Embedded System Application 4190.303C **2010 Spring Semester**

2010 Spring Semester Introduction to microprocessor interface

Naehyuck Chang Dept. of EECS/CSE Seoul National University naehyuck@snu.ac.kr

Harvard Architecture Microprocessor

- Instruction memory
 - Input: address from PC
 - Output: instruction (read only)
- Data memory
 - Input: memory address
 - Addressing mode
 - Input/output: read/write data
 - Read or write operand

ARM Cortex M3 architecture

The Cortex M3's Thumbnail architecture looks like a conventional Arm processor. The differences are found in the Harvard architecture and the instruction decode that handles only Thumb and Thumb 2 instructions.

- ☑ Interface
 - Address bus
 - Data bus
 - Control signals (synchronous and asynchronous)
- Fully static read operation

mbedded Low-Power

aboratory

- Memory device
 - ♀ Collection of memory cells: 1M cells, 1G cells, etc.
 - Memory cells preserve stored data
 - Volatile and non-volatile
 - Dynamic and static
- How access memory?

SRAM structure

Ports

- Recall D-FF
- 1 input port and one output port for one cell
- Ports of memory devices
 - Large number of cells
 - One write port for consistency
 - More than one output ports allow simultaneous accesses of multiple cells for read
 - Register file usually has multiple read ports such as 1W 3R
 - Memory devices usually has one read and one write port or shares one port both for read and write

horator

Address

- Single port memory allows one cell access at a time
 - Exclusive addressing
- Why single port?
- Super computers
 - Use multiple read port main memory

Addressing

nbedded Low-Power

- Wordline
 - Selection (addressing) of cells connected to the same wordline
 - Exclusively selected by a decoder
- Bitline
 - Cell values are transferred via the bitlines
 - Parallel architecture
- Address encoding
 - Non-redundant Address value encoding using binary numbers
- Address decoding
 - Large-size binary decoder: 28-to-268435456 binary decoder for 256Mb memory

- We need an amplifier
 - Memory cell is a small transistor (capacitor)

$$C_S \square C_B$$

- Bitline is a big capacitor
- Connecting a memory cell to the bitline cause only small amount of voltage change
- Differential sense amplifier

10

aboratory

- Microprocessor-compatible interface
 - Most memory devices
 - Binary-encoded cell address
 - ♀ One, four, eight, 16, 32 or 64 bit data, mostly bidirectional (common input and output)
 - Device select
 - Read/write control

Some alternatives

- Multiplexed address

 - Address strobes
- Encoded read/write control
- No device select
- Clock input for synchronous memory
- Separate output enable control
- Power management control

- Synchronous and asynchronous
 - Synchronous
 - Memory device operation is synchronous the bus clock
 - Fast operation
 - High throughput (no idle period between transfers)
 - Interface design is complicated
 - Asynchronous
 - No bus clock
 - Slow operation
 - Low throughput (idle period indicates termination of an access)
 - Interface is simple
 - SRAM (asynchronous), SSRAM (synchronous SRAM), DRAM (asynchronous) and SDRAM (synchronous DRAM)
- Detailed explanation later in timing section

Synchronous Bus:

- Includes a clock in the control lines
- A fixed protocol for communication that is relative to the clock
- Advantage: involves very little logic and can run very fast
 - Each transmission takes 1 clock cycle
- Disadvantages:
 - Every device on the bus must run at the same clock rate
 - To avoid clock skew, they cannot be long if they are fast

Service Asynchronous Bus:

- It is not clocked
- It can accommodate a wide range of devices
- It can be lengthened without worrying about clock skew
- It requires a handshaking protocol
- Handshake requires one or more clock cycles

Flow control

- Memory is a passive device
 - Access control is done by the CPU
 - Logical and timing control
- Need a flow control?
 - Is the CPU running w/o temporary stopping?
 - ♀ CPU is a master device
 - Is the memory speed constant?
 - SRAM and DRAM
 - Single port and multiple port
 - Wait signal for CPU stall

15

Memory Maps

- Memory maps for harvard architecture processors
 - Separate instruction (code) and data memory

Unified Memory Architecture

- Harvard architecture is fast but expensive
 - Not 100% memory utilization of non-pipelined microprocessors
- Unified memory architecture
 - Sharing instructions and data with a unified memory
 - Need more complicated flow control
 - Instruction and data

aboratory

Unified Memory Architecture

Z80 microprocessor

Z80 Architecture

Embedded Low-Power

Laboratory

Address Decoding

Design a memory system for a Z80 microprocessor

- Single unified memory device
 - Memory map
- More number of memory devices
 - Address decoding
 - Memory maps

Pin 16: Vcc = +5 V

- Microprocessor generates memory request
 - Instruction fetch and data fetch/write back
 - Microprocessor generates electrical signal changes on the address bus
 - Memory decoder activates and selects a specific memory device
 - Selected memory device is activated and the target wordline is selected
 - Target memory cells are selected and bitline values are updated
 - Bitline values are transferred to the microprocessor via data bus

- Address mapping 0
 - Design is simplified by partitioning the address lines (M X N memory with D X W memory G chips)
 - \bigcirc Z bits are not connected (Z = log2(N/8))
 - Y bits are connected to all chips (Y = log 2D)9
 - X remaining bits are used to map the memory block
 - Used to generate chip selects

Full Address Decoding

- No unused address signals
- Each memory location corresponds to one address
- No "don't care" address bits
- Must decode all address bits

 - Expensive but recommended

aboratory

- Partial Address Decoding
 - Some address lines not decoded
 - There exist "don't care" values
 - Multiple addresses have same decoding
 - Advantage
 - Cheap
 - Disadvantage
 - Multiple mapping
 - Error prone accidental illegal memory access

Memory

device 1

aboratory

Ghost image!

- Mixed Decoding Schemes 9
 - Full address decoding for large blocks G
 - Partial decoding within sub-blocks 9
 - Devices with small address spaces 9 such as I/O devices
 - Advantages G
 - Practical for I/O devices
 - Minimize decoder cost, time delay 9

aboratory

- Address Decoder Design
 - Approaches
 - Random logic
 - m-to-n-line decoder
 - PROM
 - Programmable array logic (PAL)
 - Issues
 - ♀ Cost
 - Chip count
 - Speed
 - Design change

VERI LUX TAS MEA

- Address Decoder Design
 - Random Logic
 - Implement decoding in SSI gates
 - Boolean function to recognize address
 - Pros and cons

 - $\ensuremath{\,{\scriptscriptstyle \bigcirc}}$ Low power and small foot print
 - Could take many chips when the decoder size is large
 - Best suited for very simple partial decode
 - Gircuit board redesign for modification
 - Mostly used in old systems
 - ♀ Complementary usage for modern systems
 - Single gates

- Address Decoder Design
 - M-To-N-Line Decoder
 - Convert m-bit binary code to one of n outputs
 - Famous decoder families
 - 74LS154 4-to-16-line decoder
 - 74LS138 3-to-8-line decoder
 - 74LS139 dual 2-to-4-line decoder
 - Additional enable inputs permits decoders to be cascaded
 - Pros and cons
 - Relatively fast and low power
 - Could take many chips when the decoder size is large
 - Best suited for very simple partial decode
 - Circuit board redesign for modification
 - Mostly used in old systems
 - ♀ Complementary usage for modern systems

- Address Decoder Design
 - PROM Decoding
 - Lookup table
 - Put 1 of 2m p-bit words on output when selected
 - m address inputs
 - p data outputs
 - Chip select input
 - Implement decoding truth table directly
 - Pros and cons
 - Very inefficient gate usage for large size decoder
 - ♀ n inputs, 2ⁿ products and m outputs
 - Decoder does not require OR plane
 - Slow and high power
 - Flexible
 - Old fashioned

		Da			
	ţ	1	ţ	Ť	1
	1	0	0	0	0
	0	0	0	1	0
	0	0	0	0	1
	0	0	1	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	1	0	0	0

Address

- Address Decoder Design
 - PLA Decoding
 - Reduced OR plane from PROM
 - PROM
 - n inputs, 2ⁿ products and m outputs
 - PAL
 - $\ensuremath{\,{\scriptscriptstyle \bigcirc}}$ n inputs, k products and m outputs
 - Pros and cons
 - High speed
 - High power but some low power versions are available
 - Expensive
 - Flexible
 - \bigcirc CPLD → array of PALs

- Address Decoder Design
 - FPGA Decoding
 - Look-up table logic architecture with 4 to 5 variables
 - Extremely inefficient for large size decoders
 - Not solely used for decoders

- Reconfigurable address decoder
 - Modern embedded processors have built-in programmable address decoders
 - All the embedded peripherals have built-in decoders
 - Several built-in decoders for external peripherals
 - Additional decoders can be implemented by
 - Single random gates
 - SSI decoders
 - PALs or FPGAs

nbedded Low-Power

aboratory

Notations for Information Representation

How do we number these various units of information in a consistent manner

mbedded Low-Power

aboratory

- Big Endian
 - Least significant byte has highest address
- Little Endian
 - Least significant byte has lowest address
- Example
 - Variable x has 4-byte representation 0x01234567
 - Address given by &x is 0x100

Big Endian			0x100	0x101	0x102	0x103	
			01	23	45	67	
Little Endian		0x100	0x101	0x102	0x103		
			67	45	23	01	

- Bit ordering
 - Usually little endian
 - Mathematically compatible
 - B0 is LSB
- Byte Ordering
 - How should bytes within multi-byte word be ordered in memory?
 - Conventions
 - Motorola CISC and many RISCs use "Big Endian"
 - ♀ Least significant byte has highest address
 - - ♀ Least significant byte has lowest address

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Sub-word access

- ♀ Word length is greater than 8bit
 - 9 16bit
 - 32bit
 - 9 64bit
- Sub-word access is necessary
- Valid data appear on specific data bus bits
- Enabling specific memory devices both for full-word and sub-word accesses

Word access

- 32 bit access for 32-bit machines
- Active all the memory banks at the same time
- Sub-word access
 - Allow 16 bit or 8 bit access
 - Active associated banks only

aboratory

Control Signals

Skynchronous SRAM

- Master enable
- Some devices go to a power down mode if disabled

- Enable the output buffer
- Access is generally performed even if disabled

- Internal control
- Data is destructed if improperly controlled

Electrical Consideration

Buffering

- Address buffers
 - Mostly microprocessor's address bus buffers are not that strong (eg. 8 mA)

 - Bipolar or BiCMOS address buffers are used

I				
IIK	DC Input Diode Current	-50	V _I < GND	mA
IOK	DC Output Diode Current	-50	V _O < GND	mA
I _O	DC Output Current	64	V _O > V _{CC} Output at HIGH State	m۵
		128	V _O > V _{CC} Output at LOW State	
1	DC Current our Current Din	104		^

Symbol	Parameter	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_L = 50 \text{ pF, } R_L = 500\Omega$				
		$\textbf{V}_{\textbf{CC}} = \textbf{3.3V} \pm \textbf{0.3V}$		V _{CC} = 2.7V		Units
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Data to Output	1.2	3.5	1.2	3.9	ns
t _{PHL}		1.2	3.5	1.2	3.9	
t _{PZH}	Output Enable Time	1.2	4.0	1.2	5.0	20
t _{PZL}		1.2	5.0	1.2	6.5	ns
t _{PHZ}	Output Disable Time	2.0	4.7	2.0	5.2	
t _{PLZ}		1.5	4.2	1.5	4.4	ns
t _{OSHL}	Output to Output Skew		10		10	
t _{OSLH}	(Note 11)		1.0		1.0	ns

Buffering

Data buffers

- Same to the address buffer
- Direction control is additionally required
- Bus switches (CBT) are used for DRAMs
 - ♀ 74LVT16245 74LVTH16245 Low Voltage 16-Bit Transceiver with 3-STATE Outputs

BiCMOS bus buffer

Buffering

- Using a CBT to switch Dual Inline Memory Modules (DIMMs) to a common bus can reduce a memory controller's loading by 50 percent
 - CBT16292 is connecting DIMMs 2 and 4 to the memory controller and DIMMs 1 and 3 through a 500-Ω resistor to ground

