Digital Logic Design

4190.201 .001

2010 Spring Semester

Working with combinational logic

Naehyuck Chang
Dept. of EECS/CSE
Seoul National University naehyuck@snu.ac.kr

What to cover

Q Simplification

- Two-level simplification
- Exploiting don't cares
- Algorithm for simplification
- Logic realization

Q Two-level logic and canonical forms realized with NANDs and NORs

- Multi-level logic, converting between ANDs and ORs
- Time behavior
- Hardware description languages

Design example: two-bit comparator

Design example: two-bit comparator

Design example: two-bit comparator

Design example: two-bit comparator

A	B	C	D	LT	EQ	GT
0	0	0	0	0	1	0
		0	1	1	0	0
		1	0	1	0	0
		1	1	1	0	0
0	1	0	0	0	0	1
		0	1	0	1	0
		1	0	1	0	0
		1	1	1	0	0
1	0	0	0	0	0	1
		0	1	0	0	1
		1	0	0	1	0
		1	1	1	0	0
1	1	0	0	0	0	1
		0	1	0	0	1
		1	0	0	0	1
		1	1	0	1	0

Design example: two-bit comparator

Design example: two-bit comparator

We'll need a 4-variable Karnaugh map for each of the 3 output functions

Design example: two-bit comparator

K-map for LT

K-map for EQ

K-map for GT

LT =
EQ =
GT =

Design example: two-bit comparator

K-map for LT

K-map for EQ

K-map for GT
$L T=A^{\prime} B^{\prime} D+A^{\prime} C+B^{\prime} C D$
EQ =
GT =

Design example: two-bit comparator

K-map for LT

K-map for EQ

K-map for GT
$L T=A^{\prime} B^{\prime} D+A^{\prime} C+B^{\prime} C D$
$E Q=A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B C^{\prime} D+A B C D+A B^{\prime} C D^{\prime}$
GT =

Design example: two-bit comparator

K-map for LT

K-map for EQ

K-map for GT
$L T=A^{\prime} B^{\prime} D+A^{\prime} C+B^{\prime} C D$
$E Q=A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B C^{\prime} D+A B C D+A B^{\prime} C D^{\prime}=(A$ xnor $C) \bullet(B x n o r D)$
GT =

Design example: two-bit comparator

K-map for LT

K-map for EQ

K-map for GT
$L T=A^{\prime} B^{\prime} D+A^{\prime} C+B^{\prime} C D$
$E Q=A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B C^{\prime} D+A B C D+A B^{\prime} C D^{\prime}=(A$ xnor $C) \bullet(B x n o r D)$
$G T=B C^{\prime} D^{\prime}+A C^{\prime}+A B D^{\prime}$

Design example: two-bit comparator

K-map for LT

K-map for EQ

K-map for GT
$L T=A^{\prime} B^{\prime} D+A^{\prime} C+B^{\prime} C D$
$E Q=A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B C^{\prime} D+A B C D+A B^{\prime} C D^{\prime}=(A$ xnor $C) \bullet(B x n o r D)$
$G T=B C^{\prime} D^{\prime}+A C^{\prime}+A B D^{\prime}$
LT and GT are similar (flip A/C and B/D)

Design example: two-bit comparator

Two alternative implementations of EQ with and without XOR

XNOR is implemented with at least 3 simple gates

Design example: 2x2-bit multiplier

Block diagram and truth table

4-variable K-map for each of the 4 output functions

Design example: 2x2-bit multiplier

K-map for P4	A2			
	0	0	0	0
$\begin{aligned} P 4 & =A 2 B 2 B 1 ' \\ & +A 2 A 1^{\prime} B 2 \end{aligned}$	0	0	0	0
	0	0	0	1
	0	0	1	1

Design example: BCD increment by 1

Design example: BCD increment by 1

$$
\begin{aligned}
& \mathrm{O} 8=\mathrm{I} 4 \mathrm{I} 2 \mathrm{I} 1+\mathrm{I} 8 \mathrm{I} 1^{\prime} \\
& \mathrm{O} 4=\mathrm{I} 4 \mathrm{I}^{\prime}+\mathrm{I} 41^{\prime}+\mathrm{I} 4^{\prime} \mathrm{I} 2 \mathrm{I} 1 \\
& \mathrm{O} 2=\mathrm{I} 8^{\prime} \mathrm{I} 2^{\prime} \mathrm{I} 1+\mathrm{I} 2 \mathrm{I} 1^{\prime}
\end{aligned}
$$

$$
\mathrm{O}=\mathrm{I} 1^{\prime}
$$

Definition of terms for two-level simplification

Q Implicant

- Single element of ON-set or DC-set or any group of these elements that can be combined to form a subcube
Q Prime implicant
Q Implicant that can't be combined with another to form a larger subcube
Q Essential prime implicant
- Prime implicant is essential if it alone covers an element of ON-set
- Will participate in ALL possible covers of the ON-set
- DC-set used to form prime implicants but not to make implicant essential
- Redundant prime implicant

Q Objective:

- Grow implicant into prime implicants (minimize literals per term)
- Cover the ON-set with as few prime implicants as possible (minimize number of product terms)

Examples to illustrate terms

6 prime implicants:
$A^{\prime} B^{\prime} D, B C^{\prime}, A C, A^{\prime} C^{\prime} D, A B, B^{\prime} C D$
essential
Minimum cover: $A C+B C^{\prime}+A^{\prime} B^{\prime} D$

Examples to illustrate terms

6 prime implicants:
$A^{\prime} B^{\prime} D, B C^{\prime}, A C, A^{\prime} C^{\prime} D, A B, B^{\prime} C D$ essential

Minimum cover: $A C+B C^{\prime}+A^{\prime} B^{\prime} D$

Examples to illustrate terms

6 prime implicants:
$A^{\prime} B^{\prime} D, B C^{\prime}, A C, A^{\prime} C^{\prime} D, A B, B^{\prime} C D$ essential

Minimum cover: $A C+B C^{\prime}+A^{\prime} B^{\prime} D$

Examples to illustrate terms

6 prime implicants:

Minimum cover: $A C+B C^{\prime}+A^{\prime} B^{\prime} D$

5 prime implicants:
$B D, A B C^{\prime}, A C D, A^{\prime} B C, A^{\prime} C^{\prime} D$

Examples to illustrate terms

6 prime implicants:

Minimum cover: $A C+B C^{\prime}+A^{\prime} B^{\prime} D$

5 prime implicants:
$B D, A B C ', A C D, A^{\prime} B C, A^{\prime} C^{\prime} D$
essential

Examples to illustrate terms

6 prime implicants:

Minimum cover: $A C+B C^{\prime}+A^{\prime} B^{\prime} D$

5 prime implicants:
$B D, A B C ', A C D, A^{\prime} B C, A^{\prime} C^{\prime} D$
essential

Minimum cover: 4 essential implicants

Algorithm for two-level simplification

Q Algorithm: Minimum sum-of-products expression from a Karnaugh map

- Step 1: Choose an element of the ON-set

Q Step 2: Find "maximal" groupings of 1 s and Xs adjacent to that element

- Consider top/bottom row, left/right column, and corner adjacencies
- This forms prime implicants (number of elements always a power of 2)
- Repeat Steps 1 and 2 to find all prime implicants
- Step 3: Revisit the 1 s in the K-map
- If covered by single prime implicant, it is essential, and participates in final cover

Q 1s covered by essential prime implicant do not need to be revisited

- Step 4: If there remain 1 s not covered by essential prime implicants

Q Select the smallest number of prime implicants that cover the remaining is

Algorithm for two-level simplification (example)

Algorithm for two-level simplification (example)

Algorithm for two-level simplification (example)

X	1	0	1
0	1	1	1
0	X	X	0
0	1	0	1
B			

2 primes around A'BC'D

Algorithm for two-level simplification (example)

Algorithm for two-level simplification (example)

Algorithm for two-level simplification (example)

Algorithm for two-level simplification (example)

3 primes around $A B^{\prime} C^{\prime} D^{\prime}$

Algorithm for two-level simplification (example)

3 primes around $A B^{\prime} C^{\prime} D^{\prime}$

Algorithm for two-level simplification (example)

3 primes around $A^{\prime} C^{\prime} D^{\prime}$

Algorithm for two-level simplification (example)

Embedded Low-Power Laboratory

Algorithm for two-level simplification (example)

Embedded Low-Power Laboratory

Activity

Q List all prime implicants for the following K-map:

Q Which are essential prime implicants?
Q What is the minimum cover?

Activity

Q List all prime implicants for the following K-map:

CD'

Q Which are essential prime implicants?
Q What is the minimum cover?

Activity

Q List all prime implicants for the following K-map:

$C^{\prime} \quad B C$

Q Which are essential prime implicants?
Q What is the minimum cover?

Activity

Q List all prime implicants for the following K-map:

$C D^{\prime}$
BC
BD

Q Which are essential prime implicants?
Q What is the minimum cover?

Activity

Q List all prime implicants for the following K-map:

$C^{\prime} \quad B C$
BD

Q Which are essential prime implicants?
Q What is the minimum cover?

Activity

Q List all prime implicants for the following K-map:

$C^{\prime} \quad B C$
BD

> AB
$A C^{\prime} D$

Q Which are essential prime implicants?
Q What is the minimum cover?

Activity

Q List all prime implicants for the following K-map:

$C^{\prime} \quad B C$
BD

$$
A B
$$

$A C^{\prime} D$

Q Which are essential prime implicants?
Q What is the minimum cover?

Activity

Q List all prime implicants for the following K-map:

$C^{\prime} \quad B C$
BD

> AB
$A C^{\prime} D$

Q Which are essential prime implicants?
$C D^{\prime}$
BD
Q What is the minimum cover?

Activity

Q List all prime implicants for the following K-map:

$C^{\prime} \quad B C$
BD

> AB
$A C^{\prime} D$

Q Which are essential prime implicants?
$C D^{\prime}$
BD
$A C^{\prime} D$
Q What is the minimum cover?

Activity

Q List all prime implicants for the following K-map:

$C^{\prime} \quad B C$
BD

$$
A B
$$

AC'D

Q Which are essential prime implicants?
Q What is the minimum cover?

Activity

Q List all prime implicants for the following K-map:

$C^{\prime} \quad B C$
BD

$$
A B
$$

AC'D

Q Which are essential prime implicants?
Q What is the minimum cover?

BD
$A C^{\prime} D$
$C D^{\prime}$
BD

Activity

Q List all prime implicants for the following K-map:

$C^{\prime} \quad B C$
BD

$$
A B
$$

AC'D

Q Which are essential prime implicants?
Q What is the minimum cover?
$C D^{\prime}$
$C D^{\prime}$
BD

AC'D

AC'D

Activity

Q List all prime implicants for the following K-map:

Q Which are essential prime implicants?
Q What is the minimum cover?

Implementations of two-level logic

Q Sum-of-products

- AND gates to form product terms (minterms)
- OR gate to form sum

- Product-of-sums
- OR gates to form sum terms (maxterms)
- AND gates to form product

Two-level logic using NAND gates

Q Replace minterm AND gates with NAND gates

- Place compensating inversion at inputs of OR gate

Two-level logic using NAND gates

Q OR gate with inverted inputs is a NAND gate
Q de Morgan's: $\mathrm{A}^{\prime}+\mathrm{B}^{\prime}=(\mathrm{A} \bullet \mathrm{B})^{\prime}$
Q Two-level NAND-NAND network
Q Inverted inputs are not counted
Q In a typical circuit, inversion is done once and signal distributed

Two-level logic using NOR gates

Q Replace maxterm OR gates with NOR gates
Q Place compensating inversion at inputs of AND gate

Two-level logic using NOR gates (cont'd)

Q AND gate with inverted inputs is a NOR gate
Q De Morgan's: $A^{\prime} \cdot B^{\prime}=(A+B)^{\prime}$
Q Two-level NOR-NOR network

- Inverted inputs are not counted

Q In a typical circuit, inversion is done once and signal distributed

Two-level logic using NAND and NOR gates

- NAND-NAND and NOR-NOR networks

Q de Morgan's law: $\quad(A+B)^{\prime}=A^{\prime} \bullet B^{\prime}(A \bullet B)^{\prime}=A^{\prime}+B^{\prime}$
Q Written differently: $\quad A+B=\left(A^{\prime} \bullet B^{\prime}\right)^{\prime}(A \bullet B)=\left(A^{\prime}+B^{\prime}\right)^{\prime}$
Q In other words -
Q OR is the same as NAND with complemented inputs

- AND is the same as NOR with complemented inputs
- NAND is the same as OR with complemented inputs
- NOR is the same as AND with complemented inputs

Conversion between forms

- Convert from networks of ANDs and ORs to networks of NANDs and NORs
- Introduce appropriate inversions ("bubbles")

Q Each introduced "bubble" must be matched by a corresponding "bubble"

- Conservation of inversions
- Do not alter logic function

Q Example: AND/OR to NAND/NAND

Conversion between forms (cont'd)

Q Example: Verify equivalence of two forms

Conversion between forms (cont'd)

Q Example: Verify equivalence of two forms

$$
\begin{aligned}
Z & =\left[(A \bullet B)^{\prime} \bullet(C \bullet D)^{\prime}\right]^{\prime} \\
& =\left[\left(A^{\prime}+B^{\prime}\right) \bullet\left(C^{\prime}+D^{\prime}\right)\right]^{\prime} \\
& =\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}\right] \\
& =(A \bullet B)+(C \bullet D)
\end{aligned}
$$

Conversion between forms (cont'd)

Q Example: map AND/OR network to NOR/NOR network

C
D

$$
\text { Step } 1
$$

Conserve
"bubbles"
Dubules

Conversion between forms

Q Example: Verify equivalence of two forms

Conversion between forms

Q Example: Verify equivalence of two forms

$$
\begin{array}{rlrl}
Z & =\left\{\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}\right]^{\prime}\right\}^{\prime} \\
& =\left\{\quad\left(A^{\prime}+B^{\prime}\right) \cdot\left(C^{\prime}+D^{\prime}\right)\right\}^{\prime} \\
& = & \left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime} \\
& =(A \cdot B)+(C \cdot D)
\end{array}
$$

Conversion between forms

- Example

Original circuit

Add double bubbles to invert output of AND gate

Add double bubbles to invert all inputs of OR gate

Insert inverters to eliminate double bubbles on a wire

AND-OR-invert gates

Q AOI function: three stages of logic - AND, OR, Invert - Multiple gates "packaged" as a single circuit block

Logical concept

AND OR Invert

AND-OR-invert gates

Q AOI function: three stages of logic - AND, OR, Invert

- Multiple gates "packaged" as a single circuit block

Possible implementation

NAND NAND Invert

AND-OR-invert gates

Q AOI function: three stages of logic - AND, OR, Invert

- Multiple gates "packaged" as a single circuit block

AND-OR-invert gates

Q AOI function: three stages of logic - AND, OR, Invert

- Multiple gates "packaged" as a single circuit block

Possible implementation

NAND NAND Invert
3×2 AOI gate symbol

26

Conversion to AOI forms

Q General procedure to place in AOI form
Q Compute the complement of the function in sum-of-products form

- By grouping the Os in the Karnaugh map

Q Example: XOR implementation

- A xor $B=A^{\prime} B+A B^{\prime}$
- AOI form:
- $F=\left(A^{\prime} B^{\prime}+A B\right)^{\prime}$

Summary for multi-level logic

- Advantages
- Circuits may be smaller
- Gates have smaller fan-in
- Circuits may be faster
- Disadvantages
- More difficult to design

Q Tools for optimization are not as good as for two-level

- Analysis is more complex

Time behavior of combinational networks

- Waveforms

Q Visualization of values carried on signal wires over time
Q Useful in explaining sequences of events (changes in value)
Q Simulation tools are used to create these waveforms
Q Input to the simulator includes gates and their connections
Q Input stimulus, that is, input signal waveforms
Q Some terms

- Gate delay - time for change at input to cause change at output
- Min delay - typical/nominal delay - max delay
- Careful designers design for the worst case

Q Rise time - time for output to transition from low to high voltage
Q Fall time - time for output to transition from high to low voltage
Q Pulse width - time that an output stays high or stays low between changes

Momentary changes in outputs

Q Can be useful - pulse shaping circuits
Q Can be a problem - incorrect circuit operation (glitches/hazards)
Q Example: pulse shaping circuit

- $A^{\prime} \cdot A=0$
- Delays matter

Oscillatory behavior

Q Another pulse shaping circuit

close switch

31

Embedded ow-Power Laboratory

Hazards and glitches

0 Glitch
Q Unwanted pulse of a combinational logic network

- Hazard

Q A circuit has a potential to generate glitch

- Intrinsic characteristic

Q A circuit with a hazard may or may not generate glitch depending on the input pattern
Q Static hazard

- Static 0-hazard: momentarily 1 while the output is 0
- Static 1-hazard: momentarily 0 while the output is 1
- Dynamic hazard

Q Generate glitch more than once for a single transition 0 to 1 or 1 to 0
Q Hazard-free circuit generation
Q Can avoid hazard if there is only single input change
Q Hazard caused by simultaneous multiple input changes is unavoidable

Hazard-free circuit

Q No hazard
Q When the initial and final inputs are covered by the same prime implicant
Q Hazard

- When the input change spans prime implicants
- Generalized static hazard-free circuits
- Add a redundant prime implicants so that all the single-input transitions are covered by one prime implicant
Q Dynamic hazard-free circuits
- Extension of the static hazard-free method
- Beyond the scope of this class

Hardware description languages

Q Describe hardware at varying levels of abstraction
Q Structural description

- Textual replacement for schematic
- Hierarchical composition of modules from primitives
- Behavioral/functional description

Q Describe what module does, not how

- Synthesis generates circuit for module

Q Simulation semantics

HDLs

Q Abel (circa 1983) - developed by Data-I/O

- Targeted to programmable logic devices
- Not good for much more than state machines

Q ISP (circa 1977) - research project at CMU

- Simulation, but no synthesis

Q Verilog (circa 1985) - developed by Gateway (absorbed by Cadence)

- Similar to Pascal and C
- Delays is only interaction with simulator
- Fairly efficient and easy to write
- IEEE standard

Q VHDL (circa 1987) - DoD sponsored standard

- Similar to Ada (emphasis on re-use and maintainability)
- Simulation semantics visible
- Very general but verbose
- IEEE standard

PALASM

```
TITLE <Design title>
PATTERN <Identification such as file name>
REVISION <Version or other ID>
AUTHOR <Name of designer>
COMPANY <Organization name>
DATE <Relevant date>
CHIP <Description> <Device name>
; <Pin numbers, eg 1 2 2 3 4 4 5 5 6 6
    <pin names, eg Clk Clr Pre I1 I2 I3 I4 GND>
; <Pin numbers, eg 9 10 11 12 13 13 14 15 16>
    <pin names, eg NC NC Q1 Q2 Q3 Q4 NC Vcc>
STRING <Name> '<Characters to substitute>'
    <more string definitions>
EQUATIONS
    <combinatorial equations of the form
        OutName = Name1 Op1 Name2 .... OpN NameM>
    <registered equations of the form
        OutName := Name1 Op1 Name2 .... OpN NameM>
```


PALASM

Q Operators
Q / NOT or active-low

- * AND
$0+\mathrm{OR}$
Q :+: XOR
Q = Combinational output
Q *= Latched output
Q $:=$ Registered output
- Simulation feature

ABEL

Q Extended version of PALASM for PLD design
Q Logic is expressed by

- Equations
- Truth Tables
- State Diagrams
- Fuses
- XOR Factors
- Operators
- Logical: similar to PALASM

0	$!$!A	NOT: one's complement
0	$\&$	A \& B	AND
0	$\#$	A \# B	OR
0	$\$$	A \$ B	XOR: exclusive OR
0	$!\$$	A !\& B	XNOR exclusive NOR

ABEL

Q Operators
Q Very limited arithmetic
Q - -A Twos complement (negation)
Q - A-B Subtraction
Q $+\mathrm{A}+\mathrm{B}$ Addition
Q The following operators are not valid for sets:

- * $\mathrm{A}^{* B}$ Multiplication
- / A/B Unsigned integer division
- \% $\mathrm{A} \% \mathrm{~B}$ Modulus remainder from division
$0 \quad \ll \quad A \ll B \quad$ Shift A left by B bits
- $\gg \quad A \gg B$ Shift A right by B bits
- $\mathrm{ABC}=3$ * 17 ;
- Relational
- $==A==B \quad$ Equal
- != A ! = B Not equal
$0<A<B$ Less than
- $<=A<=B$ Less than or equal
- $>\mathrm{A}>\mathrm{B}$ Greater than

Q $>=A>=B \quad$ Greater than or equal

ABEL

Q Statements

- IF THEN ELSE
- STATE MACHINE

Q Architecture independent extensions:
Q .CLK: Clock input to an edge triggered flip-flop

- .OE: Output enable

Q .PIN: Pin feedback

- .FB: Register feedback

Q Architecture specific dot extensions:

- J: J input to an JK-type flip-flop

Q .K: K input to an JK-type flip-flop

- .R: R input to an SR-type flip-flop
- And many more

Verilog

Q Supports structural and behavioral descriptions
Q Structural

- Explicit structure of the circuit

Q Net list
Q e.g., each logic gate instantiated and connected to others

- Behavioral

Q Program describes input/output behavior of circuit
Q Many structural implementations could have same behavior
Q e.g., different implementation of one Boolean function

Structural model

```
module xor_gate (out, a, b);
    input a, b;
    output out;
    wire abar, bbar, t1, t2;
    inverter invA (abar, a);
    inverter invB (bbar, b);
    and_gate andl (t1, a, bbar);
    and_gate and2 (t2, b, abar);
    or_gate or1 (out, t1, t2);
endmodule
```


Simple behavioral model

Q Continuous assignment

Simple behavioral model

Q Always block

endmodule

Driving a simulation through a "testbench"

Hardware description languages vs. programming languages

- Program structure

Q Instantiation of multiple components of the same type
Q Specify interconnections between modules via schematic
Q Hierarchy of modules (only leaves can be HDL in Aldec ActiveHDL)

- Assignment
- Continuous assignment (logic always computes)
- Propagation delay (computation takes time)

Q Timing of signals is important (when does computation have its effect)
Q Data structures
Q Size explicitly spelled out - no dynamic structures

- No pointers
- Parallelism

Q Hardware is naturally parallel (must support multiple threads)

- Assignments can occur in parallel (not just sequentially)

Hardware description languages and combinational logic

Q Modules - specification of inputs, outputs, bidirectional, and internal signals
Q Continuous assignment - a gate's output is a function of its inputs at all times (doesn't need to wait to be "called")
Q Propagation delay- concept of time and delay in input affecting gate output
Q Composition - connecting modules together with wires
Q Hierarchy - modules encapsulate functional blocks

Working with combinational logic summary

Q Design problems

- Filling in truth tables
- Incompletely specified functions
- Simplifying two-level logic
- Realizing two-level logic
- NAND and NOR networks
- Networks of Boolean functions and their time behavior

Q Time behavior

- Hardware description languages

Q Later
Q Combinational logic technologies

- More design case studies

Not included in the lecture

Q Advanced Boolean optimization

- Quine_McCluskey method
- Espresso method

