Embedded System Application 4190.303C 2010 Spring Semester

On-board Signal Integrity and DDR2 Bus (SSTL) Specification

Naehyuck Chang Dept. of EECS/CSE Seoul National University naehyuck@snu.ac.kr

Agenda

- Power Integrity
- Definition of high-speed signaling
- Controlled impedance lines
- Transmission line effect
- Reflection
- Termination
- Crosstalk
- DDR2 bus specification

Power Integrity

- Before we mention signal integrity
 - Power integrity first

a) Ideal power source: zero line impedance

Embedded Low-Power

aboratory

b) Realistic power source: non-zero line impedance

Power Integrity

- Why power integrity?
 - Power supply impedance
 - Resistive component
 - Inductive component

$$V_{drop} = iR + L\frac{di}{dt}$$

- \bigcirc 20 A current with DC resistance 0.05 Ω

 - TTL operating range is 4.75 V to 5.25 V
- 0.1 A current change in 2 ns with 500 nH
 - Yields 25 V L di/dt drop!
 - In practice, yields much less voltage drop since 500nH prevents 0.1 A current change itself in 2 ns

Power Integrity

- Ground bounce
 - Digital logic gate is a differential amplifier
 - Reference is GND
 - Earthquake!

- DDR2 data transfer bandwidth
 - Even SDRAM data transfer speed is 133 MHz

Memory	Clock Frequency	Data Rate
DDR200	100 MHz	200 MHz
DDR266	133 MHz	266 MHz
DDR333	167 MHz	333 MHz
DDR400	200 MHz	400 MHz

High-speed signaling causes signal integrity problem

- Speed is one of the most important design factor
 - Hundreds of MHz data transfer clocks are widely available
- Definition of high-speed signaling?
 - Is there a clear threshold of high-speed signaling?

 - Is 100 KHz not so much a high frequency?
 - What about 10 MHz?
- Questions from my neighborhood professors
 - Laboratory equipments for digital system design
- Before we answer the question...
 - Digital systems do not use sine wave!
 - Demand for short propagation delay
 - ♀ Fast edge rate is required
- What is a square wave?
 - Collection of independent sine waves

- Power spectrum of a square wave
 - See frequency
- Frequency components that determines the knee frequency
 - Rise time (t_R)
 - General Fall time (t_F)
 - Pulse width (t_L)
 - \bigcirc Usually t_F is the shortest components
- Below the knee frequency,
 - High power distribution
 - More information to be delivered
 - Should be carefully handled
- Above the knee frequency,

Signal integrity

Animal march

Stair cases

Obstacle

- Signal integrity
 - Improper transmission media may lose components or incur delay of them
 - Blur the march!

Animal march

Embedded Low-Power

aboratory

Signal integrity

aboratory

Example

- PALCE16V8: $t_F = 2 \text{ ns}$
- ♀ f_N = 1/(π × 2 ns) = 160 MHz
- We should take care of frequency components up to 250 MHz regardless of the clock frequency!
 - Base frequency is not generally important
- Modern semiconductor chips are designed to operate in a high clock frequency
 - Use of the device implies your design is subject to high-speed signaling

FINAL COM'L: H-S/

COM'L: H-5/7/10/15/25, Q-10/15/25 IND: H-10/15/25, Q-20/25

PALCE16V8 Family

EE CMOS 20-Pin Universal Programmable Array Logic

DISTINCTIVE CHARACTERISTICS

- Pin and function compatible with all 20-pin GAL devices
- Electrically erasable CMOS technology provides reconfigurable logic and full testability
- High-speed CMOS technology
 - 5-ns propagation delay for *-5" version
- 7.5-ns propagation delay for "-7" version

- Programmable output polarity
- Programmable enable/disable control
- Preloadable output registers for testability
- Automatic register reset on power up
- Cost-effective 20-pin plastic DIP, PLCC, and SOIC packages
- Extensive third-party software and programmer support through FusionPLD partners

- Is signal integrity assured if the parasitic inductance and capacitance are virtually eliminated within the frequency range of interest?
 - The answer is negative because wave reflection

H = 20 ns/div V = 1.0 V/div

TL/F/12419-7

- Lumped circuits
 - The differential equations obtained for the circuit using KVL and/or KCL (i.e., loop or nodal analysis) involve only one variable: time
 - Assuming that the entire circuit is at a single point in space, or equivalently, that the travel time of the electric signal is negligible
- No more lumped circuits
 - A distributed circuit is one for which the travel time of the electric signal between the components cannot be neglected
 - The voltages and currents in such a circuit are functions of position as well as time

- Distinguish between a lumped and a distributed circuit
 - Rise time versus travel time
 - Period versus travel time
 - Component size versus wavelength
 - Rule of thumb
 - \bigcirc t_R/t_{PD} > 6 → definitely lumped
 - \bigcirc t_R/t_{PD} < 2.5 → definitely distributed

- Solution Lumped components with all dimensions much smaller than λ
 - Resistors, capacitors, inductors, etc.
- Solution Distributed components with one dimension either comparable to or greater than λ , and other dimensions much smaller than λ
 - Coaxial cables, hollow waveguides, handset antennas for wireless communications, etc.
- \bigcirc Distributed components with all dimensions much greater than λ
 - Graded index optical fibers, reflector antennas, etc.

- General Controlled Impedance Line
 - A uniform transmission line consists of two (or more) parallel conductors separated by a vacuum or other insulating material
 - \bigcirc The cross-section of a uniform transmission line is small compared to λ and does not change over the length of the transmission line which is (usually much) greater than 0.1λ

- Controlled Impedance Line
 - Inductance and capacitance are evenly distributed along the length of the line

- Inductance and capacitance are evenly distributed along the length the line
- Z_0 : AC resistance, unit is Ω

$$Z_0 = \sqrt{\frac{L_0}{C_0}}$$

L₀: Signal line inductance in Henrys per unit length
 C₀: Signal line capacitance in Farads per unit length
 t_{PD}: propagation delay

$$t_{PD} = \sqrt{L_0 C_0}$$

Typical impedance of controlled impedance lines 0

COAXIAL CABLE	$Z_0 = 50, 75, 125\Omega$
TWISTED PAIR	$Z_0 = 50 \text{ TO } 100\Omega$
WIRE OVER GROUND	$\begin{split} & Z_{o} = \frac{60}{\sqrt{\varepsilon_{R}}} \ln \left(\frac{4h}{d} \right) \\ & \text{TYPICALLY } Z_{o} = \ 120 \text{ TO } 200\Omega \end{split}$
MICROSTRIPLINE	$\begin{split} Z_{o} &= \frac{87}{\sqrt{\varepsilon_{\textrm{R}} + 1.41}} \ln \left(\frac{5.98}{0.8 \textrm{w} + \textrm{t}} \right) \\ \text{TYPICALLY } Z_{o} + 50 \text{ TO } 100 \Omega \end{split}$
STRIPLINE	$Z_{0} = \frac{60}{\sqrt{\epsilon_{R}}} \ln \left[\frac{4b}{0.67\pi w (0.8 + \frac{t}{w})} \right]$
	$\frac{w}{(b-t)}$ < 0.35 AND t/b < 0.25 TYPICALLY Z ₀ = 30 TO 80Ω

AN008424-1

Stripline and microstripline

Stripline

Microstripline

- Example of a microstripline on an epoxy-laminated fiberglass printed circuit board
 - A common material is epoxy-laminated fiberglass, which has an average dielectric constant of 5

$$\begin{split} Z_0 &= \frac{87}{\sqrt{\varepsilon_R + 1.41}} \ln \frac{5.98h}{0.8w + t} \, \Omega \\ t_{PD} &= 1.017 \sqrt{0.457 \varepsilon_R + 0.67} \, ns/ft \\ C_0 &= 1000 \frac{t_{PD}}{Z_0} \, pF/ft \\ L_0 &= Z_0^2 C_0 \, pH/ft \end{split}$$

- Example of a microstripline on an epoxy-laminated fiberglass printed circuit board
 - Copper thickness is 1 mil
 - Track width is 8 mils (typically 8 to 15 mils)
 - Layer separation is 30 mils

$$Z_0 = \frac{87}{\sqrt{5} + 1.41} \ln \frac{5.98 \times 0.03}{0.8 \times 0.001 + 0.01} \,\Omega = 67.05 \,\Omega$$

 $t_{PD} = 1.017 \sqrt{0.457 \times 5 + 0.67} \ ns/ft = 1.75 \ ns/ft$

$$C_0 = 1000 \frac{1.75}{67.05} \ pF/ft = 26.1 \ pF/ft$$
$$L_0 = 67.05^2 \times 26.1 \ pF/ft = 117 \ pH/ft$$

Lumped or distributed load

$$\begin{split} Z_0 &= \frac{Z_0}{\sqrt{1+\frac{C_L}{C_0}}} \ \Omega \\ t_{PD} &= t_{PD} \sqrt{1+\frac{C_L}{C_0}} \ ns/ft \end{split}$$

- New parameter CL: added capacitance in Farads per unit length
- DRAM: 4 to 12 pF

23

Example

Input capacitance is 5 pF, and clearance is 200 mil

$$C_L = \frac{5 \, pF}{0.5 \, in \frac{1 \, ft}{12 \, in}} = 120 \, pF/ft$$

$$Z_0 = \frac{67.05}{\sqrt{1 + \frac{120 \ pF/ft}{26.1 \ pF/ft}}} = 28.34 \ \Omega$$
$$t_{PD} = 1.75 \ ns/ft \sqrt{1 + \frac{120 \ pF/ft}{26.1 \ pF/ft}} = 4.14 \ ns/ft$$

Transmission Line Effect

Transmission lines

- Connections capable of carrying a signal between a transmitter and a receiver
 - Telecom-based cables operating over long distances
 - Travel time is long
 - This impedance of the wire is extremely important, as any mismatch within the transmission path will result in a reduction in quality of the signal
 - Controlled impedance line should be used for transmission lines

- PCB tracks
 - At low frequencies, a PCB track may be an ideal circuit without resistance, capacitance or inductance
 - At high frequencies, a PCB track is a transmission line

Transmission Line Effect

- Transmission line effects
 - Mismatched impedance results in signal reflection
- CMOS digital logic gates are basically impedance mismatched devices
 - Input impedance is very high
 - Output impedance is very low
 - C.f., emitter coupled logic
- If the interconnect between two CMOS gates is a transmission line, signal reflection occurs

- Maximum transfer of energy
 - The load impedance is equal the source impedance
 - \bigcirc $Z_0 = Z_L$
- The waveform at the load
 - Sum of originally generated signal and the reflection from the load
- Recall reflection in physics
 - Generate a wave on a string
 - Reflection from an open end
 - Generates a reflected wave of a 180 degree phase shift
 - Refection from a fixed end
 - ♀ Generates a reflected wave of the same phase

- Appearance of the waveform depends on
 - Mismatch of the load

 - The ratio of the signal-transition time, t_R to the propagation delay of the line t_R/t_{PD}
- The amount of overshoot usually varies proportionally with the signal-line length until $t_{R/}$ $t_{RD} = 1$

- The overshoot is as much as the original transition
- Rule of Thumbs again
 - A signal line is considered as a transmission line when $t_R/t_{PD} \le 1/4$
 - More conservative rule is $t_R/t_{PD} \le 1/8$

PI6C20400 1:4 Clock Driver for Intel PCI Express Chipsets

Symbol	Parameters	Min	Max.	Units
Trise / Tfall	Rise and Fall Time (measured between 0.175V to 0.525V)	175	700	ps
$\Delta T_{rise} / \Delta T_{fall}$	Rise and Fall Time Variation		125	ps

- Section Example
- \subseteq t_R (ns), line length (in) with the condition of t_R/t_{PD} = 1/4

t_{R} (ns)	Line length (in)			
	Lumped load	Distributed load		
5	8.5	3.6		
3	5.1	2.17		
2	3.4	1.4		
1	1.7	0.75		

- Qualifying reflection
 - Reflection coefficient
 - Z0 is the transmission line impedance
 - ZL is the load impedance

$$K_R = \frac{Z_L - Z_0}{Z_L + Z_0}$$

- Short load
 - Load is a CMOS logic gate output

$$K_R = \frac{0 - Z_0}{0 + Z_0} = -$$

Embedded Low-Power

aboratory

- Open load
 - Load is a CMOS logic gate input
 - ♀ Ideal CMOS logic gate input impedance is ∞

$$K_R = \frac{\infty - Z_0}{\infty + Z_0} = 1$$

Wave propagation

- Real case example: CMOS GAL PALCE16V8 and microstripline
 - \bigcirc Z₀ ranges from 30 to 150 Ω
 - \bigcirc Input impedances range from 10 K to 100 KΩ
 - Driver's output impedance
 - Rough approximation

$$Z_S = \frac{V_{OL}}{I_{OL}} = \frac{0.2 V}{24 mA} = 8.3 \Omega$$

Since input impedance 100K Ω , K_R at load:

$$K_R = 1$$

Since $Z_0 = 67 \Omega$, K_R at source:

$$K_R = \frac{8.3 - 67}{8.3 + 67} = -0.78$$

Wave propagation

$$V_{\rm out} = V_{\rm src} \cdot \frac{Z_0}{R_{\rm src} + Z_0}$$

- Wave propagation (incident wave)

$$\Delta_V = \frac{(0.2 V - 3.5 V)Z_0}{Z0 + Z_s} = \frac{-3.3 V \times 67 \Omega}{67 \Omega + 8.3 \Omega} = -2.94 V$$

$$V_S = 3.5 V + \Delta_V = 0.56 V$$

Lattice diagram with superposition theory

Embedded Low-Power

Laboratory

Settling time and delay: source voltage

Settling time and delay: source voltage

- Seflections are eliminated when $Z_L = Z_0$
- Given to make $Z_L = Z_0$?
- Parallel termination (end termination)
 - - ♀ Placing parallel register with the load current drain is high for the HIGH-output state
 - \bigcirc Terminating to Vcc helps since I_{OL} is usually high than I_{OH} , but normally not enough

- Parallel termination (end termination)
 - Drawbacks
- Variations
 - Split termination
 - Reduce the maximum DC current by half
 - Does not use the same value of the pull up and pull down resistors to maintain default voltage level not close to 1/2 VDD, e.g, 220/330 or 330/470
 - AC termination
 - Use of a capacitor to cut the DC current during steady state
 - Determination of the capacitance is critical because it affects the slew rate variation

40

Variations

- Diode termination
 - Does not involve load impedance nor does it consume DC power

 - Less effective as the logic voltage level moves to a lower voltage such as 2.5V and 1.8V
- Active termination
 - Use of an active termination device
 - Cost

Embedded Low-Power

aboratory

- Source termination methods: $Z_L = Z_0$
- Given the How to make $Z_S = Z_0$?
 - \bigcirc Increase Z_S to Z₀ : eliminate the second reflection
 - ♀ placing a series register with the source: best for a lumped load
 - \bigcirc Since the load is open, ΔV reflects from the load to the source
 - There is no second reflection
 - Risky approach for a distributed load because of the intermediate voltage
 - The device close to the driver has a valid input after a return trip; However, it is popular for a DRAM array

- Source termination
 - Settling time and delay: source voltage

Embedded Low-Power

aboratory

- Source termination
 - Settling time and delay: load voltage

Source termination

- Generation Choose R_T such that $R_T + Z_S < Z_0$
 - Reduce the additional delay by making the intermediate voltage below the threshold level
 - This is not an exact match, thus inducing ringing, but tolerable
 - \bigcirc Generally, exact match is difficult, because HIGH-impedance and LOW-impedance are different: for PALCE16V8, 50 Ω and 8 Ω, respectively

- Industrial standards that include termination resistors as default
 - GTL+
 - Processors to memory controllers
 - Intel Pentium[™] processor

 - ♀ Open-drain output end-terminated to 1.5V
 - CMOS and BiCMOS versions

- Industrial standards that include termination resistors as default
 - SSTL_2
 - Memory controllers to DDR SDRAM arrays
 - 2.5V CMOS totem-pole terminated to 1.25V
 - CMOS technology
 - ♀ CMOS totem-pole

Static power consumption

- Layout rules for transmission lines
 - Do not make discontinuity
 - Discontinuities are points where the impedance of the signal line changes abruptly
 - $\label{eq:stable}$ The formula of K_R is valid as well for the discontinuities
 - Avoid bend of tracks and vias
 - Smoothing the bends
 - Reduce excessive vias

- Layout rules for transmission lines
 - Do not use stubs or Ts

 - Do not make stubs

- Layout rules for transmission lines 9
 - 9 Soothing the bends

- Gapacitive crosstalk
 - Capacitive coupling induced by closely located lines
 - Current injection to a transmission line

- Gapacitive crosstalk
 - Termination reduces the noise

- Capacitive crosstalk
 - Separation helps to reduce the crosstalk
 - Isolation
 - Put a ground trace between the coupled traces should be a solid ground

- Coplanar waveguide

 - Often can be seen with copper pour
 - Hard to control line impedance for multi-layer PCBs
 - Does not recommend
 - ♀ To make isolation, dense ground vias should be applied

- Capacitive crosstalk example
 - Wavelength
 - Maximum frequency of interest

$$\lambda = \text{velocity} \times \text{period} = \frac{1}{t_{PD}} \frac{1}{\text{freq}}$$

$$f_{MAX} = \frac{1}{1.25 ns \times \pi} = 255 MHz$$

Distance

$$\lambda = \frac{1}{255 MHz} \frac{1}{4.14 ns/ft} \frac{12 in}{ft} = 11.4 in$$
$$\lambda/4 = \frac{11.4 in}{2.8 in} = 2.8 in$$

Inductive crosstalk

- Coupling of signals between the primary and secondary coils
 - ♀ Natural loops by signals and their return paths

 - ♀ Amount of the coupled signal depends on the size of the loops and their proximity
 - ♀ The size of the signal at the load, increases with the load impedance

- Inductive crosstalk
 - Solution VCC and GND are signal return paths

- Inductive crosstalk 0
 - Signal traces A and B will be coupled by the same return path 9

Solution

Artificial loop

- Open it
- Natural Loop
 - ♀ Keeping the load impedance low
- \bigcirc R_T is usually 30 Ω to 150 Ω
 - ♀ This reduce the voltage at least two orders of magnitude

- Summary
 - Both capacitive and inductive crosstalk increase with load impedance
 should be terminated
 - Seeping the signal separated reduces capacitive coupling
 - Gapacitive coupling can be reduced by isolation with ground trace
 - Inductive crosstalk can be reduced by minimizing loop size
 - Inductive crosstalk is induced by shared common path

DDR2 Bus Specification

- SSTL (Stub series termination logic)
 - Attaining 200 MHz maximum frequency
 - \bigcirc V_{IH} and V_{IL} are V_{REF}+200 mV and V_{REF}-200 mV, respectively
 - \bigcirc This 400-mV input voltage swing allows much faster than the standard 1.2-V difference in LVTTL levels where V_{IH} and V_{IL} equal 2 V and 0.8 V, respectively

DDR2 Bus Specification

SSTL

- SSTL_2

 - \bigcirc V_{DDQ} = 2.5 V, V_T = 0.5 x V_{DDQ}

Symbol	Parameter	Min.	Nom	Max.	Units	Notes
V _{DD}	Device supply voltage	V _{DDQ}		n/a	v	1
V _{DDQ}	Output supply voltage	2.3	2.5	2.7	v	1
V _{REF(DC)}	Input reference voltage	1.13	1.25	1.38	v	2,3
VTT	Termination voltage	V _{REF} - 0.04	VREF	V _{REF} + 0.04	v	4

DDR2 Bus Specification

- SSTL
 - SSTL_18

 - $\bigcirc V_{\text{DDQ}} = 1.8 \text{ V, } \text{V}_{\text{T}} = 0.5 \text{ x } \text{V}_{\text{DDQ}}$

Symbol	Parameter	Min.	Nom.	Max.	Units	Notes
VDDQ	Output supply voltage	1.7	1.8	<mark>1.9</mark>	V	
VREF	Input reference voltage	833	900	969	mV	1, 2
VTT	Termination voltage	V _{REF} - 40	VREF	V _{REF} + 40	mV	3

