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Introduction

¢ Combinational logic

¢ Whose output is solely determined by their inputs
¢ Representation of a function

¢ Truth table

¢ Boolean equation
¢ Sum of products, a two-level form
¢ Unique way to represent a logic like a finger print
¢ Alternative form is product of sums
¢ Can be done in many ways
¢ Highly desirable to find the simplest implementation
¢ Gates and wires
¢ Boolean minimization
¢ Karnaugh map, etc.
¢ Fundamental tradeoff between time and space (speed and area: gates and wires)
¢ Two-level logic and multi-leveled logic
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Introduction

¢ Time response of in digital network
¢ Non-zero propagation delay
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Introduction

¢ Definition

¢ Output behavior depends on the current input

€ Memoryless

¢ Example: adder

¢ The output changes shortly after the input changes, but the previous input has nothing to do with the
current output

¢ Comparison with sequential logic

@ There is memory or state
¢ Whose output depends both the input and the state
¢ Example: traffic light

¢ Simple combinational circuits representing with truth tables

X Y Equal
0 0 1
0 1 0
1 0 0
1 1 1
Comparator

¢
K
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Zero One Two
1 0 0
0 1 0
0 1 0
0 0 1
Tally circuit
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Introduction

¢ More examples

¢ Half adder: output the carry but cannot be chained

¢ Full adder: can be chained
¢ Truth table

¢ Suitable with a modest number of inputs

¢ 2n number of rows where n is the number of inputs

B Carry Sum

0 0 0
1 0 1
0 0 1
1 1 0
Half adder
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Introduction

¢ Full adder
Cout Cln
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Cin Carry Sum
0 0 0
1 0 1
0 0 1
1 1 0
0 0 1
1 1 0
0 1 0
1 1 1
Full adder
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An Algebraic Structure

¢ An algebraic structure consists of
¢ A set of elements B
@ Binary operations { +, * }
¢ And a unary operation { * }
¢ Such that the following axioms hold:

+ 1. The set B contains at least two elements a, b such that a is not equal to b

< 2. Closure; a+beB,aeb B

+ 3. Commutativity: a+b=b+a aeb=Dbea

+ 4. Associativity: at+(b+c)=(@+b)+c,ae(bec)=(aeb)ec

+ 5. Identity: a+0=a,a¢l=a

+ 6. Distributivity: a+(bec)=(a@a+b)e(a+c),ae(b+c)=(aeb)+ (aec)
+ 7. Complementarity: a+a =1a¢a’ =0

¥ Order of operations
¢ Complement, AND and then OR

€ AND and OR are not the same to the arithmetic operations MULTIPLY and PLUS
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Truth Tables

¢ Any logic function that can be expressed as a truth table can be written as an
expression in Boolean algebra using the operators: /, +, and e

¢ Equivalence of Boolean expressions and truth tables
¢ Can be readily derived from each other

X Y |XeY X Y X [XeY
0 0 |0 0 0 [1 [0
0 1 |0 0 1 |[1 |1
i 0 |0 i 0 |0 |0
1 1 |1 i 1 |0 |0
X Y IX Y [XeY [XeY |(XoY)+(XeY)
0 0 [1 [1 [0 1 1
0 1 |1 |0 |0 0 0
i 0 |0 |1 |0 0 0 (XeY)+ (X oY) = X=Y
i 1 |0 |0 |1 0 1 /

Boolean expression that is

. true when the variables X
X, Y are Boolean algebra variables and Y have the same value

and false, otherwise
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Truth Tables

¢ Reduced carry out full adder expression

€ Cout = (ACin) + (BCin) + (AB)

A Cin ACin BCin AB Cout
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 1 0 1
1 0 0 0 0 0
1 1 1 0 0 1
1 0 0 0 1 1
1 1 1 1 1 1
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Truth Tables

¢ Deriving expressions from truth tables

¢ Cout =
A B Cin Cout Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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Theorems of Boolean Algebra

¢ Duality

¢ A dual of a Boolean expression is derived by replacing
eby +,+bye, 0by1, and 1 by 0, and leaving variables unchanged

¢ Any theorem that can be proven is thus also proven for its dual!
¢ A meta-theorem (a theorem about theorems)

¢ Duality:
@ X+Y+...eoXeYe

¢ Generalized duality:
9 f(X1,X2,..,Xn,0,1,+,) & f(X1,X2,...,Xn,1,0,,+)

¢ Different from deMorgan’s Law
¢ This is a statement about theorems
¢ This is not a way to manipulate (re-write) expressions
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Theorems of Boolean Algebra

¢ Identity
@1 X+0=X
< Null
92 X+1=1
¢ Idempotency:
93 X+X=X
¢ Involution:
Q4 (X) =X
¢ Complementarity:
95 X+X=1
¢ Commutativity:
6. X+Y=Y+X
¢ Associativity:
97 X+V)+Z=X+(Y+2)
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XeX =0

XeY=YeX

(XeY)eZ=Xeo(Ye2)
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Theorems of Boolean Algebra

¢ Distributivity:
@8 Xe(Y+Z)=(XeY)+(XeZ) 8D. X+(YeZ)=(X+Y)e(X+2)

¢ Uniting:
29 XeY+XeY =X . (X+Y)e(X+Y)=X
¢ Absorption:
€ 10. X+ XeY =X 10D. Xe(X+Y)=X
@ 1L (X+Y)eY=XeY 11D. X Y) +Y =X+Y
¢ Factoring:
C12.X+Y)e (X' +2) = 12D. X oY + X' 0 Z =
XeZ+X oY (X+2)e (X +Y)
¢ Concensus:
Q 13.XeY)+(Ye2Z)+ (X' 02) = 13D. X+ Y)e (Y +2Z)e (X' + Z) =
XoeY+ X o7 (X+Y)e (X' + 2)
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Proving Theorems (Rewriting)

¢ Using the axioms of Boolean algebra:

¢ e.g., prove the theorem: XoeY+ XeoY = X
distributivity (8) XoeY+XeY = Xe(Y+Y)
complementarity (5) Xe(Y+Y) = Xe(1)
identity (1D) X o (1) = X
¢ e.g., prove the theorem: X+ XeY = X
identity (1D) X + XeY = Xel + XeY
distributivity (8) Xel + XeY = Xe(l+Y)
identity (2) Xe(1+Y) = Xe (1)
identity (1D) X o (1) = X
WS Embedded ' ow-Power
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Activity

¢ Prove the following using the laws of Boolean algebra:
@ XeY)+(YeZ)+ (X eZ)= XoeY +X oZ

(XeY)+ (Yoe2)+ (X o 2)

identity (XeY)+ (1)e(Yoe2)+ (X o2)
complementarity XeY)+ (X' +X)e(Yo2)+ (X o2)
distributivity XeY)+ (X' eYoeZ)+ (XeYeZ)+ (X o2)
commutativity (XeY)+ (XeYeZ)+ (X oeYeoZ)+ (X o2)
commutativity XeY)+(XeY)eZ+ (X eZ)+ (X 0eZ)eY
absorption (XeY)+ (X' o2)
B ) Ty
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Activity

¢ Full adder example

(@)

If‘:_g’n

Cout = A'BCin + AB’Cin + ABCin’ + ABCin

' Idempotent (introduces a redundant term)

@ Cout = ABCin + AB'Cin + ABCin’ + ABCin + ABCin
Commutative (rearranges terms)

@ Cout = ABCin + ABCin + AB’Cin + ABCin’ + ABCin
Distributed (factors out common literals)

¢ Cout = (A" + A)BCin + AB'Cin + ABCin” + ABCin
Complementarity (replaces A’ + Ato 1)

¢ Cout = (1)BCin + AB’Cin + ABCin’ + ABCin
Identity (replaces 1X to X)

¢ Cout = BCin + AB'Cin + ABCin” + ABCin

Finally
¢ Cout = BCin + ACin + AB

16

ELP

Embedded ow-Power
aboratory

Tuesday, March 23, 2010



DeMorgan’s Law

s/

¢ DeMOrgan’s law
¢ Establishes relationship between ¢ and +
¢ Theorem:
Q14 X+Y+.)=XeYoe.. 14D. (X eYeo . ) =X"+Y + ...
¥ Generalized DeMorgan’s:
@ 15. f(X1,X2,...Xn,0,1,+,¢) = f(X1/X2'...,Xn’1,0,e,+)
¢ Purpose
¥ Negative logic
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Proving Theorems (Perfect Induction)

¢ Using perfect induction (complete truth table):

3

¢ e.g., de Morgan’s:

X Y X Y | (X+Y) XeY
X+Y) =X oY 0 0 1 1 1 1
NOR is equivalent to AND (1) 11 0 0 0
L 0 0 1 0 0
with inputs complemented 1 1 0 0 0 0
, . , X Y Xl YI (X ° Y)I XI + YI
(XeY) =X +Y 0 0 1 1 | I
NAND is equivalent to OR o 1 1 0 % %
with inputs complemented % (1) 8 é 0 0
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Possible Logic Functions of Two Variables

¢ There are 16 possible functions of 2 input variables:
€ In general, there are 22" functions of n inputs

X .
. F
W A
X Y 16 possible functions (FO—F15)
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
; e / e Y- / \ \ N\ \ N
X ) X xorY N not Y not X
XandY X=Y X nand Y
X nor Y not (X and Y)
Xory not (X or Y)
Wi Embedded ow-Power
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Cost of Different Logic Functions

¢ Different functions are easier or harder to implement

' Each has a cost associated with the number of switches needed

¢ 0 (FO) and 1 (F15): require 0 switches, directly connect output to low/high
¢ X (F3) and Y (F5): require 0 switches, output is one of inputs

¢ X' (F12) and Y’ (F10): require 2 switches for "inverter" or NOT-gate

X norY (F4) and X nand Y (F14): require 4 switches
XorY (F7)and Xand Y (F1): require 6 switches
X=Y(F9) and X ® Y (F6): require 16 switches

Thus, because NOT, NOR, and NAND are the cheapest they are the functions we
implement the most in practice

¢ But if we consider the target technology (logic structure), the story is different
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Minimal Set of Functions

¢ Can we implement all logic functions from NOT, NOR, and NAND?

¢ For example, implementing XandY
is the same as implementing not (X nand Y)

¢ In fact, we can do it with only NOR or only NAND
& NOT is just a NAND or a NOR with both inputs tied together

X Y | XnorY X Y | XnandY
0 0 1 0 0 1
1 1 0 1 1 0

¢ And NAND and NOR are "duals",
that is, its easy to implement one using the other

Xnand Y
X nor Y not ( (not X) nand (not Y) )

¢ But lets not move too fast . . .
¢ Let’s look at the mathematical foundation of logic
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From Boolean Expressions to Logic Gates

@ NOT

2 AND

2
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P
)

= Y
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XeY

X+Y
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XY

XAY AND Z
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From Boolean Expressions to Logic Gates

2 NAND

2 NOR

@ XOR
X®@Y

2 XNOR
X=Y

742 - NN

s;‘_ '9/
YRR Y
AR 7as e 44
4y x
F AN

X

X

X

X Y |Z
0O 0 |1
0 1 !
1 0 1
1 1 Y
X Y |/Z
0 0 |1
0 110
1 0 |0
1 1 .
X Y |Z
0 0 |0
0 111
1 0 |1
1 1|0
X Y |Z
0 0 |1
0 110
1 0 |0
1 1 1

23

XxorY=XY + XY
X or Y but not both
("inequality", "difference")

X and Y are the same

("equality", "coincidence")
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From Boolean Expressions to Logic Gates

¢ More than one way to map expressions to gates
Q eg, Z=AeB e (C+D)=(As (B« (C+D)))

use of 3-input gate

AND Z

AND Z
AND

O
O

AR
OV Y

OR

O
O
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From Boolean Expressions to Logic Gates

¢ Implication
¢ XimpliesY: X =Y

¢ Is false only when X is true and Y is false
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Logic Blocks and Hierarchy

¢ Half adder

T \)) > Sum X A B Carry Sum

¢ Full adder
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Half adder

2

ffr’
Cne .I}“‘h.\
» )
/
Y

LLL(((
B
 £51
&

¢
A
(5
A

E P Embedded ow-Power
26 - l aboratory

Tuesday, March 23, 2010



Logic Blocks and Hierarchy

¢ 2 bit full adder

Full adder
0
Cin , S
AO A l\ < SO
BO a- l\ [ { |
Full adder
Cin N
Al = '\ 3 S1
Bl B I\ [ { |
L , : I: \r COUT Cout
;;uei“,%; E P 1 Embedded ow-Power
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Waveform View of Logic Functions

¢ Just a sideways truth table
@ But note how edges don't line up exactly
¢ It takes time for a gate to switch its output!

time
| 100 | 200
y -
T [ | [ _ .........
Mot ¥ ) !
W& | ]
Mot (% & ) | !
W+ | 5 ]
Mot [+ %) | |
& oEar Y [ | :
Mot (X xor ') | | "
Change in Y takes time to "propagate" through gates
WS Embedded ow-Power
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Time and Space Tradeoff

A B C |Z
o 0 117 Hnf
0 1 0 |0 SEERE
o 1 1 |1
1 0 00
1 0 1 |1
1 1 0 |1
. Two-level realization
H;}E (We don't count NOT gates)
) 1AL
S Multi-level realization
% _—=- (Gates with fewer inputs)
Dj\r'} XOR gate (easier to draw
T ——"£3 but costlier to build)
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Which Realization is Best?

¢ Reduce number of inputs

@ Literal: input variable (complemented or not)

¢ Can approximate cost of logic gate as 2 transistors per literal
€ Why not count inverters?

¢ Fewer literals means less transistors
¢ Smaller circuits

¢ Fewer inputs implies faster gates
¢ Gates are smaller and thus also faster

¢ Fan-ins (# of gate inputs) are limited in some technologies
¢ Reduce number of gates

¢ Fewer gates (and the packages they come in) means smaller circuits
¢ Directly influences manufacturing costs
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Which Is the Best Realization?

¢ Reduce number of levels of gates
¢ Fewer level of gates implies reduced signal propagation delays

¢ Minimum delay configuration typically requires more gates
¢ Wider, less deep circuits

¥ How do we explore tradeoffs between increased circuit delay and size?
¢ Automated tools to generate different solutions
¢ Logic minimization: reduce number of gates and complexity
¢ Logic optimization: reduction while trading off against delay
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Are All Realizations Equivalent?

¢ Under the same input stimuli, the three alternative implementations have
almost the same waveform behavior

¢ Delays are different
¢ Glitches (hazards) may arise — these could be bad, it depends
¢ Variations due to differences in number of gate levels and structure

¢ The three implementations are functionally equivalent
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Implementing Boolean Functions

@ Technology independent

7 )

& Canonical forms
¢ Two-level forms

'\\

& Multi-level forms

8

¢ Technology choices
¢ Packages of a few gates
¢ Regular logic

€D

¢ Two-level programmable logic

0O

& Multi-level programmable logic
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Canonical Forms

¢ Truth table is the unique signature of a Boolean function
¢ The same truth table can have many gate realizations
¢ Canonical forms

¢ Standard forms for a Boolean expression
¢ Provides a unigue algebraic signature
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Sum-of-Products Canonical Forms

¢ Also known as disjunctive normal form
¢ Also known as minterm expansion

7 ‘*\

¥ Minterm contains one version of every literal

¥ Each minterm covers only one row
¢ Minterms are ORed together to form the complete function

F= 001 011 101 110 111
F= ABC + ABC + AB'C + ABC' + ABC

O 0 0 |0

0O O 1 s 0

0 1 0 1|0

0 1 | 1—0

1 0 0 |0

1 O 1 1

1 1 0 1—0

IS R F'= AB'C' + ABC' + AB'C’

35

LI
R -mbedded ow-Power
g\.‘g 35 E ! P .. Laboratory

Tuesday, March 23, 2010



Sum-of-Products Canonical Form

¢ Product term and minterm
¢ AB is a product term but not a minterm
¢ ABC is a product term and a minterm

¢ ANDed product of literals — input combination for which output is true

¢ Each variable appears exactly once, true or inverted (but not both)

A B C | minterms

0O 0 0 | ABC mo
0O O 1 | ABC mi
0 1 0 | ABC' m2
0 1 1 | ABC m3
1 0 0 | ABC m4
1 0 1 | ABC mb5
1 1 0 | ABCC mé6
1 1 1 | ABC m7

Short-hand notation for /
minterms of 3 variables

F in canonical form:

F(A, B, C)

Canonical form = minimal form

F(A, B, C)

36

=2m(1,3,5,6,7)

=ml+m3+m5+m6+ m7/
= AB'C + ABC + AB'C + ABC" + ABC

= A'B'C + A'BC + AB'C + ABC + ABC’

= (B’ + AB + AB’ + AB)C + ABC’

= ((A" + A)(B’ + B))C + ABC’

= C + ABC’
= ABC' + C
= AB + C
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Product-of-Sums Canonical Form

¢ Also known as conjunctive normal form
¢ Also known as maxterm expansion
¢ Maxterm contains one version of every literal
¢ Each maxterm covers all but one row
¢ Maxterms are ANDed together and form the complete function

~

A B C|F F A B C|F F A B C|F F A B C|F F

O 0 0|0 1 O 0 0 |0 1 O 0 O |0 1 O 0 O |0 1

0O 0 1 1 O 0O 0 1 1 0 O 0 1 1 0 0O 0 1 1 0

O 1 0 |0 1 o 1 0 |0 1 O 1 0 |0 1 O 1 0 |0 1

0 1 1 1 O 0 1 1 1 0 0 I 1 1 O 0 1 1 1 O

1 0 0 [0 1 1 amr (40 1 1 0 0 [0 1 1 0 0 [0 1

1 0 1 1 0 1 0 1 1 0 1 0 1 8 @ 1 O 1 1 0

1 1 O 1 O 1 1 0 1 0 1 1 O 1 O 1 1 O 1 O

1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 O

A+B+C A+B'+C A'+B+C F=(A+B+C)(A+B'+C)(A'+B+C)
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Product-of-Sums Canonical Form (cont’'d)

¢ Sum term and maxterm

¢ A+B is a sum term but not a maxterm

¢ A+B+Cis a sum term and a maxterm
¢ ORed sum of literals — input combination for which output is false

¢ Each variable appears exactly once, true or inverted (but not both)

Short-hand notation for /
maxterms of 3 variables

A B C | maxterms

O 0 O |A+B+C MO
0O O 1 | A+B+C M1
0 1 0 | A+B'+C M2
0 1 1 | A+B'+C M3
1 0 0 |A+B+C M4
1 0 1 | A+B+C M5
1 1 0 | A+B'+C M6
1 1 1 | A+B'+C" M7

F in canonical form:
F(A, B, C) MM(0,2,4)
MO e M2 ¢« M4

(A+B+CO)(A+B +C)(A+B+ 0

Canonical form # minimal form
F(A, B, C) =(A+B+C)(A+B"+CO)(A+B+C
=(A+B+C)(A+B + (O
(A+B+C)(A"+ B+ C)
=(A+C)(B+ 0O

E P Embedded ow-Power
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S-0-P, P-0-S, and de Morgan’s Theorem

¢ Sum-of-products
¢ F=ABC + ABC' + AB'C’
¢ Apply de Morgan'’s
¢ (F)' = (ABC' + ABC' + ABC")’
S F=A+B+C)(A+B'"+C)(A+B+C)

¢ Product-of-sums
SF=A+B+C)A+B +C)(A+B+C)(A+B +C)(A+ B +C)

¢ Apply de Morgan'’s
¢ F)Y=(A+B+C)YA+B +C)YA+B+C)YA+B +C)A+B +C))
¢ F=ABC+ ABC + AB'C + ABC’ + ABC
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Four Alternative Two-Level Implementations
of F=AB + C

s

\ Canonical sum-of-products

7
5/ 2/

} 2 - Minimized sum-of-products
? [ 3 ﬁ; OR >—
‘ ! *@— wo J— F3 - Canonical product-of-sums
* ¢ ]§ OR >—
F;D\—D . .. Minimized product-of-sums
*&g"{gj Embedded ow-Power
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Waveforms for the Four Alternatives

¢ Waveforms are essentially identical
¢ Except for timing hazards (glitches)
¢ Delays almost identical (modeled as a delay per level, not type of gate or number of inputs

to gate)
T T N B i
& | E
= | | | E
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F1 | u I L
F2 | L
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Mapping Between Canonical Forms

¢ Minterm to maxterm conversion
¢ Use maxterms whose indices do not appear in minterm expansion
¢ e.qg, F(A,B,C) =2m(1,3,5,6,7) = TIM(0,2,4)
¢ Maxterm to minterm conversion
¢ Use minterms whose indices do not appear in maxterm expansion
¢ e.g, F(A,B,C) =11M(0,2,4) = =m(1,3,5,6,7)
¢ Minterm expansion of F to minterm expansion of F’
¢ Use minterms whose indices do not appear
¢ e.qg., F(A,B,C) =2m(1,3,5,6,7) F'(A,B,C) = Zm(0,2,4)
¢ Maxterm expansion of F to maxterm expansion of F’
¢ Use maxterms whose indices do not appear
@ e.g., F(A,B,C) = TIM(0,2,4) F(A,B,C) = IM(1,3,5,6,7)
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Incompletely Specified Functions

¢ Binary and BCD (decimal) representation
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Incompletely Specified Functions

¢ Binary coded decimal increment by 1

¢ BCD digits encode the decimal digits 0 — 9
in the bit patterns 0000 — 1001

~ Off-set of W
On-set of W

B Don't care (DC) set of W

These inputs patterns should
never be encountered in practice
— "don’t care" about associated

output values, can be exploited
in minimization
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Notation For Incompletely Specified Functions

¢ Don't cares and canonical forms
¢ So far, only represented on-set
¥ Also represent don't-care-set
¢ Need two of the three sets (on-set, off-set, dc-set)

¢ Canonical representations of the BCD increment by 1 function:

Z=m0+m2+m4+m6+ m8+di0 + d1ll + di12 + di13 + d14 + di15
¢ Z2=2[m(0,2,4,6,8) + d(10,11,12,13,14,15) ]

@ Z=MleM3eM5eM70¢M9eDI0e D11l eD12e D13 e D14 e D15
€ Z=N[M(1,3,5,79)eD(10,11,12,13,14,15) ]
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Examples

¢ BCD (decimal) to seven segment decoder
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Examples

¢ BCD to seven segment decoder
¢ Truth table
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Simplification of Two-Level Combinational Logic

¢ Motivation: is the following optimization is easy and systematic?

¢ Cout = ABCin + AB'Cin + ABCin’ + ABCin
¢ Idempotent (introduces a redundant term)
¢ Cout = ABCin + AB'Cin + ABCin" + ABCin + ABCin
¢ Commutative (rearranges terms)
@ Cout = ABCin + ABCin + AB'Cin + ABCin’ + ABCin
¢ Distributed (factors out common literals)
¢ Cout = (A" + A)BCin + AB'Cin + ABCin” + ABCin
¢ Complementarity (replaces A"+ A to 1)
¢ Cout = (1)BCin + AB’Cin + ABCin" + ABCin
@ Identity (replaces 1X to X)
¢ Cout = BCin + AB’Cin + ABCin" + ABCin
¢ Finally
¢ Cout = BCin + ACin + AB
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Simplification of Two-Level Combinational Logic

¢ Finding a minimal sum of products or product of sums realization
¢ Exploit don't care information in the process
¢ Algebraic simplification
¢ Not an algorithmic/systematic procedure
¢ How do you know when the minimum realization has been found?
¢ Computer-aided design tools

¢ Precise solutions require very long computation times, especially for
functions with many inputs (> 10)

¢ Heuristic methods employed — "educated guesses" to reduce amount of
computation and yield good if not best solutions

¢ Hand methods still relevant
¢ To understand automatic tools and their strengths and weaknesses
¢ Ability to check results (on small examples)
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The Uniting Theorem

¢ Key tool to simplification: A (B" + B) = A
¢ Essence of simplification of two-level logic

¢ Find two element subsets of the ON-set where only one variable changes its value — this
single varying variable can be eliminated and a single product term used to represent both

elements

F=AB+AB' = (A+A)B' =B’
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B has the same value in both on-set rows

— B remains

A has a different value in the two rows
— A is eliminated

50

ELP

Embedded ow-Power
aboratory

Tuesday, March 23, 2010



Boolean Cubes

¢ Visual technique for identifying when the uniting theorem
can be applied

¢ n input variables = n-dimensional "cube"

1-cube O O

3-cube Y
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Mapping Truth Tables onto Boolean Cubes

¢ Uniting theorem combines two "faces" of a cube
into a larger "face"

¢ Example:

Two faces of size 0 (nodes)

F Combine into a face of size 1(line)
A B |F - 11
0 0 |1 ¢ "
0O 1 1|0 B
1 0 |1
0 10
1 10 e

_ A varies within face, B does not
ON-set = solid nodes this face represents the literal B'

OFF-set = empty nodes
DC-set = x'd nodes
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Three Variable Example

¢ Binary full-adder carry-out logic

(A'+A)BCin

|

AB(Cin'+Cin)

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 O 0 5
SR |
B N
1 0 1 1 \C/U 01
Lo ] o0 BB

The on-set is completely covered by

the combination (OR) of the subcubes
of lower dimensionality - note that 111"
is covered three times

Cout = BCin+AB+ACin
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Higher Dimensional Cubes

¢ Sub-cubes of higher dimension than 2

F(A,B,C) = Zm(4,5,6,7)

On-set forms a square
l.e., a cube of dimension 2

011 111 Represents an expression in one variable

110 (/}112/@ l.e., 3 dimensions — 2 dimensions
_/ O\

T

C (O1 A is asserted (true) and unchanged
B and C vary
000 O—75—C 100

This subcube represents the
literal A
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m-Dimensional Cubes in a n-Dimensional Boolean Space

¢ In a 3-cube (three variables):

¢ A 0-cube, i.e., a single node, yields a term in 3 literals

¢ A 1-cube, i.e., a line of two nodes, yields a term in 2 literals

¢ A 2-cube, i.e., a plane of four nodes, yields a term in 1 literal

¢ A 3-cube, i.e., a cube of eight nodes, yields a constant term "1"
¢ In general,

€ An m-subcube within an n-cube (m < n) yields a term
with n — m literals

N

STy
7 Ewr
|EE)

)4

P
=
Rl

g
X
(N
P

E P Embedded ow-Power

55 aboratory

Tuesday, March 23, 2010



Karnaugh Maps

¢ Flat map of Boolean cube
¢ Wrap—around at edges
¢ Hard to draw and visualize for more than 4 dimensions
¢ Virtually impossible for more than 6 dimensions

¢ Alternative to truth-tables to help visualize adjacencies
¢ Guide to applying the uniting theorem

¢ On-set elements with only one variable changing value are adjacent unlike the situation in
a linear truth-table
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Karnaugh Maps (cont’d)

¥ Numbering scheme based on Gray—code
J e.g.’ 00, 01, 11, 10

¢ Only a single bit changes in code for adjacent map cells
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Adjacencies in Karnaugh Maps

¢ Wrap from first to last column

¢ Wrap top row to bottom row
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Karnaugh Map Examples

Ve \

¢ Cout =

¢ f(A,B,C) = m(0,4,5,7)

\ 0| 0 [1\
Cin
0 Q 1

A

7
SR
)
(2l
A
(o

¢
K

\LLL«< . 4_7
,'Eli N
S

C

D

0

0

C_

B

B

0 AB + ACin + BCin
i obtain the
complement

AC + B'C %
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More Karnaugh Map Examples
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G(A,B,C) =

F(A,B,C) = ¥m(0,4,5,7) =AC + B'C’

F' simply replace 1's with O's and vice versa
F'(A,B,C) =2 m(1,2,3,6) =BC’ +AC
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Karnaugh Map: 4-Variable Example

Q@ F(A,B,C,D) = Zm(01213/5/6l7l8l]-OI]']'l]'4’15)

F= C +ABD + BD’

A 1111

L] ool
of[1] o] o
D
4 ) C
1| 1| 1| 1
C
1 1 1 ] (1 0000

Find the smallest number of the largest possible
subcubes to cover the ON-set
(fewer terms with fewer inputs per term)
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Karnaugh Maps: Don’t Cares

¢ Without don't cares
@ f=AD + B'CD
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Karnaugh Maps: Don’t Cares

¢ f(A,B,C,D) =2 m(1,3,5,7,9) + d(6,12,13)
¢ f=AD+BCD Without don't cares

¢ f=AD +CD With don't cares

By using don't care as a "1"

0 0 X 0 a 2-cube can be formed
rather than a 1-cube to cover

this node

C y, Don't cares can be treated as
1s or Os
depending on which is more
advantageous
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Activity

¢ Minimize the function F = Z m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)
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Combinational Logic Summary

¢ Logic functions, truth tables, and switches

€ NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
¢ Axioms and theorems of Boolean algebra

¢ Proofs by re-writing and perfect induction
¢ Gate logic

¢ Networks of Boolean functions and their time behavior
¢ Canonical forms

¢ Two-level and incompletely specified functions
¢ Simplification

¢ A start at understanding two-level simplification
¢ Later

¢ Automation of simplification

¢ Multi-level logic

¢ Time behavior

¢ Hardware description languages

¢ Design case studies
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