Digital Logic Design

4190.201.001

2010 Spring Semester

6. Case Studies in Combinational Logic Design

Naehyuck Chang Dept. of EECS/CSE Seoul National University <u>naehyuck@snu.ac.kr</u>

Combinational logic design case studies

- General design procedure
- Case studies
 - BCD to 7-segment display controller
 - Logical function unit
 - Process line controller
 - Galendar subsystem
- Arithmetic circuits

 - Addition/subtraction
 - ♀ Arithmetic/logic units

General design procedure for combinational logic

- Step 1. Understand the problem
 - What is the circuit supposed to do?
 - Write down inputs (data, control) and outputs
 - Draw block diagram or other picture
- Step 2. Formulate the problem using a suitable design representation
 - Truth table or waveform diagram are typical
 - May require encoding of symbolic inputs and outputs
- Step 3. Choose implementation target
 - ROM, PAL, PLA
 - Mux, decoder and OR-gate
 - Discrete gates
- Step 4. Follow implementation procedure
 - Section 6.1 K-maps for two-level, multi-level
 - Design tools and hardware description language (e.g., Verilog)

BCD to 7-segment display controller

- Understanding the problem
 - input is a 4 bit bcd digit (A, B, C, D)
 - output is the control signals
 for the display (7 outputs C0 C6)
- Block diagram

mbedded Low-Power

aboratory

Formalize the problem

- Truth table
 - Show don't cares
- Choose implementation target

 - Don't cares imply PAL/PLA may be attractive
- Follow implementation procedure
 - Minimization using K-maps

А	В	С	D	C0	C1	C2	C3	C4	C5	C6
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	0	0	1	1
1	0	1	_	-	-	-	-	-	-	-
1	1	_	-	-	-	_	-	-	-	-

Implementation as minimized sum-of-products

15 unique product terms when minimized individually

6

Implementation as minimized S-o-P (cont'd)

- Can do better
 - 9 unique product terms (instead of 15)
 - Share terms among outputs
 - Each output not necessarily in minimized form


```
C0 = A + B D + C + B' D'

C1 = C' D' + C D + B'

C2 = B + C' + D

C3 = B' D' + C D' + B C' D + B' C

C4 = B' D' + C D'

C5 = A + C' D' + B D' + B C'

C6 = A + C D' + B C' + B' C
```


C0 = B C' D + C D + B' D' + B C D' + A C1 = B' D + C' D' + C D + B' D' C2 = B' D + B C' D + C' D' + C D + B C D' C3 = B C' D + B' D + B' D' + B C D' C4 = B' D' + B C D' C5 = B C' D + C' D' + A + B C D'C6 = B' C + B C' + B C D' + A

7

PLA implementation

PAL implementation vs. Discrete gate implementation

- Limit of 4 product terms per output
 - Decomposition of functions with larger number of terms
 - Do not share terms in PAL anyway (although there are some with some shared terms)

C2 = B + C' + D C2 = B' D + B C' D + C' D' + C D + B C D' $C2 = B' D + B C' D + C' D' + W \longrightarrow \text{need another input and another output}$ $W = C D + B C D' \longleftarrow \text{need another input and another output}$

Decompose into multi-level logic (hopefully with CAD support)

Find common sub-expressions among functions

C0 = C3 + A' B X' + A D Y C1 = Y + A' C5' + C' D' C6 C2 = C5 + A' B' D + A' C D C3 = C4 + B D C5 + A' B' X' C4 = D' Y + A' C D' C5 = C' C4 + A Y + A' B XC6 = A C4 + C C5 + C4' C5 + A' B' C

X = C' + D'Y = B' C'

nbedded Low-Power

aboratory

Logical function unit

- Multi-purpose function block
 - 3 control inputs to specify operation to perform on operands
 - 2 data inputs for operands

C0	C1	C2	Function	Comments	
0	0	0	1	always 1	
0	0	1	A + B	logical OR	2 combred inner top C1 C2
0	1	0	(A ● B)'	logical NAND	3 control inputs: CU, CI, C2
0	1	1	A xor B	logical xor	
1	0	0	A xnor B	logical xnor	I output: F
1	0	1	A • B	logical AND	
1	1	0	(A + B)'	logical NOR	
1	1	1	0	always 0	

Formalize the problem

C0	C1	C2	А	В	F
0	0	0	0	0	1
0	0	0	0	1	1
0	0	0	1	0	1
0	0	0	1	1	1
0	0	1	0	0	0
0	0	1	0	1	1
0	0	1	1	0	1
0	0	1	1	1	1
0	1	0	0	0	1
0	1	0	0	1	1
0	1	0	1	0	1
0	1	0	1	1	0
0	1	1	0	0	0
0	1	1	0	1	1
0	1	1	1	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	0	0	1	0
1	0	0	1	0	0
1	0	0	1	1	1
1	0	1	0	0	0
1	0	1	0	1	0
1	0	1	1	0	0
1	0	1	1	1	1
1	1	0	0	0	1
1	1	0	0	1	0
1	1	0	1	0	0
1	1	0	1	1	0
1	1	1	0	0	0
1	1	1	0	1	0
1	1	1	1	0	0
1	1	1	1	1	0

Choose implementation technology 5-variable K-map to discrete gates multiplexor implementation

Embedded Low-Power

aboratory

74LS247

SN54/74LS247 • SN54/74LS248 • SN54/74LS249

Monday, March 15, 2010

Production line control

- Rods of varying length (+/-10%) travel on conveyor belt
 - Mechanical arm pushes rods within spec (+/-5%) to one side
 - Second arm pushes rods too long to other side
 - Rods that are too short stay on belt

 - Design combinational logic to activate the arms
- Understanding the problem

 - Outputs are two arm control signals
 - Assume sensor reads "1" when tripped, "0" otherwise
 - ♀ Call sensors A, B, C

Sketch of problem

- Position of sensors
 - \bigcirc A to B distance = specification 5%
 - \bigcirc A to C distance = specification + 5%

Formalize the problem

- Truth table
 - Show don't cares

Α	В	С	Function
0	0	0	do nothing
0	0	1	do nothing
0	1	0	do nothing
0	1	1	do nothing
1	0	0	too short
1	0	1	don't care
1	1	0	in spec
1	1	1	too long

Logic implementation now straightforward just use three 3-input AND gates

```
"too short" = AB'C'
(only first sensor tripped)
```

"in spec" = A B C' (first two sensors tripped)

"too long" = A B C (all three sensors tripped)

Calendar subsystem

- Determine number of days in a month (to control watch display)
 - Used in controlling the display of a wrist-watch LCD screen
 - Inputs: month, leap year flag
 - Outputs: number of days
- Use software implementation to help understand the problem

```
integer number of days ( month, leap year flag) {
    switch (month) {
         case 1: return (31);
         case 2: if (leap year flag == 1)
                      then return (29)
                      else return (28);
         case 3: return (31);
         case 4: return (30);
         case 5: return (31);
         case 6: return (30);
         case 7: return (31);
         case 8: return (31);
         case 9: return (30);
         case 10: return (31);
         case 11: return (30);
         case 12: return (31);
         default: return (0);
     }
```

mbedded Low-Power

aboratory

Formalize the problem

- Second Encoding:
 - Binary number for month: 4 bits
 - 4 wires for 28, 29, 30, and 31 one-hot – only one true at any time
- Block diagram:

month	leap	28	29	30	31
0000	-	-	_	_	—
0001	_	0	0	0	1
0010	0	1	0	0	0
0010	1	0	1	0	0
0011	-	0	0	0	1
0100	_	0	0	1	0
0101	_	0	0	0	1
0110	_	0	0	1	0
0111	-	0	0	0	1
1000	-	0	0	0	1
1001	_	0	0	1	0
1010	_	0	0	0	1
1011	-	0	0	1	0
1100	_	0	0	0	1
1101	_	_	_	-	_
111 -	_	_	_	-	-

Choose implementation target and perform mapping

Discrete gates

9	28 =	m8' m4' m2 m1' leap'
9	29 =	m8' m4' m2 m1' leap
9	30 =	m8' m4 m1' + m8 m1
	31 =	m8' m1 + m8 m1'

Can translate to S-o-P or P-o-S

month	leap	28	29	30	31
0000	—	-	—	_	-
0001	—	0	0	0	1
0010	0	1	0	0	0
0010	1	0	1	0	0
0011	_	0	0	0	1
0100	_	0	0	1	0
0101	_	0	0	0	1
0110	_	0	0	1	0
0111	_	0	0	0	1
1000	_	0	0	0	1
1001	-	0	0	1	0
1010	_	0	0	0	1
1011	- 1	0	0	1	0
1100	_	0	0	0	1
1101	_	_	_	-	-
111–	-	-	—	-	-

Leap year flag

- Determine value of leap year flag given the year
 - For years after 1582 (Gregorian calendar reformation),
 - Leap years are all the years divisible by 4,
 - Except that years divisible by 100 are not leap years,
 - But years divisible by 400 are leap years.
- Encoding the year:
 - Binary easy for divisible by 4,
 but difficult for 100 and 400 (not powers of 2)
 - BCD easy for 100, but more difficult for 4, what about 400?
- Parts:
 - Construct a circuit that determines if the year is divisible by 4
 - Construct a circuit that determines if the year is divisible by 100
 - Construct a circuit that determines if the year is divisible by 400
 - Combine the results of the previous three steps to yield the leap year flag

Activity: divisible-by-4 circuit

- BCD coded year
 - YM8 YM4 YM2 YM1 YH8 YH4 YH2 YH1 YT8 YT4 YT2 YT1 YO8 YO4 YO2 YO1
- Only need to look at low-order two digits of the year all years ending in 00, 04, 08, 12, 16, 20, etc. are divisible by 4
 - If tens digit is even, then divisible by 4 if ones digit is 0, 4, or 8
 - \bigcirc If tens digit is odd, then divisible by 4 if the ones digit is 2 or 6.
- Translates into the following Boolean expression (where YT1 is the year's tens digit low-order bit, YO8 is the high-order bit of year's ones digit, etc.):
 - YT1' (Y08' Y04' Y02' Y01' + Y08' Y04 Y02' Y01' + Y08 Y04' Y02' Y01') + YT1 (Y08' Y04' Y02 Y01' + Y08' Y04 Y02 Y01')
- Digits with values of 10 to 15 will never occur, simplify further to yield:

YT1' YO2' YO1' + YT1 YO2 YO1'

Divisible-by-100 and divisible-by-400 circuits

- Divisible-by-100 just requires checking that all bits of two low-order digits are all 0:
 - YT8' YT4' YT2' YT1' YO8' YO4' YO2' YO1'
- Divisible-by-400 combines the divisible-by-4 (applied to the thousands and hundreds digits) and divisible-by-100 circuits
 - (YM1' YH2' YH1' + YM1 YH2 YH1') (YT8' YT4' YT2' YT1' YO8' YO4' YO2' YO1')

Combining to determine leap year flag

Label results of previous three circuits: D4, D100, and D400

 $leap_year_flag = D4 (D100 \bullet D400')'$

- = D4 D100' + D4 D400
- = D4 D100' + D400

Implementation of leap year flag

Embedded Low-Power

Laboratory

23

Monday, March 15, 2010

Arithmetic circuits

- Excellent examples of combinational logic design
- Time vs. space trade-offs
 - Doing things fast may require more logic and thus more space
 - Example: carry lookahead logic
- Arithmetic and logic units
 - General-purpose building blocks
 - Critical components of processor datapaths
 - Used within most computer instructions

Number systems

- Representation of positive numbers is the same in most systems
- Major differences are in how negative numbers are represented
- Representation of negative numbers come in three major schemes
 - Sign and magnitude
 - Is complement
 - 2s complement
- Assumptions
 - We'll assume a 4 bit machine word

 - Roughly half are positive, half are negative

Sign and magnitude

- One bit dedicate to sign (positive or negative)
 - Sign: 0 = positive (or zero), 1 = negative
- Rest represent the absolute value or magnitude
 - Three low order bits: 0 (000) thru 7 (111)
- Range for n bits
 - \bigcirc +/- 2n-1 -1 (two representations for 0)
- Cumbersome addition/subtraction
 - Must compare magnitudes to determine sign of result

1s complement

- If N is a positive number, then the negative of N (its 1s complement or N') is N' = (2n-1) N
 - Seample: 1s complement of 7

2 4	= 10000
1	= 00001
2 4 -1	= 1111
7	= 0111
	1000 = -7 in 1s complement form

Shortcut: simply compute bit-wise complement (0111 -> 1000)

1s complement (cont'd)

- Subtraction implemented by 1s complement and then addition
- Two representations of 0
 - Causes some complexities in addition
- High-order bit can act as sign bit

aboratory

2s complement

- - ♀ Only one representation for 0
 - One more negative number than positive numbers
 - High-order bit can act as sign bit

 $0\ 100 = +\ 4$

2s complement (cont'd)

- If N is a positive number, then the negative of N (its 2s complement or N*) is $N^* = 2n N$
 - Example: 2s complement of 7

subtract 7 = 0111

= 10000

2

1001 = repr. of -7

- $2^{4} = 10000$ subtract -7 = 10010111 = repr. of 7
- Shortcut: 2s complement = bit-wise complement + 1
 - ♀ 0111 -> 1000 + 1 -> 1001 (representation of -7)

2s complement addition and subtraction

- Simple addition and subtraction
 - Simple scheme makes 2s complement the virtually unanimous choice for integer number systems in computers

4	0100	- 4	1100	
+ 3	0011	+ (- 3)	1101	
7	0111	- 7	11001	
4	0100	1	1100	
т	0100	- 4	1100	
- 3	1101	<u>+ 3</u>	0011	
1	10001	- 1	1111	

Why can the carry-out be ignored?

- Can't ignore it completely
 - Needed to check for overflow (see next two slides)
- ♥ When there is no overflow, carry-out may be true but can be ignored

-M + N when N > M:

 $M^* + N = (2n - M) + N = 2n + (N - M)$

ignoring carry-out is just like subtracting 2n

```
-M + -N where N + M \le 2n-1
```

 $(-M) + (-N) = M^* + N^* = (2n-M) + (2n-N) = 2n - (M + N) + 2n$

ignoring the carry, it is just the 2s complement representation for -(M + N)

Overflow in 2s complement addition/subtraction

Overflow conditions

- Add two positive numbers to get a negative number
- Add two negative numbers to get a positive number

Monday, March 15, 2010

Overflow conditions

Overflow when carry into sign bit position is not equal to carry-out

5 -8 overflow	0 1 1 1 0 1 0 1 <u>0 0 1 1</u> 1 0 0 0	-7 -2 7 overflow	1 0 0 0 1 0 0 1 <u>1 1 1 0</u> 1 0 1 1 1	
5	0 0 0 0	- 3	1 1 1 1	
_2	0 1 0 1	- 5	1 1 0 1	
_7	<u>0 0 1 0</u>	- 8	<u>1 0 1 1</u>	
no overflow	0 1 1 1	no overflow	1 1 0 0 0	

Embedded Low-Power

aboratory

Circuits for binary addition

- Half adder (add 2 1-bit numbers)
 - Sum = Ai' Bi + Ai Bi' = Ai xor Bi
 - Cout = Ai Bi
- - \bigcirc Sum = Ci xor A xor B
 - \bigcirc Cout = B Ci + A Ci + A B = Ci (A + B) + A B

Ai	Bi	Sum	Cout
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	1

Ai	Bi	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

mbedded Low-Power

aboratory

Full adder implementations

- Standard approach
 6 gates
 2 XORs, 2 ANDs, 2 ORs
 Alternative implementation

 - Half adder is an XOR gate and AND gate
 - 2 XORs, 2 ANDs, 1 OR

Cout = A B + Cin (A xor B) = A B + B Cin + A Cin

Adder/subtractor

- Use an adder to do subtraction thanks to 2s complement representation
 - \bigcirc A B = A + (- B) = A + B' + 1
 - Control signal selects B or 2s complement of B

Ripple-carry adders

- Critical delay
 - The propagation of carry from low to high order stages

Laboratory

Ripple-carry adders (cont'd)

- Critical delay
 - The propagation of carry from low to high order stages

 - ♀ Carry must propagate through all bits

Carry-lookahead logic

- \bigcirc Carry generate: Gi = Ai Bi
 - \bigcirc Must generate carry when A = B = 1
- Carry propagate: Pi = Ai xor Bi
 - Garry-in will equal carry-out here
- Sum and Cout can be re-expressed in terms of generate/propagate:
 - Si = Ai xor Bi xor Ci
 - = Pi xor Ci
 - $\bigcirc Ci+1 = Ai Bi + Ai Ci + Bi Ci$
 - = Ai Bi + Ci (Ai + Bi)
 - = Ai Bi + Ci (Ai xor Bi)
 - = Gi + Ci Pi

Carry-lookahead logic (cont'd)

- Re-express the carry logic as follows:
 - $\bigcirc C1 = G0 + P0 C0$
 - \bigcirc C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0
 - G3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0
 - G4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0 + P3 P2 P1 P0 C0
- Each of the carry equations can be implemented with two-level logic
 - All inputs are now directly derived from data inputs and not from intermediate carries
 - This allows computation of all sum outputs to proceed in parallel

Carry-lookahead implementation

Adder with propagate and generate outputs

mbedded Low-Power

aboratory

Carry-lookahead implementation (cont'd)

- Carry-lookahead logic generates individual carries
 - Sums computed much more quickly in parallel

Carry-lookahead adder with cascaded carry-lookahead logic

Carry-select adder

- Redundant hardware to make carry calculation go faster
 - Compute two high-order sums in parallel while waiting for carry-in
 - One assuming carry-in is 0 and another assuming carry-in is 1
 - Select correct result once carry-in is finally computed

mbedded Low-Power

aboratory

Arithmetic logic unit design specification

M = 0, logical bitwise operations

	S1	S0	Function	Comment
	0	0	Fi = Ai	input Ai transferred to output
	0	1	Fi = not Ai	complement of Ai transferred to output
	1	0	Fi = Ai xor Bi	compute XOR of Ai, Bi
	1	1	Fi = Ai xnor Bi	compute XNOR of Ai, Bi
= 1, C0 = 0, arithmetic operations				
	0	0	$\mathbf{F} = \mathbf{A}$	input A passed to output
	0	1	F = not A	complement of A passed to output
	1	0	F = A plus B	sum of A and B
	1	1	F = (not A) plus B	sum of B and complement of A
= 1, C0 = 1, arithmetic operations				
	0	0	F = A plus 1	increment A
	0	1	F = (not A) plus 1	twos complement of A
	1	0	F = A plus B plus 1	increment sum of A and B
	1	1	F = (not A) plus B plus 1	B minus A

Logical and arithmetic operations not all operations appear useful, but "fall out" of internal logic

mbedded Low-Power

aboratory

Μ

Μ

Arithmetic logic unit design (cont'd)

Sample ALU – truth table

Arithmetic logic unit design (cont'd)

Sample ALU – multi-level discrete gate logic implementation

Arithmetic logic unit design (cont'd)

Sample ALU – clever multi-level implementation

Monday, March 15, 2010

Summary for examples of combinational logic

Combinational logic design process

- Formalize problem: encodings, truth-table, equations
- Choose implementation technology (ROM, PAL, PLA, discrete gates)
- Implement by following the design procedure for that technology
- Binary number representation
 - Positive numbers the same
 - Difference is in how negative numbers are represented
 - 2s complement easiest to handle: one representation for zero, slightly complicated complementation, simple addition
- Circuits for binary addition
 - Basic half-adder and full-adder
 - Garry lookahead logic
 - Carry-select
- ALU Design
 - Specification, implementation

Monday, March 15, 2010