Digital Logic Design

4190.201.001

2010 Spring Semester

8. Finite State Machines

Naehyuck Chang
Dept. of EECS/CSE
Seoul National University
naehyuck@snu.ac.kr

Finite state machines

- Sequential circuits
 - Primitive sequential elements
 - Combinational logic
- Models for representing sequential circuits
 - Finite-state machines (Moore and Mealy)
- Basic sequential circuits revisited
 - Shift registers
 - Counters
- Design procedure
 - State diagrams
 - State transition table
 - Next state functions
- Hardware description languages

What is state machine?

- A state is a set of values measured at different parts of the circuit.
- A state machine is a digital device that traverses through a predetermined sequence of states in an orderly fashion.
- A synchronous state machine distinguishes state by the clock.

State diagram

- Mealy model
- Moore model output

State diagram (2)

- Asynchronous state diagram
 - State machine remains forever in State 1 unless Start becomes active.

State diagram (3)

- Synchronous state machine
 - State transition has to be made in every clock cycle.
 - The sum of branch conditions has to be 1.

State diagram (4)

Branch condition example

Abstraction of state elements

- Divide circuit into combinational logic and state
- Localize the feedback loops and make it easy to break cycles
- Implementation of storage elements leads to various forms of sequential logic

Forms of sequential logic

- Asynchronous sequential logic state changes occur whenever state inputs change (elements may be simple wires or delay elements)
- Synchronous sequential logic state changes occur in lock step across all storage elements (using a periodic waveform the clock)

Finite state machine representations

- States: determined by possible values in sequential storage elements
- Transitions: change of state
- Clock: controls when state can change by controlling storage elements
- Sequential logic
 - Sequences through a series of states
 - Based on sequence of values on input signals
 - Clock period defines elements of sequence

FSM design procedure: state diagram to encoded state transition table

- Tabular form of state diagram
- Like a truth-table (specify output for all input combinations)
- Encoding of states: easy for counters just use value

Pre	sent state	Next s	tate
0	000	001	1
1	001	010	2
2	010	011	3
3	011	100	4
4	100	101	5
5	101	110	6
6	110	111	7
7	111	000	0

State transition table

Format of state transition table

Present State	Inputs	Next State	Outputs Generated
S0 – Sn	10 – Im	S0 – Sn	O0 – Op

Implementation

- D flip-flop for each state bit
- Combinational logic based on encoding

C3	C2	C1	N3	N2	N1
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Back to the shift register

Input determines next state

In	C1	C2	C3	N1	N2	N3
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	0	1	0
0	1 1	0	1	0	1	0
000000001	1	1	0	0	1	1
0	1	1	1	0	1	1
1	0	0	0 1	1	0	0
1 1	0	0	1	1 1	0	0
1	0	1	0	1	0	1
1 1	0	1	1	1 1	0	1
1	1	0	1 0 1	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

More complex counter example

- Complex counter
 - repeats 5 states in sequence
 - not a binary number representation
- Step 1: derive the state transition diagram
 - count sequence: 000, 010, 011, 101, 110
- Step 2: derive the state transition table from the state transition diagram

Pre C	sent B	State A	Nex C+	t Stal B+	te A+
0	0	0	0	1	0
0	0	1	_	1	1
0	1	0	0	0	1
1	Ō	Ō	_	_	_
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	_	_	-

Note the don't care conditions that arise from the unused state codes

State assignment

- State encoding
- Non-redundant encoding
 - Binary encoding
 - Gray code encoding
- Redundant encoding
 - One-hot encoding
 - BCD encoding

One-hot encoding

Use of n-bit code for n states

S1: 0000000001

S2: 0000000010

Model of state machines

Moore Model

Example

Design a clock-enable DFF with a primitive DFF

Example finite state machine diagram

- Combination lock from introduction to course
 - 5 states
 - 5 self-transitions
 - 6 other transitions between states
 - □ 1 reset transition (from all states) to state S1

Can any sequential system be represented with a state diagram?

- Shift register
 - input value shown on transition arcs
 - output values shown within state node

Counters are simple finite state machines

- Counters
 - proceed through well-defined sequence of states in response to enable
- Many types of counters: binary, BCD, Gray-code
 - 3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...
 - 3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...

How do we turn a state diagram into logic?

- Counter
 - 3 flip-flops to hold state
 - Logic to compute next state
 - Clock signal controls when flip-flop memory can change
 - Wait long enough for combinational logic to compute new value
 - Don't wait too long as that is low performance

FSM design procedure

- Start with counters
 - Simple because output is just state
 - Simple because no choice of next state based on input
- State diagram to state transition table
 - Tabular form of state diagram
 - Like a truth-table
- State encoding
 - Decide on representation of states
 - For counters it is simple: just its value
- Implementation
 - Flip-flop for each state bit
 - Combinational logic based on encoding

More complex counter example (cont'd)

Step 3: K-maps for next state functions

C+		C			
	0	0	0	Х	
Α	X	1	Х	1	
1			3		

$$C+ <= A$$

$$B + <= B' + A'C'$$

Self-starting counters

- Start-up states
 - At power-up, counter may be in an unused or invalid state
 - Designer must guarantee that it (eventually) enters a valid state
- Self-starting solution
 - Design counter so that invalid states eventually transition to a valid state
 - May limit exploitation of don't cares

Self-starting counters (cont'd)

Re-deriving state transition table from don't care assignment

C+	- <u>C</u>			
	0	0	0	0
Α	1	1	1	1
•			3	

B+			С		
	1	1	0	1	
Α	1	0	0	1	
			3		

A +				С
	0	1	0	0
Α	0	1	0	0
•		·	3	

Present State N	C+ B+ A+
0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0	1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 0

Activity

- 2-bit up-down counter (2 inputs)
 - \bigcirc Direction: D = 0 for up, D = 1 for down
 - \bigcirc Count: C = 0 for hold, C = 1 for count

Activity (cont'd)

Counter/shift-register model

- Values stored in registers represent the state of the circuit
- Combinational logic computes:
 - Next state
 - Function of current state and inputs
 - Outputs
 - Values of flip-flops

General state machine model

- Values stored in registers represent the state of the circuit
- Combinational logic computes:
 - Next state
 - Function of current state and inputs
 - Outputs
 - Function of current state and inputs (Mealy machine)
 - Function of current state only (Moore machine)

State machine model (cont'd)

States: S1, S2, ..., Sk

Inputs: I1, I2, ..., Im

Outputs: O1, O2, ..., On

Transition function: Fs(Si, Ij)

Output function: Fo(Si) or Fo(Si, Ij)

Comparison of Mealy and Moore machines

- Mealy machines tend to have less states
 - Different outputs on arcs (n2) rather than states (n)
- Moore machines are safer to use
 - Outputs change at clock edge (always one cycle later)
- Mealy machines react faster to inputs
 - React in same cycle don't need to wait for clock
 - In Moore machines, more logic may be necessary to decode state into outputs more gate delays after clock edge

Comparison of Mealy and Moore machines (cont'd)

Model of state machines (3)

Basic model

Specifying outputs for a Moore machine

- Output is only function of state
 - Specify in state bubble in state diagram
 - Example: sequence detector for 01 or 10

			current	next	
	reset	input	state	state	output
	1	_	-	Α	
_	0	0	Α	В	0
	0	1	Α	C	0
	0	0	В	В	0
	0	1	В	D	0
	0	0	С	Е	0
	0	1	С	C	0
	0	0	D	E	1
	0	1	D	С	1
	0	0	E	В	1
	0	1	E	D	1

Specifying outputs for a Mealy machine

- Output is function of state and inputs
 - Specify output on transition arc between states
 - Example: sequence detector for 01 or 10

				current	next	
	re	set	input	state	state	output
Ī	1		_	_	Α	0
	0		0	Α	В	0
	0		1	Α	С	0
	0		0	В	В	0
	0		1	В	С	1
	0		0	C	В	1
	0		1	С	С	0

Registered Mealy machine (really Moore)

- Synchronous (or registered) Mealy machine
 - Registered state AND outputs
 - Avoids 'glitchy' outputs
 - Easy to implement in PLDs
- Moore machine with no output decoding
 - Outputs computed on transition to next state rather than after entering
 - View outputs as expanded state vector

Output synchronization

- Prevent from glitch
- Increase output delay

Input synchronization

- Prevent from timing fault
- Increase delay

Generic synchronous state machine

I/O synchronization registers

Timing diagram

Maximum operating frequency

Clock skew

Timing fault

Clock skew (2)

- Clock skew is caused by
 - Net delay
 - Artificial delay

Example: vending machine

- Release item after 15 cents are deposited
- Single coin slot for dimes, nickels
- No change

- Suitable abstract representation
 - Tabulate typical input sequences:
 - 3 nickels
 - Nickel, dime
 - Dime, nickel
 - Two dimes
 - Draw state diagram:

 - Output: open chute
 - Assumptions:
 - Assume N and D asserted for one cycle
 - Each state has a self loop for N = D = 0 (no coin)

Minimize number of states - reuse states whenever possible

present state	inputs D N	next state	output open	
0¢	$egin{pmatrix} 0 & 0 \ 0 & 1 \end{matrix}$	0¢ 5¢	0 0	
	1 0	10¢	0	
	1 1	_	_	
5¢	0 0	5¢	0	
	0 1	10¢	0	
	1 0	15¢	0	
	1 1	_	-	
10¢	0 0	10¢	0	
·	0 1	15¢	0	
	1 0	15¢	0	
	1 1		_	
15¢		15¢	1	
symbolic state table				

Uniquely encode states

present state Q1 Q0	inp D	uts N	next state D1 D0	output open
$\frac{0}{0}$	0	0	0 0	0
0 0	0	1	0 1	0
	1	Ō	1 0	0
	1	1		_
0 1	0	0	0 1	0
_	Ö	1	$1 \overline{0}$	0
	ĭ	0	$\overline{1}$ $\overline{1}$	0
	$\bar{1}$	1		_
1 0	0	0	1 0	0
	0	1	1 1	0
	1	0	1 1	0
	1	1		<u> </u>
1 1	-	-	1 1	1

Example: Moore implementation

Mapping to logic

$$D1 = Q1 + D + Q0 N$$

$$D0 = Q0' N + Q0 N' + Q1 N + Q1 D$$

$$OPEN = Q1 Q0$$

One-hot encoding

present state Q3 Q2 Q1 Q0	inputs next state output D N D3 D2 D1 D0 open		
0 0 0 1	$\frac{D}{0}$	0 0 0 1 0	
0 0 0 1	0 1	0 0 1 0 0	
	1 0	0 1 0 0	
	1 1		
0 0 1 0	0 0	0 0 1 0 0	
0 0 1 0	0 1	0 1 0 0 0	
	1 0	1 0 0 0 0	
	1 1		
0 1 0 0	0 0	0 1 0 0 0	
	0 1	1 0 0 0 0	
	1 0	1 0 0 0 0	
	1 1		
1 0 0 0		1 0 0 0 1	

$$D0 = Q0 D' N'$$
 $D1 = Q0 N + Q1 D' N'$

$$D2 = Q0 D + Q1 N + Q2 D' N'$$

$$D3 = Q1 D + Q2 D + Q2 N + Q3$$

$$OPEN = Q3$$

Equivalent Mealy and Moore state diagrams

- Moore machine
 - Outputs associated with state

- Mealy machine
 - Outputs associated with transitions

Example: Mealy implementation

	prese	ent state	ınpı	uts	next s	state	output
		. Q0	D	N	D1	D0	open
	0	0	0	0	0	0	0
			0	1	0	1	0
			1	0	1	Ō	0
			ī	1	_	_	_
٠		1	Ô		0	1	0
	0	1	0	0	Ū	Ţ	U
			0	1	1	0	0
			1	0	1	1	1
			1	1	_	_	_
•	1	0	0	0	1	0	0
			0	1	1	1	1
			1	Ō	1	1	1
				U	T	Т	T
_			1	1	_	_	
•	1	1	_		1	1	1

D0 =
$$Q0'N + Q0N' + Q1N + Q1D$$

D1 = $Q1 + D + Q0N$
OPEN = $Q1Q0 + Q1N + Q1D + Q0D$

Example: Mealy implementation

D0 = Q0'N + Q0N' + Q1N + Q1D

D1 = Q1 + D + Q0N

OPEN = Q1Q0 + Q1N + Q1D + Q0D

Make sure OPEN is 0 when reset

by adding AND gate

Vending machine: Moore to synch. Mealy

- OPEN = Q1Q0 creates a combinational delay after Q1 and Q0 change in Moore implementation
- This can be corrected by retiming, i.e., move flip-flops and logic through each other to improve delay
- \bigcirc OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D) = Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D
- Implementation now looks like a synchronous Mealy machine

Vending machine: Mealy to synch. Mealy

Mealy and Moore examples

- Recognize A,B = 0,1
 - Mealy or Moore?

Mealy and Moore examples (cont'd)

- Recognize A,B = 1,0 then 0,1
 - Mealy or Moore?

Hardware description languages and sequential logic

- Flip-flops
 - Representation of clocks timing of state changes
 - Asynchronous vs. synchronous
- FSMs
 - Structural view (FFs separate from combinational logic)
 - Behavioral view (synthesis of sequencers not in this course)
- Data-paths = data computation (e.g., ALUs, comparators) + registers
 - Use of arithmetic/logical operators
 - Control of storage elements

Example: reduce-1-string-by-1

Remove one 1 from every string of 1s on the input

Mealy

Verilog FSM - Reduce 1s example

Moore machine

State assignment (Easy to change, if in one place)

Moore Verilog FSM (cont'd)

```
always @(in or state) ←
 case (state)
    zero:
  // last input was a zero
   begin
     if (in) next state = one1;
     else next state = zero;
   end
   one1:
  // we've seen one 1
   begin
     if (in) next state = two1s;
     else next state = zero;
   end
   two1s:
  // we've seen at least 2 ones
   begin
     if (in) next state = two1s;
     else next state = zero;
   end
 endcase
```

crucial to include all signals that are input to state determination

note that output depends only on state

```
always @(state)
  case (state)
  zero: out = 0;
  one1: out = 0;
  two1s: out = 1;
  endcase
```


Mealy Verilog FSM

```
module reduce (clk, reset, in, out);
  input clk, reset, in;
  output out;
 req out;
  reg state; // state variables
  reg next state;
  always @(posedge clk)
    if (reset) state = zero;
    else state = next state;
  always @(in or state)
    case (state)
                      // last input was a zero
      zero:
     begin
       out = 0;
      if (in) next state = one;
       else next state = zero;
     end
                     // we've seen one 1
     one:
     if (in) begin
        next state = one; out = 1;
     end else begin
        next state = zero; out = 0;
     end
    endcase
endmodule
```


Synchronous Mealy Machine

```
module reduce (clk, reset, in, out);
  input clk, reset, in;
  output out;
  req out;
  reg state; // state variables
  always @(posedge clk)
    if (reset) state = zero;
    else
    case (state)
      zero: // last input was a zero
     begin
       out = 0;
      if (in) state = one;
       else state = zero;
     end
     one: // we've seen one 1
     if (in) begin
        state = one; out = 1;
     end else begin
        state = zero; out = 0;
     end
    endcase
endmodule
```


Finite state machines summary

- Models for representing sequential circuits
 - Abstraction of sequential elements
 - Finite state machines and their state diagrams
 - Inputs/outputs
 - Mealy, Moore, and synchronous Mealy machines
- Finite state machine design procedure
 - Deriving state diagram
 - Deriving state transition table
 - Determining next state and output functions
 - Implementing combinational logic
- Hardware description languages

