Digital Logic Design 4190.201.001
 2010 Spring Semester

3. Combinational Logic

Naehyuck Chang
Dept. of EECS/CSE
Seoul National University naehyuck@snu.ac.kr

Introduction

- Combinational logic

Q Whose output is solely determined by their inputs

- Representation of a function
- Truth table
- Boolean equation
- Sum of products, a two-level form

Q Unique way to represent a logic like a finger print

- Alternative form is product of sums
- Can be done in many ways

Q Highly desirable to find the simplest implementation

- Gates and wires
- Boolean minimization

Q Karnaugh map, etc.
Q Fundamental tradeoff between time and space (speed and area: gates and wires)

- Two-level logic and multi-leveled logic

Introduction

Q Time response of in digital network

- Non-zero propagation delay

Introduction

9 Definition
Q Output behavior depends on the current input

- Memoryless

Q Example: adder
Q The output changes shortly after the input changes, but the previous input has nothing to do with the current outputComparison with sequential logic
Q There is memory or state
Q Whose output depends both the input and the state
Q Example: traffic light

- Simple combinational circuits representing with truth tables

X	Y	Equal
0	0	1
0	1	0
1	0	0
1	1	1

Comparator

X	Y	Zero	One	Two
0	0	1	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1

Tally circuit

Introduction

- More examples

Q Half adder: output the carry but cannot be chained
Q Full adder: can be chained

- Truth table
- Suitable with a modest number of inputs

Q 2 n number of rows where n is the number of inputs

A	B	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0
Half adder			

Introduction

Full adder

A	A	Cin	Carry	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

An Algebraic Structure

Q An algebraic structure consists of

- A set of elements B
- Binary operations $\{+, \bullet\}$
- And a unary operation $\left\{{ }^{\prime}\right\}$

Q Such that the following axioms hold:

Q 1. The set B contains at least two elements a, b such that a is not equal to b
Q 2. Closure: $\quad a+b \in B, a \bullet b \in B$

- 3. Commutativity:
$a+b=b+a, a \cdot b=b \cdot a$
Q 4. Associativity:
$a+(b+c)=(a+b)+c, a \cdot(b \cdot c)=(a \cdot b) \cdot c$
Q 5. Identity:
$a+0=a, a \cdot 1=a$
Q 6. Distributivity: $\quad a+(b \cdot c)=(a+b) \cdot(a+c), a \cdot(b+c)=(a \bullet b)+(a \bullet c)$
Q 7. Complementarity:
$a+a^{\prime}=1, a \cdot a^{\prime}=0$
- Order of operations

Q Complement, AND and then OR

- AND and OR are not the same to the arithmetic operations MULTIPLY and PLUS

Truth Tables

Q Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: ', +, and •
Q Equivalence of Boolean expressions and truth tables
Q Can be readily derived from each other

X	Y	X^{\prime}	Y^{\prime}	$X \bullet Y$	$X^{\prime} \cdot Y^{\prime}$	$(X \cdot Y)+\left(X^{\prime} \cdot Y^{\prime}\right)$	
0	0	1	1	0	1	1	
0	1	1	0	0	0	0	
1	0	0	1	0	0	0	$(X \cdot Y)+\left(X^{\prime} \cdot Y^{\prime}\right) \quad \equiv \quad X=Y$
1	1	0	0	1	0	1	

Boolean expression that is
X, Y are Boolean algebra variables true when the variables X and Y have the same value and false, otherwise

Truth Tables

Q Reduced carry out full adder expression

- $C_{\text {out }}=\left(A C_{\text {in }}\right)+\left(B C_{\text {in }}\right)+(A B)$

A	A	$C_{\text {in }}$	$A C_{\text {in }}$	$\mathrm{BC}_{\text {in }}$	AB	$\mathrm{C}_{\text {out }}$
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	1
1	0	0	0	0	0	0
1	0	1	1	0	0	1
1	1	0	0	0	1	1
1	1	1	1	1	1	1

Truth Tables

Q Deriving expressions from truth tables

- $\mathrm{S}=$
- $\mathrm{C}_{\text {out }}=$

A	B	$C_{\text {in }}$	$C_{\text {out }}$	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Theorems of Boolean Algebra

Q Duality

- A dual of a Boolean expression is derived by replacing
- by,++ by $\bullet, 0$ by 1 , and 1 by 0 , and leaving variables unchanged

Q Any theorem that can be proven is thus also proven for its dual!
Q A meta-theorem (a theorem about theorems)

- Duality:

Q $X+Y+\ldots \Leftrightarrow X \bullet Y \bullet \ldots$
Q Generalized duality:
Q $\mathrm{f}(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{Xn}, 0,1,+, \bullet) \Leftrightarrow \mathrm{f}(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{Xn}, 1,0, \bullet,+)$
Q Different from deMorgan's Law

- This is a statement about theorems

Q This is not a way to manipulate (re-write) expressions

Theorems of Boolean Algebra

- Identity

Q 1. $X+0=X$

- Null
- 2. $X+1=1$
- Idempotency:
- 3. $X+X=X$

Q Involution:
Q 4. $\left(X^{\prime}\right)^{\prime}=X$
Q Complementarity:
-
5. $X+X^{\prime}=1$

Commutativity:
9 6. $X+Y=Y+X$

- Associativity:7. $(X+Y)+Z=X+(Y+Z)$
7D. $(X \cdot Y) \cdot Z=X \cdot(Y \bullet Z)$

Theorems of Boolean Algebra

Q Distributivity:
Q 8. $X \bullet(Y+Z)=(X \bullet Y)+(X \bullet Z)$
8D. $X+(Y \cdot Z)=(X+Y) \cdot(X+Z)$

- Uniting:

9 9. $X \bullet Y+X \bullet Y^{\prime}=X$

- Absorption:
- 10. $X+X \cdot Y=X$

Q 11. $\left(X+Y^{\prime}\right) \cdot Y=X \cdot Y$
Factoring:
Q 12. $(X+Y) \cdot\left(X^{\prime}+Z\right)=$ $X \bullet Z+X^{\prime} \cdot Y$

Concensus:

- 13. $(X \cdot Y)+(Y \cdot Z)+\left(X^{\prime} \cdot Z\right)=$ $X \cdot Y+X^{\prime} \cdot Z$

9D. $(X+Y) \cdot\left(X+Y^{\prime}\right)=X$

10D. $X \cdot(X+Y)=X$
11D. $\left(X \cdot Y^{\prime}\right)+Y=X+Y$

12D. $\mathrm{X} \cdot \mathrm{Y}+\mathrm{X}^{\prime} \cdot \mathrm{Z}=$

$$
(X+Z) \cdot\left(X^{\prime}+Y\right)
$$

13D. $(X+Y) \cdot(Y+Z) \cdot\left(X^{\prime}+Z\right)=$ $(X+Y) \cdot\left(X^{\prime}+Z\right)$

Proving Theorems (Rewriting)

Q Using the axioms of Boolean algebra:
Q e.g., prove the theorem:

$$
X \cdot Y+X \cdot Y^{\prime} \quad=X
$$

```
distributivity (8)
complementarity (5)
identity (1D)
```

```
X\bulletY + X \bullet Y
= X\bullet(Y + Y')
X \bullet(Y + Y') = X \bullet(1)
X\bullet(1) = X ü
```

Q e.g., prove the theorem:

```
identity (1D)
distributivity (8)
identity (2)
identity (1D)
```


$X+X \cdot Y$

$=X$

```
X + X•Y
```

$X \cdot 1+X \cdot Y \quad=X \cdot(1+Y)$
$=X \cdot 1+X \cdot Y$
$X \cdot(1+Y) \quad=X \cdot(1)$
$X \bullet(1) \quad=X$ ü

Activity

Q Prove the following using the laws of Boolean algebra:

- $(X \cdot Y)+(Y \bullet Z)+\left(X^{\prime} \cdot Z\right)=X \bullet Y+X^{\prime} \cdot Z$
identity
complementarity
distributivity
commutativity
commutativity
absorption
$(X \cdot Y)+(Y \bullet Z)+\left(X^{\prime} \cdot Z\right)$
$(X \cdot Y)+(1) \bullet(Y \cdot Z)+\left(X^{\prime} \cdot Z\right)$
$(X \bullet Y)+\left(X^{\prime}+X\right) \bullet(Y \bullet Z)+\left(X^{\prime} \bullet Z\right)$
$(X \bullet Y)+\left(X^{\prime} \bullet Y \bullet Z\right)+(X \bullet Y \bullet Z)+\left(X^{\prime} \bullet Z\right)$
$(X \bullet Y)+(X \bullet Y \bullet Z)+\left(X^{\prime} \bullet Y \bullet Z\right)+\left(X^{\prime} \bullet Z\right)$
$(X \bullet Y)+(X \bullet Y) \cdot Z+\left(X^{\prime} \bullet Z\right)+\left(X^{\prime} \bullet Z\right) \cdot Y$
$(X \cdot Y)+\left(X^{\prime} \cdot Z\right)$

Activity

Q Full adder example

- Cout $=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$

Q Idempotent (introduces a redundant term)

- Cout $=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n+A B C i n$
- Commutative (rearranges terms)

Q Cout $=A^{\prime} B C i n+A B C i n+A B^{\prime} C i n+A B C i n \prime+A B C i n$
Q Distributed (factors out common literals)
Q Cout $=\left(A^{\prime}+A\right) B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$
Q Complementarity (replaces $A^{\prime}+A$ to 1)

- Cout $=(1) B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$
- Identity (replaces 1 X to X)
- Cout $=\mathrm{BCin}+A B^{\prime} \mathrm{Cin}+A B C i n^{\prime}+\mathrm{ABCin}$
- Finally
- Cout $=\mathrm{BCin}+\mathrm{ACin}+\mathrm{AB}$

DeMorgan's Law

- DeMOrgan's law
- Establishes relationship between • and +
- Theorem:

Q 14. $(X+Y+\ldots)^{\prime}=X^{\prime} \bullet Y^{\prime} \bullet \ldots \quad$ 14D. $(X \bullet Y \bullet \ldots)^{\prime}=X^{\prime}+Y^{\prime}+\ldots$
Q Generalized DeMorgan's:
Q 15. $\mathrm{f}^{\prime}(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{Xn}, 0,1,+, \bullet)=\mathrm{f}\left(\mathrm{X1}^{\prime}, \mathrm{X2}^{\prime}, \ldots, \mathrm{Xn}, 1,0, \bullet,+\right)$

- Purpose
- Negative logic

Proving Theorems (Perfect Induction)

- Using perfect induction (complete truth table):

Q e.g., de Morgan's:

$$
(X+Y)^{\prime}=X^{\prime} \cdot Y^{\prime}
$$

NOR is equivalent to AND with inputs complemented
$(X \cdot Y)^{\prime}=X^{\prime}+Y^{\prime}$
NAND is equivalent to OR with inputs complemented

Possible Logic Functions of Two Variables

Q There are 16 possible functions of 2 input variables:

- In general, there are $2^{2^{n}}$ functions of n inputs

\mathbf{X}	Y	16 possible functions (F0-F15)															
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
				X				X of			$\text { or } \mathrm{Yor}$	$=Y$			$\text { not } X$		nd Y and Y

Cost of Different Logic Functions

Q Different functions are easier or harder to implement
Q Each has a cost associated with the number of switches needed
Q 0 （F0）and 1 （F15）：require 0 switches，directly connect output to low／high
Q X（F3）and Y（F5）：require 0 switches，output is one of inputs
Q X^{\prime}（F12）and Y^{\prime}（F10）：require 2 switches for＂inverter＂or NOT－gate
Q X nor Y（F4）and X nand Y（F14）：require 4 switches
Q X or Y（F7）and X and Y（F1）：require 6 switches
－$X=Y(F 9)$ and $X \oplus Y$（F6）：require 16 switches

Q Thus，because NOT，NOR，and NAND are the cheapest they are the functions we implement the most in practice
Q But if we consider the target technology（logic structure），the story is different
Q To be learned from electronics circuit，semiconductor and advanced digital system design

Minimal Set of Functions

Q Can we implement all logic functions from NOT, NOR, and NAND?

- For example, implementing X and Y is the same as implementing not (X nand Y)
Q In fact, we can do it with only NOR or only NAND
Q NOT is just a NAND or a NOR with both inputs tied together

- And NAND and NOR are "duals", that is, its easy to implement one using the other

$$
\begin{array}{ll}
X \underline{n a n d} Y & \equiv \operatorname{not}((\operatorname{not} X) \text { nor }(\operatorname{not} Y)) \\
X \underline{\text { nor } Y} & \equiv \underline{n o t}((\underline{n o t} X) \underline{n a n d}(\underline{\text { not }} Y))
\end{array}
$$

- But lets not move too fast . . .
- Let's look at the mathematical foundation of logic

From Boolean Expressions to Logic Gates

 X^{\prime} \bar{x} ~XQ AND $X \cdot Y$ XY $X \wedge Y$

Q OR
$X+Y$
X v Y

From Boolean Expressions to Logic Gates

Q NAND

Q NOR

Q XOR $X \oplus Y$
a XNOR
$X \equiv Y$

$X \operatorname{xor} Y=X Y^{\prime}+X^{\prime} Y$ X or Y but not both ("inequality", "difference")

From Boolean Expressions to Logic Gates

Q More than one way to map expressions to gates

Q e.g., $Z=A^{\prime} \bullet B^{\prime} \cdot(C+D)=\left(A^{\prime} \bullet\left(B^{\prime} \bullet(C+D)\right)\right)$

From Boolean Expressions to Logic Gates

- Implication

Q X implies $\mathrm{Y}: \mathrm{X} \Rightarrow \mathrm{Y}$
Q Is false only when X is true and Y is false

Logic Blocks and Hierarchy

Q Half adder

A	B	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Q Full adder

Logic Blocks and Hierarchy

Q 2 bit full adder

Waveform View of Logic Functions

- Just a sideways truth table
- But note how edges don't line up exactly

Q It takes time for a gate to switch its output!

Time and Space Tradeoff

A	B	C	Z
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Which Realization is Best?

- Reduce number of inputs

Q Literal: input variable (complemented or not)

- Can approximate cost of logic gate as 2 transistors per literal

Q Why not count inverters?
Q Fewer literals means less transistors

- Smaller circuits

Q Fewer inputs implies faster gates

- Gates are smaller and thus also faster

Q Fan-ins (\# of gate inputs) are limited in some technologies
Q Reduce number of gates
Q Fewer gates (and the packages they come in) means smaller circuits

- Directly influences manufacturing costs

Which Is the Best Realization?

- Reduce number of levels of gates
- Fewer level of gates implies reduced signal propagation delays
- Minimum delay configuration typically requires more gates
- Wider, less deep circuits
- How do we explore tradeoffs between increased circuit delay and size?
- Automated tools to generate different solutions
- Logic minimization: reduce number of gates and complexity

Q Logic optimization: reduction while trading off against delay

Are All Realizations Equivalent?

Q Under the same input stimuli, the three alternative implementations have almost the same waveform behavior

- Delays are different

Q Glitches (hazards) may arise - these could be bad, it depends
Q Variations due to differences in number of gate levels and structure
Q The three implementations are functionally equivalent

Implementing Boolean Functions

Q Technology independent

- Canonical forms

Q Two-level forms

- Multi-level forms

Q Technology choices

- Packages of a few gates
- Regular logic
- Two-level programmable logic

Q Multi-level programmable logic

Canonical Forms

Q Truth table is the unique signature of a Boolean function
Q The same truth table can have many gate realizations

- Canonical forms
- Standard forms for a Boolean expression

Q Provides a unique algebraic signature

Sum-of-Products Canonical Forms

- Also known as disjunctive normal form
- Also known as minterm expansion
- Minterm contains one version of every literal

Q Each minterm covers only one row
Q Minterms are ORed together to form the complete function

Sum-of-Products Canonical Form

9 Product term and minterm

- $A B$ is a product term but not a minterm
- $A B C$ is a product term and a minterm
- ANDed product of literals - input combination for which output is true

Q Each variable appears exactly once, true or inverted (but not both)

A	B	C	$\mathrm{minterms}^{\prime}$	
0	0	0	$\mathrm{~A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$	m 0
0	0	1	$\mathrm{~A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}$	m 1
0	1	0	$\mathrm{~A}^{\prime} \mathrm{BC}^{\prime}$	m 2
0	1	1	$\mathrm{~A}^{\prime} \mathrm{BC}^{\prime}$	m 3
1	0	0	$\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$	m 4
1	0	1	$\mathrm{AB}^{\prime} \mathrm{C}$	m 5
1	1	0	ABC^{\prime}	m 6
1	1	1	ABC	m 7
Short-hand notation for				

minterms of 3 variables

$$
\begin{aligned}
& \text { F in canonical form: } \\
& \begin{aligned}
F(A, B, C) & =\Sigma m(1,3,5,6,7) \\
& =m 1+m 3+m 5+m 6+m 7 \\
& =A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C \\
\text { Canonical form } & \neq \text { minimal form } \\
F(A, B, C) & =A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C+A B C^{\prime} \\
& =\left(A^{\prime} B^{\prime}+A^{\prime} B+A B^{\prime}+A B\right) C+A B C^{\prime} \\
& =\left(\left(A^{\prime}+A\right)\left(B^{\prime}+B\right)\right) C+A B C^{\prime} \\
& =C+A B C^{\prime} \\
& =A B C^{\prime}+C \\
& =A B+C
\end{aligned}
\end{aligned}
$$

Product-of-Sums Canonical Form

Q Also known as conjunctive normal form
Q Also known as maxterm expansion
Q Maxterm contains one version of every literal
Q Each maxterm covers all but one row
Q Maxterms are ANDed together and form the complete function

A	B	C	F	F^{\prime}	A	B	C	F	F^{\prime}
0	0	0	0	1	0	0	0	0	1
0	0	1	1	0	0	0	1	1	0
0	1	0	0	1	0	1	0	0	1
0	1	1	1	0	0	1	1	1	0
1	0	0	0	1	1	0	0	0	1
1	0	1	1	0	1	0	1	1	0
1	1	0	1	0	1	1	0	1	0
1	1	,	1	0	1	1	1	1	0

	B	C	F	F^{\prime}	
0	0	0	0	1	
0	0	1	1	0	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	0	
$A^{\prime}+B+C$					

A	B	C	F	F^{\prime}
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

$\mathrm{F}=(\mathrm{A}+\mathrm{B}+\mathrm{C})\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}\right)$

Product-of-Sums Canonical Form (contd)

9 Sum term and maxterm

- $A+B$ is a sum term but not a maxterm
- $A+B+C$ is a sum term and a maxterm

Q ORen sum of literals - input combination for which output is false
Q Each variable appears exactly once, true or inverted (but not both)

A	B	C	maxterms	
0	0	0	$A+B+C$	$M 0$
0	0	1	$A+B+C^{\prime}$	$M 1$
0	1	0	$A+B^{\prime}+C$	$M 2$
0	1	1	$A+B^{\prime}+C^{\prime}$	$M 3$
1	0	0	$A^{\prime}+B+C$	$M 4$
1	0	1	$A^{\prime}+B+C^{\prime}$	$M 5$
1	1	0	$A^{\prime}+B^{\prime}+C$	$M 6$
1	1	1	$A^{\prime}+B^{\prime}+C^{\prime}$	$M 7$

Short-hand notation for \qquad \square maxterms of 3 variables

F in canonical form:

$$
\begin{aligned}
F(A, B, C) \quad & =\Pi M(0,2,4) \\
& =M 0 \bullet M 2 \cdot M 4 \\
& =(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)
\end{aligned}
$$

Canonical form \neq minimal form

$$
\begin{aligned}
F(A, B, C) \quad & =(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right) \\
= & (A+B+C)\left(A+B^{\prime}+C\right) \\
& (A+B+C)\left(A^{\prime}+B+C\right) \\
= & (A+C)(B+C)
\end{aligned}
$$

S-o-P, P-o-S, and de Morgan's Theorem

9 Sum-of-products

- $\mathrm{F}^{\prime}=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}$
- Apply de Morgan's

Q $\left(F^{\prime}\right)^{\prime}=\left(A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}\right)^{\prime}$
Q $F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$

Q Product-of-sums
Q $F^{\prime}=\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)$

- Apply de Morgan's
- $\left(F^{\prime}\right)^{\prime}=\left(\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)\right)^{\prime}$
- $F=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C$

Four Alternative Two-Level Implementations of $F=A B+C$

Canonical sum-of-products

Minimized sum-of-products

- Canonical product-of-sums
\qquad Minimized product-of-sums

Waveforms for the Four Alternatives

Q Waveforms are essentially identical

- Except for timing hazards (glitches)

Q Delays almost identical (modeled as a delay per level, not type of gate or number of inputs to gate)

Mapping Between Canonical Forms

Q Minterm to maxterm conversion
Q Use maxterms whose indices do not appear in minterm expansion
e e.g., $F(A, B, C)=\Sigma m(1,3,5,6,7)=\Pi M(0,2,4)$
Q Maxterm to minterm conversion

- Use minterms whose indices do not appear in maxterm expansion
- e.g., $F(A, B, C)=\Pi M(0,2,4)=\Sigma m(1,3,5,6,7)$
- Minterm expansion of F to minterm expansion of F^{\prime}
- Use minterms whose indices do not appear
e e.g., $F(A, B, C)=\Sigma m(1,3,5,6,7)$
$F^{\prime}(A, B, C)=\Sigma m(0,2,4)$
- Maxterm expansion of F to maxterm expansion of F^{\prime}

Q Use maxterms whose indices do not appear
e e.g., $F(A, B, C)=\Pi M(0,2,4)$

$$
F^{\prime}(A, B, C)=\Pi M(1,3,5,6,7)
$$

Incompletely Specified Functions

Q Binary and BCD (decimal) representation

A3	A2	A1	A0	S3		S2	S1
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	1
0	1	0	0	0	1	0	0
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

Incompletely Specified Functions

Q Binary coded decimal increment by 1

- BCD digits encode the decimal digits $0-9$ in the bit patterns 0000-1001

Notation For Incompletely Specified Functions

Q Don't cares and canonical forms

- So far, only represented on-set

Q Also represent don't-care-set
Q Need two of the three sets (on-set, off-set, dc-set)

Q Canonical representations of the BCD increment by 1 function:

Q $Z=m 0+\mathrm{m} 2+\mathrm{m} 4+\mathrm{m} 6+\mathrm{m} 8+\mathrm{d} 10+\mathrm{d} 11+\mathrm{d} 12+\mathrm{d} 13+\mathrm{d} 14+\mathrm{d} 15$
Q $Z=\Sigma[m(0,2,4,6,8)+d(10,11,12,13,14,15)]$

- Z = M1 • M3 • M5 • M7 • M9 • D10 •D11 •D12 •D13 •D14 • D15

Q $Z=\Pi[M(1,3,5,7,9) \cdot D(10,11,12,13,14,15)]$

Examples

Q BCD (decimal) to seven segment decoder

Examples

Q BCD to seven segment decoder

- Truth table

Simplification of Two-Level Combinational Logic

Q Motivation: is the following optimization is easy and systematic?

Q Cout $=\mathrm{A}^{\prime} \mathrm{BCin}+\mathrm{AB}^{\prime} \mathrm{Cin}+\mathrm{ABCin}^{\prime}+\mathrm{ABCin}$
Q Idempotent (introduces a redundant term)
Q Cout $=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n '+A B C i n+A B C i n$

- Commutative (rearranges terms)

Q Cout $=A^{\prime} B C i n+A B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$
Q Distributed (factors out common literals)
Q Cout $=\left(A^{\prime}+A\right) B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$
Q Complementarity (replaces $\mathrm{A}^{\prime}+\mathrm{A}$ to 1)

- Cout $=(1) B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$

Q Identity (replaces 1 X to X)

- Cout $=\mathrm{BCin}+\mathrm{AB}^{\prime} \mathrm{Cin}+\mathrm{ABCin}{ }^{\prime}+\mathrm{ABCin}$
- Finally
- Cout $=\mathrm{BCin}+\mathrm{ACin}+\mathrm{AB}$

Simplification of Two-Level Combinational Logic

Q Finding a minimal sum of products or product of sums realization

- Exploit don't care information in the process
- Algebraic simplification
- Not an algorithmic/systematic procedure

Q How do you know when the minimum realization has been found?
Q Computer-aided design tools
Q Precise solutions require very long computation times, especially for functions with many inputs (> 10)
Q Heuristic methods employed - "educated guesses" to reduce amount of computation and yield good if not best solutions

- Hand methods still relevant

Q To understand automatic tools and their strengths and weaknesses

- Ability to check results (on small examples)

The Uniting Theorem

- Key tool to simplification: $\mathrm{A}\left(\mathrm{B}^{\prime}+\mathrm{B}\right)=\mathrm{A}$
- Essence of simplification of two-level logic

Q Find two element subsets of the ON-set where only one variable changes its value - this single varying variable can be eliminated and a single product term used to represent both elements

$$
F=A^{\prime} B^{\prime}+A B^{\prime}=\left(A^{\prime}+A\right) B^{\prime}=B^{\prime}
$$

Boolean Cubes

Q Visual technique for identifying when the uniting theorem can be applied

- n input variables $=\mathrm{n}$-dimensional "cube"

Mapping Truth Tables onto Boolean Cubes

- Uniting theorem combines two "faces" of a cube into a larger "face"
- Example:

Three Variable Example

Q Binary full-adder carry-out logic

A	B	Cin	Cout
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

The on-set is completely covered by the combination (OR) of the subcubes of lower dimensionality - note that " 111 " is covered three times

$$
\text { Cout }=\mathrm{BCin}+\mathrm{AB}+\mathrm{ACin}
$$

Higher Dimensional Cubes

Q Sub-cubes of higher dimension than 2
$F(A, B, C)=\Sigma m(4,5,6,7)$
On-set forms a square
i.e., a cube of dimension 2

Represents an expression in one variable
i.e., 3 dimensions - 2 dimensions

A is asserted (true) and unchanged B and C vary

This subcube represents the literal A

m-Dimensional Cubes in a n-Dimensional Boolean Space

Q In a 3-cube (three variables):

- A 0-cube, i.e., a single node, yields a term in 3 literals

Q A 1-cube, i.e., a line of two nodes, yields a term in 2 literals

- A 2-cube, i.e., a plane of four nodes, yields a term in 1 literal

Q A 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

- In general,
- An m-subcube within an n-cube $(m<n)$ yields a term with $n-m$ literals

Karnaugh Maps

- Flat map of Boolean cube
- Wrap-around at edges

Q Hard to draw and visualize for more than 4 dimensions
Q Virtually impossible for more than 6 dimensions
Q Alternative to truth-tables to help visualize adjacencies

- Guide to applying the uniting theorem

Q On-set elements with only one variable changing value are adjacent unlike the situation in a linear truth-table

A	B	F
0	0	1
0	1	0
1	0	1
1	1	0

Karnaugh Maps (cont'd)

Q Numbering scheme based on Gray-code

- e.g., 00, 01, 11, 10

Q Only a single bit changes in code for adjacent map cells

$13=1101=A B C^{\prime} D$

Adjacencies in Karnaugh Maps

Q Wrap from first to last column
Q Wrap top row to bottom row

Karnaugh Map Examples

More Karnaugh Map Examples

$$
G(A, B, C)=A
$$

$F(A, B, C)=\sum m(0,4,5,7)=A C+B^{\prime} C^{\prime}$

F' simply replace 1's with 0's and vice versa $F^{\prime}(A, B, C)=\sum m(1,2,3,6)=B C^{\prime}+A^{\prime} C$

Karnaugh Map: 4-Variable Example

- $F(A, B, C, D)=\Sigma m(0,2,3,5,6,7,8,10,11,14,15)$
$F=C+A^{\prime} B D+B^{\prime} D^{\prime}$

Find the smallest number of the largest possible
subcubes to cover the ON-set
(fewer terms with fewer inputs per term)

Karnaugh Maps: Don't Cares

Q $f(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(1,3,5,7,9)+\mathrm{d}(6,12,13)$
Q Without don't cares
$\theta \mathrm{f}=\mathrm{A}^{\prime} \mathrm{D}+\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}$

Karnaugh Maps: Don't Cares

- $f(A, B, C, D)=\Sigma m(1,3,5,7,9)+d(6,12,13)$
- $f=A^{\prime} D+B^{\prime} C^{\prime} D$
- $\mathrm{f}=\mathrm{A}^{\prime} \mathrm{D}+\mathrm{C}^{\prime} \mathrm{D}$

Without don't cares

With don't cares

By using don't care as a "1" a 2-cube can be formed rather than a 1-cube to cover this node

Don't cares can be treated as 1s or 0s
depending on which is more advantageous

Activity

Minimize the function $F=\Sigma m(0,2,7,8,14,15)+d(3,6,9,12,13)$

Combinational Logic Summary

Q Logic functions, truth tables, and switches
Q NOT, AND, OR, NAND, NOR, XOR, . . . , minimal set

- Axioms and theorems of Boolean algebra

Q Proofs by re-writing and perfect induction

- Gate logic

Q Networks of Boolean functions and their time behavior

- Canonical forms
- Two-level and incompletely specified functions
- Simplification

Q A start at understanding two-level simplification
Q Later

- Automation of simplification
- Multi-level logic
- Time behavior
- Hardware description languages
- Design case studies

