Digital Logic Design

4190.201 .001

2010 Spring Semester

6. Case Studies in Combinational Logic Design

Naehyuck Chang
Dept. of EECS/CSE
Seoul National University naehyuck@snu.ac.kr

Combinational logic design case studies

Q General design procedure

- Case studies
- BCD to 7-segment display controller
- Logical function unit
- Process line controller
- Calendar subsystem
- Arithmetic circuits
- Integer representations
- Addition/subtraction
- Arithmetic/logic units

General design procedure for combinational logic

Q Step 1. Understand the problem

- What is the circuit supposed to do?

Q Write down inputs (data, control) and outputs

- Draw block diagram or other picture

Q Step 2. Formulate the problem using a suitable design representation

- Truth table or waveform diagram are typical
- May require encoding of symbolic inputs and outputs
- Step 3. Choose implementation target
- ROM, PAL, PLA
- Mux, decoder and OR-gate
- Discrete gates

Q Step 4. Follow implementation procedure

- K-maps for two-level, multi-level
- Design tools and hardware description language (e.g., Verilog)

BCD to 7-segment display controller

Q Understanding the problem
Q input is a 4 bit bcd digit (A, B, C, D)

- output is the control signals for the display (7 outputs C0 - C6)
- Block diagram

Formalize the problem

- Truth table
- Show don't cares

Q Choose implementation target

- If ROM, we are done

Q Don't cares imply PAL/PLA may be attractive
Q Follow implementation procedure

- Minimization using K-maps

A	B	C	D	C0	C1	C2	C3	C4	C5	C6
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	0	0	1	1
1	0	1	-	-	-	-	-	-	-	-
1	1	-	-	-	-	-	-	-	-	-

Implementation as minimized sum-of-products

- 15 unique product terms when minimized individually

$$
\begin{aligned}
& C 0=A+B D+C+B^{\prime} D^{\prime} \\
& C 1=C^{\prime} D^{\prime}+C D+B^{\prime} \\
& C 2=B+C^{\prime}+D \\
& C 3=B^{\prime} D^{\prime}+C D^{\prime}+B C^{\prime} D+B^{\prime} C \\
& C 4=B^{\prime} D^{\prime}+C D^{\prime} \\
& C 5=A+C^{\prime} D^{\prime}+B D^{\prime}+B C^{\prime} \\
& C 6=A+C D^{\prime}+B C^{\prime}+B^{\prime} C
\end{aligned}
$$

Implementation as minimized S-o-P (cont'd)

- Can do better
- 9 unique product terms (instead of 15)
- Share terms among outputs
- Each output not necessarily in minimized form

$C 0=A+B D+C+B^{\prime} D^{\prime}$
$C 1=C^{\prime} D^{\prime}+C D+B^{\prime}$
$C 2=B+C^{\prime}+D$
$C 3=B^{\prime} D^{\prime}+C D^{\prime}+B C^{\prime} D+B^{\prime} C$
$C 4=B^{\prime} D^{\prime}+C D^{\prime}$
$C 5=A+C^{\prime} D^{\prime}+B D^{\prime}+B C^{\prime}$
$C 6=A+C D^{\prime}+B C^{\prime}+B^{\prime} C$

$C 0=B C^{\prime} D+C D+B^{\prime} D^{\prime}+B C D^{\prime}+A$
$C 1=B^{\prime} D+C^{\prime} D^{\prime}+C D+B^{\prime} D^{\prime}$
$C 2=B^{\prime} D+B C^{\prime} D+C^{\prime} D^{\prime}+C D+B C D^{\prime}$
$C 3=B C^{\prime} D+B^{\prime} D+B^{\prime} D^{\prime}+B C D^{\prime}$
$C 4=B^{\prime} D^{\prime}+B C D^{\prime}$
$C 5=B C^{\prime} D+C^{\prime} D^{\prime}+A+B C D^{\prime}$
$C 6=B^{\prime} C+B C^{\prime}+B C D^{\prime}+A$

PLA implementation

PAL implementation vs. Discrete gate implementation

- Limit of 4 product terms per output
- Decomposition of functions with larger number of terms
- Do not share terms in PAL anyway (although there are some with some shared terms)

$$
\begin{aligned}
& C 2=B+C^{\prime}+D \\
& C 2=B^{\prime} D+B C^{\prime} D+C^{\prime} D^{\prime}+C D+B C D^{\prime} \\
& C 2=B^{\prime} D+B C^{\prime} D+C^{\prime} D^{\prime}+W+\text { need another input and another output } \\
& W=C D+B C D^{\prime} \longleftrightarrow
\end{aligned}
$$

Q Decompose into multi-level logic (hopefully with CAD support)

- Find common sub-expressions among functions

$$
\begin{array}{ll}
C 0=C 3+A^{\prime} B X^{\prime}+A D Y & \\
C 1=Y+A^{\prime} C 5+C^{\prime} D C 6 & X=C^{\prime}+D^{\prime} \\
C 2=C 5+A^{\prime} B^{\prime} D+A^{\prime} C D & Y=B^{\prime} C^{\prime} \\
C 3=C 4+B D C 5+A^{\prime} B^{\prime} X^{\prime} & \\
C 4=D^{\prime} Y+A^{\prime} C D^{\prime} & \\
C 5=C^{\prime} C 4+A Y+A^{\prime} B X & \\
C 6=A C 4+C C 5+C 4^{\prime} C 5+A^{\prime} B^{\prime} C &
\end{array}
$$

Logical function unit

Q Multi-purpose function block

- 3 control inputs to specify operation to perform on operands
- 2 data inputs for operands
- 1 output of the same bit-width as operands

C0	C1	C2	Function	Comments	
0	0	0	1	always 1	
0	0	1	A + B	logical OR	3 control inputs: C0, C1, C2
0	1	0	$(A \bullet B)^{\prime}$	logical NAND	2 data inputs: A, B
0	1	1	A xor B	logical xor	1 output: F
1	0	0	A xnor B	logical xnor	
1	0	1	A B B	logical AND	
1	1	0	$(A+B)^{\prime}$	logical NOR	
1	1	1	0	always 0	

Formalize the problem

74LS247

SN54/74LS247•SN54/74LS248•SN54/74LS249

Production line control

Q Rods of varying length (+/-10\%) travel on conveyor belt
Q Mechanical arm pushes rods within spec (+/-5\%) to one side

- Second arm pushes rods too long to other side
- Rods that are too short stay on belt
- 3 light barriers (light source + photocell) as sensors
- Design combinational logic to activate the arms

Q Understanding the problem

- Inputs are three sensors

Q Outputs are two arm control signals

- Assume sensor reads "1" when tripped, " 0 " otherwise
- Call sensors A, B, C

Sketch of problem

Q Position of sensors

- A to B distance $=$ specification -5%
- A to C distance $=$ specification $+5 \%$

Formalize the problem

Q Truth table

- Show don't cares

A	B	C	Function
0	0	0	do nothing
0	0	1	do nothing
0	1	0	do nothing
0	1	1	do nothing
1	0	0	too short
1	0	1	don't care
1	1	0	in spec
1	1	1	too long

Logic implementation now straightforward just use three 3-input AND gates
"too short" = AB'C' (only first sensor tripped)
"in spec" = A B C'
(first two sensors tripped)
"too long" = A B C
(all three sensors tripped)

Calendar subsystem

Q Determine number of days in a month (to control watch display)

- Used in controlling the display of a wrist-watch LCD screen
- Inputs: month, leap year flag
- Outputs: number of days
- Use software implementation to help understand the problem

```
integer number_of_days ( month, leap_year_flag) {
    switch (month) {
        case 1: return (31);
        case 2: if (leap_year_flag == 1)
                                    then return (29)
                                    else return (28);
        case 3: return (31);
        case 4: return (30);
        case 5: return (31);
        case 6: return (30);
        case 7: return (31);
        case 8: return (31);
        case 9: return (30);
        case 10: return (31);
        case 11: return (30);
        case 12: return (31);
        default: return (0);
    }
}
```


Formalize the problem

Q Encoding:
Q Binary number for month: 4 bits

- 4 wires for $28,29,30$, and 31 one-hot - only one true at any time
Q Block diagram:

month	leap	28	29	30	31
0000	-	-	-	-	-
0001	-	0	0	0	1
0010	0	1	0	0	0
0010	1	0	1	0	0
0011	-	0	0	0	1
0100	-	0	0	1	0
0101	-	0	0	0	1
0110	-	0	0	1	0
0111	-	0	0	0	1
1000	-	0	0	0	1
1001	-	0	0	1	0
1010	-	0	0	0	1
1011	-	0	0	1	0
1100	-	0	0	0	1
1101	-	-	-	-	-
$111-$	-	-	-	-	-

Choose implementation target and perform mapping

Q Discrete gates

- $28=m 8^{\prime} m 4^{\prime} m 2 m 1^{\prime}$ leap ${ }^{\prime}$
- $29=\quad \mathrm{m} 8^{\prime} \mathrm{m} 4^{\prime} \mathrm{m} 2 \mathrm{~m} 1^{\prime}$ leap

Q $30=m 8^{\prime} \mathrm{m} 4 \mathrm{~m}^{\prime}+\mathrm{m} 8 \mathrm{~m} 1$

- $31=m 8^{\prime} \mathrm{m} 1+\mathrm{m} 8 \mathrm{~m} 1^{\prime}$

Q Can translate to S-o-P or P-o-S

month	leap	28	29	30	31
0000	-	-	-	-	-
0001	-	0	0	0	1
0010	0	1	0	0	0
0010	1	0	1	0	0
0011	-	0	0	0	1
0100	-	0	0	1	0
0101	-	0	0	0	1
0110	-	0	0	1	0
0111	-	0	0	0	1
1000	-	0	0	0	1
1001	-	0	0	1	0
1010	-	0	0	0	1
1011	-	0	0	1	0
1100	-	0	0	0	1
1101	-	-	-	-	-
$111-$	-	-	-	-	-

Leap year flag

Q Determine value of leap year flag given the year

- For years after 1582 (Gregorian calendar reformation),
- Leap years are all the years divisible by 4,
- Except that years divisible by 100 are not leap years,
- But years divisible by 400 are leap years.

Q Encoding the year:

- Binary - easy for divisible by 4, but difficult for 100 and 400 (not powers of 2)
- BCD - easy for 100 , but more difficult for 4 , what about 400 ?
- Parts:

Q Construct a circuit that determines if the year is divisible by 4

- Construct a circuit that determines if the year is divisible by 100
- Construct a circuit that determines if the year is divisible by 400

Q Combine the results of the previous three steps to yield the leap year flag

Activity: divisible-by-4 circuit

Q BCD coded year

- YM8 YM4 YM2 YM1 - YH8 YH4 YH2 YH1 - YT8 YT4 YT2 YT1 - YO8 YO4 YO2 YO1

Q Only need to look at low-order two digits of the year all years ending in $00,04,08,12,16,20$, etc. are divisible by 4

- If tens digit is even, then divisible by 4 if ones digit is 0,4 , or 8
- If tens digit is odd, then divisible by 4 if the ones digit is 2 or 6 .

Q Translates into the following Boolean expression (where YT1 is the year's tens digit low-order bit, YO8 is the high-order bit of year's ones digit, etc.):

- YT1' (YO8' YO4' YO2' YO1' + YO8' YO4 YO2' YO1' + YO8 YO4' YO2' YO1')
+ YT1 (YO8' YO4' YO2 YO1' + YO8' YO4 YO2 YO1')
Q Digits with values of 10 to 15 will never occur, simplify further to yield:
- YT1' YO2' YO1' + YT1 YO2 YO1'

Divisible-by-100 and divisible-by-400 circuits

Q Divisible-by-100 just requires checking that all bits of two low-order digits are all 0:

- YT8' YT4' YT2' YT1' • YO8' YO4' YO2' YO1'

Q Divisible-by-400 combines the divisible-by-4 (applied to the thousands and hundreds digits) and divisible-by-100 circuits

- (YM1' YH2' YH1' + YM1 YH2 YH1') • (YT8' YT4' YT2' YT1' • YO8' YO4' YO2' YO1')

Combining to determine leap year flag

Q Label results of previous three circuits: D4, D100, and D400

$$
\begin{array}{ll}
\text { leap_year_flag } & =D 4\left(D 100 \cdot \text { D400' }^{\prime}\right)^{\prime} \\
& =D 4 \cdot D 100^{\prime}+D 4 \cdot D 400 \\
& =D 4 \cdot D 100^{\prime}+D 400
\end{array}
$$

Implementation of leap year flag

23

Arithmetic circuits

Q Excellent examples of combinational logic design
Q Time vs. space trade-offs

- Doing things fast may require more logic and thus more space
- Example: carry lookahead logic

Q Arithmetic and logic units

- General-purpose building blocks
- Critical components of processor datapaths
- Used within most computer instructions

Number systems

Q Representation of positive numbers is the same in most systems

- Major differences are in how negative numbers are represented
- Representation of negative numbers come in three major schemes
- Sign and magnitude
- 1s complement
- 2 s complement
- Assumptions

Q We'll assume a 4 bit machine word
Q 16 different values can be represented
Q Roughly half are positive, half are negative

Sign and magnitude

Q One bit dedicate to sign (positive or negative)

- Sign: $0=$ positive (or zero), $1=$ negative

Q Rest represent the absolute value or magnitude

- Three low order bits: 0 (000) thru 7 (111)

Q Range for n bits

- $+/-2 n-1-1$ (two representations for 0)

Q Cumbersome addition/subtraction

- Must compare magnitudes to determine sign of result
$0100=+4$
$1100=-4$

1s complement

Q If N is a positive number, then the negative of N (its 1 s complement or N^{\prime}) is $\mathrm{N}^{\prime}=(2 \mathrm{n}-1)-\mathrm{N}$
Q Example: 1s complement of 7

Q Shortcut: simply compute bit-wise complement (0111 -> 1000)

1s complement (cont'd)

Q Subtraction implemented by 1 s complement and then addition
Q Two representations of 0

- Causes some complexities in addition

Q High-order bit can act as sign bit

2s complement

Q 1s complement with negative numbers shifted one position clockwise

- Only one representation for 0
- One more negative number than positive numbers
- High-order bit can act as sign bit

2s complement (cont'd)

Q If N is a positive number, then the negative of N (its 2 s complement or N^{*}) is $N^{*}=2 n-N$
Q Example: 2 s complement of 7

$$
\begin{aligned}
& 2^{4}=10000 \\
& \text { subtract } 7=\frac{0111}{1001}=\text { repr. of }-7
\end{aligned}
$$

Q Example: 2 s complement of -7

$$
\begin{aligned}
2^{4} & =10000 \\
\text { subtract }-7 & =\frac{1001}{0111}=\text { repr. of } 7
\end{aligned}
$$

Q Shortcut: 2 s complement = bit-wise complement +1

- $0111->1000+1->1001$ (representation of -7)
- $1001->0110+1->0111$ (representation of 7)

2s complement addition and subtraction

Q Simple addition and subtraction

- Simple scheme makes 2 s complement the virtually unanimous choice for integer number systems in computers

4	0100			
+3	0011			
7	0111	\quad	-4	1100
---:	---:			
-7				

4	0100	-4	1100
-3	1101	+3	$\frac{0011}{10001}$

Why can the carry-out be ignored?

Q Can't ignore it completely

- Needed to check for overflow (see next two slides)

Q When there is no overflow, carry-out may be true but can be ignored
$-M+N$ when $N>M$:

$$
M^{*}+N=(2 n-M)+N=2 n+(N-M)
$$

ignoring carry-out is just like subtracting $2 n$
$-M+-N$ where $N+M \leq 2 n-1$

$$
(-M)+(-N)=M^{*}+N^{*}=(2 n-M)+(2 n-N)=2 n-(M+N)+2 n
$$

ignoring the carry, it is just the $2 s$ complement representation for $-(M+N)$

Overflow in 2s complement addition/subtraction

Q Overflow conditions

- Add two positive numbers to get a negative number
- Add two negative numbers to get a positive number

Overflow conditions

- Overflow when carry into sign bit position is not equal to carry-out

5	0111	- 7	1000
3	0101	-2	1001
-8	0011	7	1110
overflow	1000	overflow	10111
5	0000	-3	1111
2	0101	-5	1101
7	0010	-8	1011
no overflow	0111	no overflow	11000

Circuits for binary addition

Q Half adder (add 2 1-bit numbers)
Q $\operatorname{Sum}=A i^{\prime} B i+A i B i^{\prime}=A i$ xor $B i$

- Cout $=\mathrm{Ai} \mathrm{Bi}$

Q Full adder (carry-in to cascade for multi-bit adders)

- $\operatorname{Sum}=\mathrm{Ci}$ xor A xor B

Q Cout $=\mathrm{BCi}+\mathrm{ACi}+\mathrm{AB}=\mathrm{Ci}(\mathrm{A}+\mathrm{B})+\mathrm{AB}$

Ai	Bi	Sum	Cout
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	1

Ai	Bi	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full adder implementations

- Standard approach
- 6 gates
- 2 XORs, 2 ANDs, 2 ORs

Q Alternative implementation

- 5 gates
- Half adder is an XOR gate and AND gate
- 2 XORs, 2 ANDs, 1 OR

$$
\text { Cout }=A B+\operatorname{Cin}(A \text { xor } B)=A B+B C i n+A \operatorname{Cin}
$$

Adder/subtractor

Q Use an adder to do subtraction thanks to 2 s complement representation

- $A-B=A+(-B)=A+B^{\prime}+1$
- Control signal selects B or $2 s$ complement of B

Ripple-carry adders

Q Critical delay

- The propagation of carry from low to high order stages

Ripple-carry adders (cont'd)

Q Critical delay
Q The propagation of carry from low to high order stages
Q $1111+0001$ is the worst case addition
Q Carry must propagate through all bits

Carry-lookahead logic

Q Carry generate: $\mathrm{Gi}=\mathrm{Ai} \mathrm{Bi}$

- Must generate carry when $A=B=1$

Q Carry propagate: $\mathrm{Pi}=\mathrm{Ai}$ xor Bi

- Carry-in will equal carry-out here

Q Sum and Cout can be re-expressed in terms of generate/propagate:
Q $\mathrm{Si}=\mathrm{Ai}$ xor Bi xor Ci

$$
=\mathrm{Pi} \text { xor } \mathrm{Ci}
$$

- $\mathrm{Ci}+1=\mathrm{AiBi}+\mathrm{AiCi}+\mathrm{BiCi}$

$$
\begin{aligned}
& =\mathrm{Ai} \mathrm{Bi}+\mathrm{Ci}(\mathrm{Ai}+\mathrm{Bi}) \\
& =\mathrm{Ai} \mathrm{Bi}+\mathrm{Ci}(\mathrm{Ai} \text { xor } \mathrm{Bi}) \\
& =\mathrm{Gi}+\mathrm{Ci} \mathrm{Pi}
\end{aligned}
$$

Carry-lookahead logic (cont'd)

Q Re-express the carry logic as follows:

- $\mathrm{C} 1=\mathrm{G} 0+\mathrm{P} 0 \mathrm{CO}$
- $\mathrm{C} 2=\mathrm{G} 1+\mathrm{P} 1 \mathrm{C} 1=\mathrm{G} 1+\mathrm{P} 1 \mathrm{G} 0+\mathrm{P} 1 \mathrm{P} 0 \mathrm{C} 0$
- $\mathrm{C} 3=\mathrm{G} 2+\mathrm{P} 2 \mathrm{C} 2=\mathrm{G} 2+\mathrm{P} 2 \mathrm{G} 1+\mathrm{P} 2 \mathrm{P} 1 \mathrm{G} 0+\mathrm{P} 2 \mathrm{P} 1 \mathrm{P} 0 \mathrm{C} 0$
- $\mathrm{C} 4=\mathrm{G} 3+\mathrm{P} 3 \mathrm{C} 3=\mathrm{G} 3+\mathrm{P} 3 \mathrm{G} 2+\mathrm{P} 3 \mathrm{P} 2 \mathrm{G} 1+\mathrm{P} 3 \mathrm{P} 2 \mathrm{P} 1 \mathrm{G} 0+\mathrm{P} 3 \mathrm{P} 2 \mathrm{P} 1 \mathrm{P} 0 \mathrm{C} 0$

Q Each of the carry equations can be implemented with two-level logic

- All inputs are now directly derived from data inputs and not from intermediate carries
- This allows computation of all sum outputs to proceed in parallel

Carry-lookahead implementation

Q Adder with propagate and generate outputs

Increasingly complex logic for carries

Carry-lookahead implementation (cont'd)

Q Carry-lookahead logic generates individual carries
Q Sums computed much more quickly in parallel
Q However, cost of carry logic increases with more stages

Carry-lookahead adder with cascaded carry-lookahead logic

Q Carry-lookahead adder

- 4 four-bit adders with internal carry lookahead

$$
\mathrm{G}=\mathrm{G} 3+\mathrm{P} 3 \mathrm{G} 2+\mathrm{P} 3 \mathrm{P} 2 \mathrm{G} 1+\mathrm{P} 3 \mathrm{P} 2 \mathrm{P} 1 \mathrm{G} 0
$$

$$
\mathrm{P}=\mathrm{P} 3 \mathrm{P} 2 \mathrm{P} 1 \mathrm{P0}
$$

Carry-select adder

- Redundant hardware to make carry calculation go faster

Q Compute two high-order sums in parallel while waiting for carry-in
Q One assuming carry-in is 0 and another assuming carry-in is 1
Q Select correct result once carry-in is finally computed

Arithmetic logic unit design specification

$M=0$, logical bitwise operations

S1 SO	Function	Comment	
0	0	$\mathrm{Fi}=\mathrm{Ai}$	input Ai transferred to output
0	1	$\mathrm{Fi}=$ not Ai	complement of Ai transferred to output
1	0	$\mathrm{Fi}=\mathrm{Ai}$ xor Bi	compute XOR of Ai, Bi
1	1	$\mathrm{Fi}=\mathrm{Ai}$ xnor Bi	compute XNOR of Ai, Bi

$M=1, C 0=0$, arithmetic operations

0	0	$F=A$
0	1	$F=\operatorname{not} A$
1	0	$F=A$ plus B
1	1	$F=(\operatorname{not} A)$ plus B

$M=1, C O=1$, arithmetic operations

0	0	$F=A$ plus 1	increment A
0	1	$F=($ not $A)$ plus 1	twos complement of A
1	0	$F=A$ plus B plus 1	increment sum of A and B
1	1	$F=($ not $A)$ plus B plus 1	B minus A

Logical and arithmetic operations

 not all operations appear useful, but "fall out" of internal logic
Arithmetic logic unit design (cont'd)

Q Sample ALU - truth table

M	S1	S0	Ci	Ai	Bi	Fi	$\mathrm{Ci}+1$
0	0	0	X	0	X	0	X
			X	1	X	1	X
	0	1	X	0	X	1	X
			X	1	X	0	X
	1	0	X	0	0	0	X
			X	0	1	1	X
			X	1	0	1	X
			X	1	1	0	X
	1	1	X	0	0	1	X
			X	0	1	0	X
			X	1	0	0	X
			X	1	1	1	X
1	0	0	0	0	X	0	X
			0	1	X	1	X
	0	1	0	0	X	1	X
			0	1	X	0	X
	1	0	0	0	0	0	0
			0	0	1	1	0
			0	1	0	1	0
			0	1	1	0	1
	1	1	0	0	0	1	0
			0	0	1	0	1
			0	1	0	0	0
			0	1	1	1	0
1	0	0	1	0	X	1	0
			1	1	X	0	1
	0	1	1	0	X	0	1
			1	1	X	1	0
	1	0	1	0	0	1	0
			1	0	1	0	1
			1	1	0	0	1
			1	1	1	1	1
	1	1	1	0	0	0	1
			1	0	1	1	1
			1	1	0	1	0
			1	1	1	0	1

Arithmetic logic unit design (cont'd)

Q Sample ALU - multi-level discrete gate logic implementation

12 gates

Arithmetic logic unit design (cont'd)

Q Sample ALU - clever multi-level implementation

First-level gates
use SO to complement Ai

$$
\begin{array}{ll}
\text { SO }=0 & \text { causes gate } X 1 \text { to pass Ai } \\
\text { SO }=1 & \text { causes gate X1 to pass Ai' }
\end{array}
$$

use S 1 to block Bi
S1 = $0 \quad$ causes gate A1 to make Bi go forward as 0 (don't want Bi for operations with just A)
$\mathrm{S} 1=1 \quad$ causes gate A 1 to pass Bi
use M to block Ci

$$
\begin{array}{ll}
M=0 & \text { causes gate A2 to make Ci go forward as 0 } \\
M=1 & \text { (don't want Ci for logical operations) } \\
\text { causes gate A2 to pass Ci }
\end{array}
$$

Other gates
for $\mathrm{M}=0$ (logical operations, Ci is ignored)
$\mathrm{Fi}=\mathrm{S} 1 \mathrm{Bi}$ xor (S0 xor Ai)

$$
\begin{aligned}
& \text { = S1'SO' (Ai) + S1'S0 (Ai') + } \\
& \text { S1 SO' (Ai Bi' + Ai' Bi) + S1 S0 (Ai' Bi' + Ai Bi) }
\end{aligned}
$$

for $M=1$ (arithmetic operations)
$\mathrm{Fi}=\mathrm{S} 1 \mathrm{Bi}$ xor $((\mathrm{SO}$ xor Ai $)$ xor Ci$)=$
$\mathrm{Ci}+1=\mathrm{Ci}(\mathrm{SO}$ xor Ai $)+\mathrm{S} 1 \mathrm{Bi}((\mathrm{SO}$ xor Ai) xor Ci$)=$
just a full adder with inputs SO xor $\mathrm{Ai}, \mathrm{S} 1 \mathrm{Bi}$, and Ci

Summary for examples of combinational logic

Q Combinational logic design process
Q Formalize problem: encodings, truth-table, equations

- Choose implementation technology (ROM, PAL, PLA, discrete gates)
- Implement by following the design procedure for that technology
- Binary number representation
- Positive numbers the same

Q Difference is in how negative numbers are represented
Q $2 s$ complement easiest to handle: one representation for zero, slightly complicated complementation, simple addition
Q Circuits for binary addition
Q Basic half-adder and full-adder

- Carry lookahead logic
- Carry-select
- ALU Design

Q Specification, implementation

