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Combinational logic design case studies

General design procedure
Case studies

BCD to 7-segment display controller

Logical function unit

Process line controller

Calendar subsystem

Arithmetic circuits
Integer representations

Addition/subtraction

Arithmetic/logic units
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General design procedure for combinational logic

Step 1.  Understand the problem
What is the circuit supposed to do?

Write down inputs (data, control) and outputs

Draw block diagram or other picture

Step 2.  Formulate the problem using a suitable design representation
Truth table or waveform diagram are typical

May require encoding of symbolic inputs and outputs

Step 3.  Choose implementation target
ROM, PAL, PLA

Mux, decoder and OR-gate

Discrete gates

Step 4.  Follow implementation procedure
K-maps for two-level, multi-level

Design tools and hardware description language (e.g., Verilog)
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Understanding the problem
input is a 4 bit bcd digit (A, B, C, D)

output is the control signals 
for the display (7 outputs C0 – C6)

Block diagram

4

BCD to 7–segment
control signal

decoder

c0  c1  c2  c3  c4  c5  c6

A   B   C   D

BCD to 7-segment display controller

c1c5

c2c4 c6

c0

c3
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A B C D C0 C1 C2 C3 C4 C5 C6
0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0 1 1
0 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 0 0 1 1
1 0 1 – – – – – – – –
1 1 – – – – – – – – –

Truth table
Show don't cares

Choose implementation target
If ROM, we are done

Don't cares imply PAL/PLA
may be attractive

Follow implementation procedure
Minimization using K-maps

5

Formalize the problem
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C0 = A + B D + C + B' D'
C1 = C' D' + C D + B'
C2 = B + C' + D
C3 = B' D' + C D' + B C' D + B' C
C4 = B' D' + C D'
C5 = A + C' D' + B D' + B C'
C6 = A + C D' + B C' + B' C

Implementation as minimized sum-of-products

15 unique product terms when minimized individually

1    0    X    1

0    1    X    1 

1    1    X    X

1    1    X    X 

D

A

B

C

1    1    X    1

1    0    X    1 

1    1    X    X

1    0    X    X 

D

A

B

C

0    1    X    1

0    1    X    1 

1    0    X    X

1    1    X    X 

D

A

B

C

1    1    X    1

1    1    X    1 

1    1    X    X

0    1    X    X 

D

A

B

C

1    0    X    1

0    1    X    0 

1    0    X    X

1    1    X    X 

D

A

B

C

1    0    X    1

0    0    X    0 

0    0    X    X

1    1    X    X 

D

A

B

C

1    1    X    1

0    1    X    1 

0    0    X    X

0    1    X    X 

D

A

B

C
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C0 = B C' D + C D + B' D' + B C D' + A
C1 = B' D + C' D' + C D + B' D'
C2 = B' D + B C' D + C' D' + C D + B C D'
C3 = B C' D + B' D + B' D' + B C D'
C4 = B' D' + B C D'
C5 = B C' D + C' D' + A + B C D'
C6 = B' C + B C' + B C D' + A

C0 = A + B D + C + B' D'
C1 = C' D' + C D + B'
C2 = B + C' + D
C3 = B' D' + C D' + B C' D + B' C
C4 = B' D' + C D'
C5 = A + C' D' + B D' + B C'
C6 = A + C D' + B C' + B' C

C2

Implementation as minimized S-o-P (cont'd)

Can do better
9 unique product terms (instead of 15)

Share terms among outputs

Each output not necessarily in minimized form

1    1    X    1

1    1    X    1 

1    1    X    X

0    1    X    X 

D

A

B

C

1    1    X    1

1    1    X    1 

1    1    X    X

0    1    X    X 

D

A

B

C

C2
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PLA implementation
A B C D

BC'

B'C

B'D

BC'D

C'D'

CD

B'D'

A

BCD'

C0 C1 C2 C3 C4 C5 C6 C7
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Limit of 4 product terms per output
Decomposition of functions with larger number of terms

Do not share terms in PAL anyway
(although there are some with some shared terms)

Decompose into multi-level logic (hopefully with CAD support)
Find common sub-expressions among functions

9

C0 = C3 + A' B X' + A D Y
C1 = Y + A' C5' + C' D' C6
C2 = C5 + A' B' D + A' C D
C3 = C4 + B D C5 + A' B' X'
C4 = D' Y + A' C D'
C5 = C' C4 + A Y + A' B X
C6 = A C4 + C C5 + C4' C5 + A' B' C

X = C' + D'
Y = B' C'

C2 = B + C' + D
C2 = B' D + B C' D + C' D' + C D + B C D'
C2 = B' D + B C' D + C' D' + W
W  = C D + B C D'

PAL implementation vs.  Discrete gate implementation

need another input and another output

Monday, March 15, 2010
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Multi-purpose function block
3 control inputs to specify operation to perform on operands

2 data inputs for operands

1 output of the same bit-width as operands

10

C0 C1 C2 Function Comments
0 0 0 1 always 1
0 0 1 A + B logical OR
0 1 0 (A • B)' logical NAND
0 1 1 A xor B logical xor
1 0 0 A xnor B logical xnor
1 0 1 A • B logical AND
1 1 0 (A + B)' logical NOR
1 1 1 0 always 0

3 control inputs: C0, C1, C2
2 data inputs: A, B
1 output: F

Logical function unit

Monday, March 15, 2010
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Choose implementation technology
5-variable K-map to discrete gates

multiplexor implementation

Formalize the problem

C0 C1 C2 A B F
0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 0 1 1
0 1 0 1 0 1
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 0 1 1
0 1 1 1 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 0 0 1 0
1 0 0 1 0 0
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 0 1 0
1 0 1 1 0 0
1 0 1 1 1 1
1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 1 0 0
1 1 0 1 1 0
1 1 1 0 0 0
1 1 1 0 1 0
1 1 1 1 0 0
1 1 1 1 1 0

8:1 MUX

0

1

2

3

4

5

6

7

S2   S1   S0

C0 C1 C2

F

0

1

A

B

A

B

A

B
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74LS247

12
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Production line control

Rods of varying length (+/-10%) travel on conveyor belt
Mechanical arm pushes rods within spec (+/-5%) to one side

Second arm pushes rods too long to other side

Rods that are too short stay on belt

3 light barriers (light source + photocell) as sensors

Design combinational logic to activate the arms

Understanding the problem
Inputs are three sensors

Outputs are two arm control signals

Assume sensor reads "1" when tripped, "0" otherwise

Call sensors A, B, C

Monday, March 15, 2010
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Sketch of problem

Position of sensors
A to B distance = specification – 5%

A to C distance = specification + 5%

Within
Spec

Too
Short

Too
Long

A

B
C

spec
- 5% 

spec
+ 5%
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Truth table
Show don't cares

15

Logic implementation now straightforward
just use three 3-input AND gates

"too short" = AB'C'
 (only first sensor tripped)

"in spec" = A B C'
 (first two sensors tripped)

"too long" = A B C
 (all three sensors tripped)

A B C Function
0 0 0 do nothing
0 0 1 do nothing
0 1 0 do nothing
0 1 1 do nothing
1 0 0 too short
1 0 1 don't care
1 1 0 in spec
1 1 1 too long

Formalize the problem

Monday, March 15, 2010
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integer number_of_days ( month, leap_year_flag) {
switch (month) {

case  1: return (31);
case  2: if (leap_year_flag == 1)
            then return (29)
            else return (28);
case  3: return (31);
case  4: return (30);
case  5: return (31);
case  6: return (30);
case  7: return (31);
case  8: return (31);
case  9: return (30);
case 10: return (31);
case 11: return (30);
case 12: return (31);
default: return (0);

}
}

Calendar subsystem

Determine number of days in a month (to control watch display)
Used in controlling the display of a wrist-watch LCD screen

Inputs: month, leap year flag

Outputs: number of days

Use software implementation
to help understand the problem

Monday, March 15, 2010
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Encoding:
Binary number for month: 4 bits

4 wires for 28, 29, 30, and 31
one-hot – only one true at any time

Block diagram:

17

leapmonth

28 29 30 31

month leap 28 29 30 31
0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

Formalize the problem

Monday, March 15, 2010
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Discrete gates

28 = 

29 =

30 = 

31 = 

Can translate to S-o-P or P-o-S

18

month leap 28 29 30 31
0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

Choose implementation target and perform mapping

m8’ m4’ m2 m1’ leap’

m8’ m4’ m2 m1’ leap

m8’ m4 m1’ + m8 m1

m8’ m1 + m8 m1’

Monday, March 15, 2010
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Leap year flag

Determine value of leap year flag given the year
For years after 1582 (Gregorian calendar reformation), 

Leap years are all the years divisible by 4, 

Except that years divisible by 100 are not leap years, 

But years divisible by 400 are leap years. 

Encoding the year:
Binary – easy for divisible by 4, 
but difficult for 100 and 400 (not powers of 2)

BCD – easy for 100,
but more difficult for 4, what about 400?

Parts:
Construct a circuit that determines if the year is divisible by 4

Construct a circuit that determines if the year is divisible by 100

Construct a circuit that determines if the year is divisible by 400

Combine the results of the previous three steps to yield the leap year flag

Monday, March 15, 2010
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Activity: divisible-by-4 circuit

BCD coded year 
YM8 YM4 YM2 YM1 – YH8 YH4 YH2 YH1 – YT8 YT4 YT2 YT1 – YO8 YO4 YO2 YO1

Only need to look at low-order two digits of the year
all years ending in 00, 04, 08, 12, 16, 20, etc. are divisible by 4

If tens digit is even, then divisible by 4 if ones digit is 0, 4, or 8

If tens digit is odd, then divisible by 4 if the ones digit is 2 or 6.  

Translates into the following Boolean expression
(where YT1 is the year's tens digit low-order bit, 
YO8 is the high-order bit of year's ones digit, etc.):

YT1’ (YO8’ YO4’ YO2’ YO1’ + YO8’ YO4 YO2’ YO1’ + YO8 YO4’ YO2’ YO1’ ) 
+ YT1 (YO8’ YO4’ YO2 YO1’ + YO8’ YO4 YO2 YO1’ )

Digits with values of 10 to 15 will never occur, simplify further to yield: 
YT1’ YO2’ YO1’ + YT1 YO2 YO1’

Monday, March 15, 2010
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Divisible-by-100 and divisible-by-400 circuits

Divisible-by-100 just requires checking that all bits of two low-order digits are all 0:
YT8’ YT4’ YT2’ YT1’   •   YO8’ YO4’ YO2’ YO1’ 

Divisible-by-400 combines the divisible-by-4 (applied to the thousands and hundreds 
digits) and divisible-by-100 circuits

(YM1’ YH2’ YH1’ + YM1 YH2 YH1’) • (YT8’ YT4’ YT2’ YT1’ •  YO8’ YO4’ YO2’ YO1’ )

Monday, March 15, 2010
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Combining to determine leap year flag

Label results of previous three circuits: D4, D100, and D400

 leap_year_flag = D4 (D100 • D400’ ) ’

   = D4 • D100’ + D4 • D400

   = D4 • D100’ + D400

Monday, March 15, 2010
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Y01

Y02

Y04

Y08

YT1

YT2

YT4

YT8

YH1

YH2

YH4

YH8

YM1

YM2

YM4

YM8

D100

D4

D400

LEAP

23

Implementation of leap year flag

Monday, March 15, 2010
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Arithmetic circuits

Excellent examples of combinational logic design
Time vs. space trade-offs

Doing things fast may require more logic and thus more space

Example: carry lookahead logic

Arithmetic and logic units
General-purpose building blocks

Critical components of processor datapaths

Used within most computer instructions

Monday, March 15, 2010
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Number systems

Representation of positive numbers is the same in most systems 
Major differences are in how negative numbers are represented 
Representation of negative numbers come in three major schemes

Sign and magnitude

1s complement

2s complement

Assumptions
We'll assume a 4 bit machine word 

16 different values can be represented 

Roughly half are positive, half are negative

Monday, March 15, 2010
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0000

0111

0011

1011

1111
1110

1101

1100

1010
1001

1000
0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6

+7–0
–1

–2

–3

–4

–5

–6

–7

0 100 = + 4

1 100 = – 4

Sign and magnitude

One bit dedicate to sign (positive or negative)
Sign: 0 = positive (or zero), 1 = negative

Rest represent the absolute value or magnitude
Three low order bits: 0 (000) thru 7 (111)

Range for n bits
+/– 2n–1 –1  (two representations for 0)

Cumbersome addition/subtraction 
Must compare magnitudes
to determine sign of result

Monday, March 15, 2010
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If N is a positive number, then the negative of N (its 1s complement or N' ) is 
N' = (2n– 1) – N

Example: 1s complement of 7

Shortcut: simply compute bit-wise complement ( 0111 -> 1000 )

27

2 =  10000

1 =  00001

2   –1 =    1111

7 =    0111

       1000   =  –7 in 1s complement form

4

4

1s complement

Monday, March 15, 2010
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0000

0111

0011

1011

1111
1110

1101

1100

1010
1001

1000
0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7–7

–6

–5

–4

–3

–2

–1

–0

0 100 = + 4

1 011 = – 4

1s complement (cont'd)

Subtraction implemented by 1s complement and then addition
Two representations of 0

Causes some complexities in addition

High-order bit can act as sign bit

Monday, March 15, 2010
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0 100 = + 4

1 100 = – 4

+0
+1

+2

+3

+4

+5

+6

+7–8

–7

–6

–5

–4

–3

–2

–1

0000

0111

0011

1011

1111
1110

1101

1100

1010
1001

1000
0110

0101

0100

0010

0001

2s complement

1s complement with negative numbers shifted one position clockwise
Only one representation for 0 

One more negative number
than positive numbers

High-order bit can act as sign bit

Monday, March 15, 2010



ELPL
Embedded Low-Power

Laboratory

If N is a positive number, then the negative of N (its 2s complement or N* ) is 
N* = 2n – N

Example: 2s complement of 7

Example: 2s complement of –7

Shortcut: 2s complement = bit-wise complement + 1
0111 -> 1000 + 1 -> 1001  (representation of -7)

1001 -> 0110 + 1 -> 0111  (representation of 7)

30

2 = 10000

7 =    0111

    1001  = repr. of –7

4

2 = 10000

–7 =   1001

    0111  = repr. of 7

4

subtract

subtract

2s complement (cont’d)
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Simple addition and subtraction
Simple scheme makes 2s complement the virtually unanimous choice for 
integer number systems in computers

31

4

+ 3

7

0100

0011

0111

– 4

+ (– 3)

– 7

1100

1101

11001

4

– 3

1

0100

1101

10001

– 4

+ 3

– 1

1100

0011

1111

2s complement addition and subtraction
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Can't ignore it completely
Needed to check for overflow (see next two slides)

When there is no overflow, carry-out may be true but can be ignored

   – M + N when N > M:
   
   M*  +  N  =  (2n –  M)  +  N  =  2n +  (N – M)

ignoring carry-out is just like subtracting 2n

   – M + – N where N + M ≤ 2n–1

   (– M) + (– N) = M* +  N* = (2n– M) + (2n– N)   = 2n – (M + N)  +  2n

ignoring the carry, it is just the 2s complement representation for – (M + N)

32

Why can the carry-out be ignored?

Monday, March 15, 2010
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Overflow conditions
Add two positive numbers to get a negative number

Add two negative numbers to get a positive number

33

5 + 3 = –8 –7 – 2 = +7

+0
+1

+2

+3

+4

+5

+6

+7–8

–7

–6

–5

–4

–3

–2

–1

0000

0111

0011

1011

1111
1110

1101

1100

1010
1001

1000
0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6

+7–8

–7

–6

–5

–4

–3

–2

–1

0000

0111

0011

1011

1111
1110

1101

1100

1010
1001

1000
0110

0101

0100

0010

0001

Overflow in 2s complement addition/subtraction
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Overflow when carry into sign bit position is not equal to carry-out

34

5
  3

– 8

 0  1  1  1           
   0 1 0 1
   0 0 1 1
   1 0 0 0

– 7
– 2

7

 1  0  0  0    
   1 0 0 1
   1 1 1 0
1 0 1 1 1

5
2
7

 0  0  0  0    
   0 1 0 1
   0 0 1 0
   0 1 1 1

– 3
– 5
– 8

 1  1  1  1    
   1 1 0 1
   1 0 1 1
1 1 0 0 0

overflow overflow

no overflow no overflow

Overflow conditions

Monday, March 15, 2010
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Half adder (add 2 1-bit numbers)
Sum = Ai' Bi + Ai Bi' = Ai xor Bi

Cout = Ai Bi

Full adder (carry-in to cascade for multi-bit adders)
Sum = Ci xor A xor B

Cout = B Ci  +  A Ci  +  A B = Ci (A + B) + A B

35

Ai Bi Sum Cout
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

Ai Bi Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Circuits for binary addition

Monday, March 15, 2010
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Standard approach
6 gates

2 XORs, 2 ANDs, 2 ORs

Alternative implementation
5 gates

Half adder is an XOR gate and AND gate

2 XORs, 2 ANDs, 1 OR

36

Cout = A B + Cin (A xor B) = A B + B Cin + A Cin

Full adder implementations

A

B

Cin
S

�
�

� � �
�
�

� � � �

Half
Adder

Sum

Cout

Half
Adder

Sum

Cout

A

B

Cin

A xor B

AB

A xor B xor Cin

Cin(A xor B)

Sum

Cout

Monday, March 15, 2010
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Use an adder to do subtraction thanks to 2s complement representation
A – B  =   A + (– B)   =   A + B' + 1

Control signal selects B or 2s complement of B

37

Adder/subtractor

0 1 0 1 0 1 0 1

A B

C o u t C in

S u m

A B

C o u t C in

S u m

A B

C o u t C in

S u m

A B

C o u t C in

S u m

S 3 S 2 S 1 S 0

A d d '

S u b t r a c t

S e lS e lS e lS e l

B 3 B 3' B 2 B 2' B 1 B 1' B 0 B 0'A 3 A 2 A 1 A 0

Ove r flo w
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ELPL
Embedded Low-Power

Laboratory

Critical delay
The propagation of carry from 
low to high order stages

38

Late
arriving
signal

Two gate delays
to compute Cout

4 stage
adder

A0
B0

0

S0 @2

A1
B1

C1 @2

S1 @3

A2
B2

C2 @4

S2 @5

A3
B3

C3 @6

S3 @7
Cout @8

Ripple-carry adders

A

B

Cin

@1

A

B @1

@N+1

Cout

@0

@0

@0

@0

@N

@N+2
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Critical delay
The propagation of carry from low to high order stages

1111 + 0001 is the worst case addition

Carry must propagate through all bits

39

Ripple-carry adders (cont’d)
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Carry-lookahead logic

Carry generate:  Gi = Ai Bi
Must generate carry when A = B = 1

Carry propagate:  Pi = Ai xor Bi
Carry-in will equal carry-out here

Sum and Cout can be re-expressed in terms of generate/propagate:
Si = Ai xor Bi xor Ci
 = Pi xor Ci

Ci+1 = Ai Bi + Ai Ci + Bi Ci
 = Ai Bi + Ci (Ai + Bi)
 = Ai Bi + Ci (Ai xor Bi)
 = Gi + Ci Pi

Monday, March 15, 2010
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Carry-lookahead logic (cont’d)

Re-express the carry logic as follows:
C1 = G0 + P0 C0

C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0

C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0

C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0 + P3 P2 P1 P0 C0                                                                

Each of the carry equations can be implemented with two-level logic
All inputs are now directly derived from data inputs and not from 
intermediate carries

This allows computation of all sum outputs to proceed in parallel
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Adder with propagate and generate outputs

42

Increasingly complex
logic for carries

Carry-lookahead implementation

Ai

Bi

Ci

Pi @ 1 gate delay

Si @ 2 gate delays

Gi @ 1 gate delay

C0

P0

G0

C1 @3

C0

P0

P1

G0

P1

G1

C2 @3

� �
	 �
	 �
	 �
� �
	 �
	 �
� �

	 �
� �

� � � � �

C0
P0
P1
P2

G1

P2

P3

G2

P3

G3

C4 @3

P3

G0
P1
P2
P3
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A0
B0

0

S0 @2

A1
B1

C1 @2

S1 @3

A2
B2

C2 @4

S2 @5

A3
B3

C3 @6

S3 @7
Cout @8

A0
B0

0

S0 @2

A1
B1

C1 @3

S1 @4

A2
B2

C2 @3

S2 @4

A3
B3

C3 @3

S3 @4

C4 @3 C4 @3

Carry-lookahead implementation (cont’d)

Carry-lookahead logic generates individual carries
Sums computed much more quickly in parallel
However, cost of carry logic increases with more stages
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Lookahead Carry Unit
C0

P0 G0P1 G1P2 G2P3 G3 C3 C2 C1

C0

P3-0 G3-0

C4

@3@2
@4

@3@2
@5

@3@2
@5

@3@2

@4

@5@3

@0
C16

A[15-12]B[15-12]
C12

S[15-12]

A[11-8] B[11-8]
C8

S[11-8]

A[7-4] B[7-4]
C4

S[7-4]
@7@8@8

A[3-0] B[3-0]
C0

S[3-0]

@0

@4

4 4

4
P G

4-bit Adder

4 4

4
P G

4-bit Adder

4 4

4
P G

4-bit Adder

4 4

4
P G

4-bit Adder

Carry-lookahead adder with cascaded carry-lookahead logic

Carry-lookahead adder
4 four-bit adders with internal carry lookahead

Second level carry lookahead unit extends lookahead to 16 bits

G = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0

P = P3 P2 P1 P0

C1 = G0 + P0 C0C2 = G1 + P1 G0 + P1 P0 C0
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4-Bit Adder
[3:0]

C0C4

4-bit adder
[7:4]

1C8

0C8

five
2:1 mux

   0   1  0   1 0   101

adder 
low

adder
high

01

4-bit adder
[7:4]

C8 S7 S6 S5 S4 S3 S2 S1 S0

Carry-select adder

Redundant hardware to make carry calculation go faster
Compute two high-order sums in parallel while waiting for carry-in
One assuming carry-in is 0 and another assuming carry-in is 1
Select correct result once carry-in is finally computed
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Logical and arithmetic operations
not all operations appear useful, but "fall out" of internal logic

S1
0
0
1
1

S0
0
1
0
1

Function
Fi = Ai

Fi = not Ai
Fi = Ai xor Bi

Fi = Ai xnor Bi

Comment
input Ai transferred to output
complement of Ai transferred to output
compute XOR of Ai, Bi
compute XNOR of Ai, Bi

M = 0, logical bitwise operations

M = 1, C0 = 0, arithmetic operations
0
0
1
1

0
1
0
1

F = A
F = not A

F = A plus B
F = (not A) plus B

input A passed to output
complement of A passed to output
sum of A and B
sum of B and complement of A

M = 1, C0 = 1, arithmetic operations
0
0
1
1

0
1
0
1

F = A plus 1
F = (not A) plus 1
F = A plus B plus 1

F = (not A) plus B plus 1

increment A
twos complement of A
increment sum of A and B
B minus A

Arithmetic logic unit design specification
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M
0

1

1

S1
0

0

1

1

0

0

1

1

0

0

1

1

S0
0

1

0

1

0

1

0

1

0

1

0

1

Ci
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1

Ai
0
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
0
1
1
0
0
1
1
0 
1
0
1
0
0
1
1
0
0
1
1

Bi
X
X
X
X
0
1
0
1
0
1
0
1
X
X
X
X
0
1
0
1
0
1
0
1
X
X
X
X
0
1
0
1
0
1
0
1

Fi
0
1
1
0
0
1
1
0
1
0
0
1
0
1
1
0
0
1
1
0
1
0
0
1
1
0
0
1
1
0
0
1
0
1
1
0

Ci+1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
1
0
1
0
0
0
1
1
0
0
1
1
1
1
1
0
1

Arithmetic logic unit design (cont’d)

Sample ALU – truth table

Monday, March 15, 2010



ELPL
Embedded Low-Power

Laboratory

Sample ALU – multi-level discrete gate logic implementation

48

12 gates

Arithmetic logic unit design (cont’d)

\S1

\Bi
[35]

M
S1
Bi

[33]

S0

Ai
[30]

Ci

[33]

[33]

[30]

M
Ci
[30]

Co

M
Ci

\Co

Ci
[30]
[33]

\Co
[30]

\[30]

[35]

\[35]

\Co

Fi
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Sample ALU – clever multi-level implementation

49

     

     

First-level gates
use S0 to complement Ai
 S0 = 0 causes gate X1 to pass Ai
 S0 = 1 causes gate X1 to pass Ai'
use S1 to block Bi
 S1 = 0 causes gate A1 to make Bi go forward as 0
  (don't want Bi for operations with just A)
 S1 = 1 causes gate A1 to pass Bi
use M to block Ci
 M = 0 causes gate A2 to make Ci go forward as 0
  (don't want Ci for logical operations)
 M = 1 causes gate A2 to pass Ci

Other gates
for M=0 (logical operations, Ci is ignored)

Fi = S1 Bi xor (S0 xor Ai)
 = S1'S0' ( Ai ) + S1'S0 ( Ai' ) +
     S1 S0' ( Ai Bi' + Ai' Bi ) + S1 S0 ( Ai' Bi' + Ai Bi )

for M=1 (arithmetic operations)
Fi = S1 Bi xor ( ( S0 xor Ai ) xor Ci ) = 
Ci+1 = Ci (S0 xor Ai) + S1 Bi ( (S0 xor Ai) xor Ci ) =

just a full adder with inputs S0 xor Ai, S1 Bi, and Ci

Arithmetic logic unit design (cont’d)

A1 A2X1

X2

X3

A1 A1

S1 Bi S0 Ai M Ci

Ci+1
Fi
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Summary for examples of combinational logic

Combinational logic design process
Formalize problem: encodings, truth-table, equations

Choose implementation technology (ROM, PAL, PLA, discrete gates)

Implement by following the design procedure for that technology

Binary number representation
Positive numbers the same

Difference is in how negative numbers are represented

2s complement easiest to handle: one representation for zero, slightly complicated 
complementation, simple addition

Circuits for binary addition
Basic half-adder and full-adder

Carry lookahead logic

Carry-select

ALU Design
Specification, implementation
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