a particular
register. For example:

• Bit 0 set causes r0 to be transferred.
• Bit 0 unset causes r0 not to be transferred.

At least one register must be
transferred as the list cannot be empty.

Cond 1 0 0 P U S W L Rn Register list

Condition field Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write- back bit
0 = no write-back

1 = write address into base
PSR and force user bit

0 = don’t load PSR or force user mode
1 = load PSR or force user mode

Up/Down bit
0 = Down; subtract offset from base

1 = Up ; add offset to base

Pre/Post indexing bit
0 = Post; add offset after transfer,
1 = Pre ; add offset before transfer

2831 22 16 023 21 1527 20 1924

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory29

Block Data Transfer (2)

Base register used to determine where memory access should occur.
4 different addressing modes allow increment and decrement inclusive or exclusive of
the base register location.
Base register can be optionally updated following the transfer (by appending it with
an ‘!’).
Lowest register number is always transferred to/from lowest memory location
accessed.

These instructions are very efficient for
Saving and restoring context

Useful to view memory as a stack.

Moving large blocks of data around memory
Useful to directly represent functionality of the instructions.

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory30

Direct functionality of Block Data Transfer

When LDM / STM are not being used to implement stacks, it is clearer to
specify exactly what the functionality of the instruction is:

i.e. specify whether to increment / decrement the base pointer, before or after the
memory access.

In order to do this, LDM / STM support a further syntax in addition to the stack
one:

STMIA / LDMIA : Increment After
STMIB / LDMIB : Increment Before
STMDA / LDMDA : Decrement After
STMDB / LDMDB : Decrement Before

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory

Copy a block of memory, which is an exact multiple of 12 words long, from the
location pointed to by r12 to the location pointed to by r13. r14 points to the
end of block to be copied.

This loop transfers 48 bytes in 31 cycles
Over 50 Mbytes/sec at 33 MHz

; r12 points to the start of the source data
; r14 points to the end of the source data
; r13 points to the start of the destination data
Loop LDMIA r12!, {r0-r11} ; load 48 bytes
 STMIA r13!, {r0-r11} ; and store them
 CMP r12, r14 ; check for the end
 BNE loop ; and loop until done

31

Example: Block Copy

r13

r14 Increasing
Memory

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory32

Software Interrupt (SWI)

In effect, a SWI is a user-defined instruction.
It causes

an exception trap to the SWI hardware vector
a change to supervisor mode,
the associated state saving), and the SWI exception handler to be called.

The handler can then examine the comment field of the instruction to decide
what operation has been requested.
By making use of the SWI mechanism, an operating system can implement a
set of privileged operations, which, applications running in user mode can
request.

2831 2427 0

Cond 1 1 1 1 Comment field (ignored by Processor)

Condition Field

23

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory33

Thumb instructions

T (Thumb)-extension shrinks the ARM instruction
set to 16-bit word length

35-40% saving in amount of memory compared to 32-
bit instruction set

Extension enables simpler and significantly cheaper
realization of processor system. Instructions take
only half of memory than with 32-bit instruction set
without significant decrease in performance or
increase in code size.
Extension is made to instruction decoder at the
processor pipeline
Registers are preserved as 32-bit but only half of
them are used

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory34

Thumb instructions

ARM and Thumb instruction formats

2010년 3월 8일 월요일

ELPL
Embedded Low-Power

Laboratory35

Thumb instructions

Instruction word length shrunk to 16-
bits
Instructions follow their own syntax
but each instruction has it’s native
ARM instruction counterpart
Due to shrinking some functionality is
lost
19 different Thumb instruction
formats

2010년 3월 8일 월요일

