Digital Logic Design
 4190.201 .001
 2010 Spring Semester

8. Finite State Machines

Naehyuck Chang
Dept. of EECS/CSE
Seoul National University naehyuck@snu.ac.kr

Finite state machines

Q Sequential circuits
Q Primitive sequential elements
Q Combinational logic
Q Models for representing sequential circuits
Q Finite-state machines (Moore and Mealy)
Q Basic sequential circuits revisited

- Shift registers
- Counters

Q Design procedure

- State diagrams

Q State transition table

- Next state functions
- Hardware description languages

What is state machine?

Q A state is a set of values measured at different parts of the circuit.
Q A state machine is a digital device that traverses through a predetermined sequence of states in an orderly fashion.

Q A synchronous state machine distinguishes state by the clock.

State diagram

Q Mealy model
Q Moore model output

State diagram (2)

Q Asynchronous state diagram

- State machine remains forever in State 1 unless Start becomes active.

State diagram (3)

Q Synchronous state machine

- State transition has to be made in every clock cycle.
- The sum of branch conditions has to be 1 .

State diagram (4)

Q Branch condition example

Abstraction of state elements

Q Divide circuit into combinational logic and state
Q Localize the feedback loops and make it easy to break cycles
Q Implementation of storage elements leads to various forms of sequential logic

Forms of sequential logic

Q Asynchronous sequential logic - state changes occur whenever state inputs change (elements may be simple wires or delay elements)
Q Synchronous sequential logic - state changes occur in lock step across all storage elements (using a periodic waveform - the clock)

Finite state machine representations

Q States: determined by possible values in sequential storage elements
Q Transitions: change of state
Q Clock: controls when state can change by controlling storage elements

Q Sequential logic

- Sequences through a series of states
- Based on sequence of values on input signals
- Clock period defines elements of sequence

FSM design procedure: state diagram to encoded state transition table

Q Tabular form of state diagram
Q Like a truth-table (specify output for all input combinations)
Q Encoding of states: easy for counters - just use value

Present state			Next state	
0	000	001	1	
1	001	010	2	
2	010	011	3	
3	011	100	4	
4	100	101	5	
5	101	110	6	
6	110	111	7	
7	111	000	0	

State transition table

Q Format of state transition table

Present State	Inputs	Next State	Outputs Generated
$\mathrm{SO}-\mathrm{Sn}$	$10-\mathrm{Im}$	$\mathrm{S} 0-\mathrm{Sn}$	$\mathrm{O} 0-\mathrm{Op}$

Implementation

Q D flip-flop for each state bit
Q Combinational logic based on encoding

C3	C2	C1	N3	N2	N1
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

$$
\begin{aligned}
& \begin{array}{l}
\text { Verilog notation to show } \\
\text { function represents an } \\
\text { input to D-FF }
\end{array} \\
& \mathrm{N} 1<=\mathrm{C} 1^{\prime} \\
& \mathrm{N} 2<=\mathrm{C} 1 \mathrm{C} 2^{\prime}+\mathrm{C} 1^{\prime} \mathrm{C} 2 \\
& <=\mathrm{C} 1 \mathrm{xor} \mathrm{C} 2 \\
& \mathrm{~N} 3<=\mathrm{C} 1 \mathrm{C} 2 \mathrm{C} 3^{\prime}+\mathrm{C} 1^{\prime} \mathrm{C} 3+\mathrm{C} 2^{\prime} \mathrm{C} 3 \\
& <=(\mathrm{C} 1 \mathrm{C} 2) \mathrm{C} 3^{\prime}+\left(\mathrm{C} 1^{\prime}+\mathrm{C} 2^{\prime}\right) \mathrm{C} 3 \\
& <=(\mathrm{C} 1 \mathrm{C} 2) \mathrm{C} 3^{\prime}+(\mathrm{C1C2})^{\prime} \mathrm{C} 3 \\
& <=(\mathrm{C} 1 \mathrm{C} 2) \text { xor } \mathrm{C} 3
\end{aligned}
$$

Back to the shift register

Q Input determines next state

In	C 1	C 2	C 3	N 1	N 2	N 3
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	0	1	0
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	0	1	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	1	0	1
1	0	1	1	1	0	1
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

N1 <= In
N2 <= C1

More complex counter example

Q Complex counter

- repeats 5 states in sequence

Q not a binary number representation
Q Step 1: derive the state transition diagram

- count sequence: 000, 010, 011, 101, 110
- Step 2: derive the state transition table from the state transition diagram

Present State				Next State		
C	B	A	C+ +	B+ +	A+	
0	0	0	0	1	0	
0	0	1	-	-	-	
0	1	0	0	1	1	
0	1	1	1	0	1	
1	0	0	-	-	-	
1	0	1	1	1	0	
1	1	0	0	0	0	
1	1	1	-	-	-	

Note the don't care conditions that arise from the unused state codes

State assignment

Q State encoding
Q Identify each state by a unique name
Q Non-redundant encoding
Q Binary encoding
Q Gray code encoding
Q Redundant encoding

- One-hot encoding
- BCD encoding

One-hot encoding

Q Use of n-bit code for n states

- S1:0000000001
- S2: 0000000010
- S3: 0000000100

Model of state machines

Q Moore Model

Example

Q Design a clock-enable DFF with a primitive DFF

Example finite state machine diagram

Q Combination lock from introduction to course

- 5 states
- 5 self-transitions

Q 6 other transitions between states
Q 1 reset transition (from all states) to state S1

Can any sequential system be represented with a state diagram?

Q Shift register
Q input value shown on transition arcs

Q output values shown within state node

Counters are simple finite state machines

Q Counters

- proceed through well-defined sequence of states in response to enable

Q Many types of counters: binary, BCD, Gray-code
Q 3-bit up-counter: $000,001,010,011,100,101,110,111,000, \ldots$

- 3-bit down-counter: $111,110,101,100,011,010,001,000,111, \ldots$

How do we turn a state diagram into logic?

Q Counter
Q 3 flip-flops to hold state
Q Logic to compute next state

- Clock signal controls when flip-flop memory can change

Q Wait long enough for combinational logic to compute new value

- Don't wait too long as that is low performance

FSM design procedure

Q Start with counters

- Simple because output is just state
- Simple because no choice of next state based on input

Q State diagram to state transition table

- Tabular form of state diagram

Q Like a truth-table
Q State encoding
Q Decide on representation of states

- For counters it is simple: just its value

Q Implementation

- Flip-flop for each state bit
- Combinational logic based on encoding

More complex counter example (cont'd)

Q Step 3: K-maps for next state functions

$$
\begin{aligned}
& C+<=A \\
& B+<=B^{\prime}+A^{\prime} C^{\prime} \\
& A+<=B C^{\prime}
\end{aligned}
$$

Self-starting counters

- Start-up states

Q At power-up, counter may be in an unused or invalid state
Q Designer must guarantee that it (eventually) enters a valid state
Q Self-starting solution

- Design counter so that invalid states eventually transition to a valid state
- May limit exploitation of don't cares

Self-starting counters (cont'd)

Q Re-deriving state transition table from don't care assignment

Present State				Next State	
C	B	A	C+	B+ +	A+
0	0	0	0	1	0
0	0	1	1	1	0
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	1	0	0

Embedded Low-Power

Activity

Q 2-bit up-down counter (2 inputs)

- Direction: $\mathrm{D}=0$ for up, $\mathrm{D}=1$ for down
- Count: $\mathrm{C}=0$ for hold, $\mathrm{C}=1$ for count

Activity (cont'd)

Counter/shift-register model

Q Values stored in registers represent the state of the circuit
Q Combinational logic computes:

- Next state
- Function of current state and inputs
- Outputs

Q Values of flip-flops

General state machine model

Q Values stored in registers represent the state of the circuit
Q Combinational logic computes:

- Next state
- Function of current state and inputs
- Outputs
- Function of current state and inputs (Mealy machine)

Q Function of current state only (Moore machine)

State machine model (cont'd)

Q States: $\mathrm{S} 1, \mathrm{~S} 2, \ldots, \mathrm{Sk}$

- Inputs: I1, I2, ..., Im
- Outputs: O1, 02, ..., On
- Transition function: $\mathrm{Fs}(\mathrm{Si}, \mathrm{Ij})$
- Output function: $\mathrm{Fo}(\mathrm{Si})$ or $\mathrm{Fo}(\mathrm{Si}, \mathrm{Ij})$

Comparison of Mealy and Moore machines

- Mealy machines tend to have less states

Q Different outputs on arcs (n2) rather than states (n)
Q Moore machines are safer to use

- Outputs change at clock edge (always one cycle later)
- In Mealy machines, input change can cause output change as soon as logic is done - a big problem when two machines are interconnected - asynchronous feedback may occur if one isn't careful
Q Mealy machines react faster to inputs
- React in same cycle - don't need to wait for clock
- In Moore machines, more logic may be necessary to decode state into outputs - more gate delays after clock edge

Comparison of Mealy and Moore machines (cont'd)

Q Moore

state feedback

- Mealy

state feedback

Q Synchronous Mealy

Model of state machines (3)

Q Basic model

Specifying outputs for a Moore machine

Q Output is only function of state

- Specify in state bubble in state diagram
- Example: sequence detector for 01 or 10

Specifying outputs for a Mealy machine

- Output is function of state and inputs
- Specify output on transition arc between states
- Example: sequence detector for 01 or 10

		current	next	
reset	input	state	state	output
1	-	-	A	0
0	0	A	B	0
0	1	A	C	0
0	0	B	B	0
0	1	B	C	1
0	0	C	B	1
0	1	C	C	0

Registered Mealy machine (really Moore)

Q Synchronous (or registered) Mealy machine

- Registered state AND outputs

Q Avoids 'glitchy' outputs
Q Easy to implement in PLDs
Q Moore machine with no output decoding
Q Outputs computed on transition to next state rather than after entering

- View outputs as expanded state vector

Output synchronization

Q Prevent from glitch

- Increase output delay

Input synchronization

Q Prevent from timing fault
Q Increase delay

Generic synchronous state machine

Q I/O synchronization registers

Timing diagram

Maximum operating frequency

Clock skew

Q Timing fault

Clock skew (2)

Q Clock skew is caused by

- Net delay
- Artificial delay

Example: vending machine

Q Release item after 15 cents are deposited
Q Single coin slot for dimes, nickels
Q No change

Example: vending machine (cont'd)

Q Suitable abstract representation
Q Tabulate typical input sequences:
Q 3 nickels

- Nickel, dime
- Dime, nickel
- Two dimes

Q Draw state diagram:

- Inputs: N, D, reset
- Output: open chute
- Assumptions:
- Assume N and D asserted for one cycle
- Each state has a self loop for $\mathrm{N}=\mathrm{D}=0$ (no coin)

Example: vending machine (cont'd)

Q Minimize number of states - reuse states whenever possible

Example: vending machine (cont'd)

Q Uniquely encode states

present stateQ1 Q0	inputs	$\begin{gathered} \text { next state } \\ \text { D1 D0 } \\ \hline \end{gathered}$	output open
	D N		
0 0	00	0 0	0
	01	01	0
	10	10	0
	11	- -	-
01	00	01	0
	01	10	0
	10	11	0
	11	- -	-
0	00	10	0
	01	11	0
	10		0
	11	- -	-
1	- -	11	1

Example: Moore implementation

Q Mapping to logic

$$
\begin{aligned}
& \mathrm{D} 1=\mathrm{Q} 1+\mathrm{D}+\mathrm{Q} 0 \mathrm{~N} \\
& \mathrm{D} 0=\mathrm{Q} 0^{\prime} \mathrm{N}+\mathrm{Q} 0 \mathrm{~N}^{\prime}+\mathrm{Q} 1 \mathrm{~N}+\mathrm{Q} 1 \mathrm{D} \\
& \text { OPEN = Q1 Q0 }
\end{aligned}
$$

Example: vending machine (cont'd)

Q One-hot encoding

Equivalent Mealy and Moore state diagrams

- Moore machine

Q Outputs associated with state

- Mealy machine
- Outputs associated with transitions

Example: Mealy implementation

Example: Mealy implementation

D 0	$=\mathrm{Q} 0^{\prime} \mathrm{N}+\mathrm{Q} 0 \mathrm{~N}^{\prime}+\mathrm{Q} 1 \mathrm{~N}+\mathrm{Q} 1 \mathrm{D}$
D 1	$=\mathrm{Q} 1+\mathrm{D}+\mathrm{Q} 0 \mathrm{~N}$
OPEN	$=\mathrm{Q} 1 \mathrm{Q} 0+\mathrm{Q} 1 \mathrm{~N}+\mathrm{Q} 1 \mathrm{D}+\mathrm{Q} 0 \mathrm{D}$

Make sure OPEN is 0 when reset

- by adding AND gate

Vending machine: Moore to synch. Mealy

Q $\mathrm{OPEN}=\mathrm{Q} 1 \mathrm{Q} 0$ creates a combinational delay after Q1 and Q0 change in Moore implementation
Q This can be corrected by retiming, i.e., move flip-flops and logic through each other to improve delay
Q OPEN.d $=(\mathrm{Q} 1+\mathrm{D}+\mathrm{Q} 0 \mathrm{~N})\left(\mathrm{Q} 0^{\prime} \mathrm{N}+\mathrm{Q} 0 \mathrm{~N}^{\prime}+\mathrm{Q} 1 \mathrm{~N}+\mathrm{Q} 1 \mathrm{D}\right)$
= Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D

Q Implementation now looks like a synchronous Mealy machine

- It is common for programmable devices to have FF at end of logic

Vending machine: Mealy to synch. Mealy

56
Embedded low-Power Laboratory

Mealy and Moore examples

Q Recognize $A, B=0,1$
Q Mealy or Moore?

Mealy and Moore examples (cont'd)

Q Recognize $A, B=1,0$ then 0,1
Q Mealy or Moore?

Hardware description languages and sequential logic

Q Flip-flops
Q Representation of clocks - timing of state changes

- Asynchronous vs. synchronous
- FSMs

Q Structural view (FFs separate from combinational logic)

- Behavioral view (synthesis of sequencers - not in this course)

Q Data-paths = data computation (e.g., ALUs, comparators) + registers

- Use of arithmetic/logical operators
- Control of storage elements

Example: reduce-1-string-by-1

Q Remove one 1 from every string of 1 s on the input

Mealy

Verilog FSM - Reduce 1s example

Q Moore machine

Moore Verilog FSM (cont'd)

```
always @(in or state)
    case (state)
        zero:
    // last input was a zero
        begin
            if (in) next_state = one1;
            else next_state = zero;
        end
        one1:
    // we've seen one 1
    begin
            if (in) next_state = twols;
            else next_state = zero;
        end
            twols:
    // we've seen at least 2 ones
    begin
            if (in) next_state = twols;
        else next_state = zero;
    end
    endcase
crucial to include all signals that are input to state determination
```



```
                                    note that output
```

 note that output
 depends only on state
 depends only on state
 always @(state)
always @(state)
case (state)
case (state)
zero: out = 0;
zero: out = 0;
one1: out = 0;
one1: out = 0;
twols: out = 1;
twols: out = 1;
endcase

```
    endcase
```

endmodule

Mealy Verilog FSM

```
module reduce (clk, reset, in, out);
    input clk, reset, in;
    output out;
    reg out;
    reg state; // state variables
    reg next_state;
    always @(posedge clk)
        if (reset) state = zero;
        else state = next_state;
    always @(in or state)
        case (state)
            zero: // last input was a zero
        begin
            out = 0;
            if (in) next_state = one;
            else next_state = zero;
        end
            one: // we've seen one 1
        if (in) begin
            next_state = one; out = 1;
        end else begin
            next_state = zero; out = 0;
        end
    endcase
endmodule
```


Synchronous Mealy Machine

```
module reduce (clk, reset, in, out);
    input clk, reset, in;
    output out;
    reg out;
    reg state; // state variables
    always @(posedge clk)
        if (reset) state = zero;
        else
            case (state)
            zero: // last input was a zero
        begin
            out = 0;
            if (in) state = one;
            else state = zero;
        end
            one: // we've seen one 1
        if (in) begin
            state = one; out = 1;
        end else begin
            state = zero; out = 0;
        end
        endcase
    endmodule
```


Finite state machines summary

Q Models for representing sequential circuits

- Abstraction of sequential elements

Q Finite state machines and their state diagrams

- Inputs/outputs

Q Mealy, Moore, and synchronous Mealy machines

- Finite state machine design procedure
- Deriving state diagram

Q Deriving state transition table
Q Determining next state and output functions

- Implementing combinational logic
- Hardware description languages

