Digital Logic Design
4190.201.001
2010 Spring Semester

8. Finite State Machines

Naehyuck Chang
Dept. of EECS/CSE
Seoul National University

naehyuck@snu.ac.kr

VERI[LUX |
B | TAS |MEA 8

Friday, March 19, 2010

mailto:naehyuck@snu.ac.kr
mailto:naehyuck@snu.ac.kr

Finite state machines

¥ Sequential circuits
€ Primitive sequential elements
¢ Combinational logic
¢ Models for representing sequential circuits
¢ Finite-state machines (Moore and Mealy)
¢ Basic sequential circuits revisited
@ Shift registers
¢ Counters
¥ Design procedure
© State diagrams
@ State transition table
€ Next state functions

¢ Hardware description languages

DUEIND
TR
v =)
v ele Y,
Y EHa Y

7L

e Z

EP

Embedded ow-Power
aboratory

Friday, March 19, 2010

What is state machine?

© A stateis a set of values measured at different parts of the circuit.

¢ A state machine is a digital device that traverses through a predetermined sequence of
states in an orderly fashion.

¢ A synchronous state machine distinguishes state by the clock.

35:5’;\.‘33 Embedded ' ow-Power
b

Wi aboratory

I E

Friday, March 19, 2010

State diagram

€ Mealy model
€ Moore model output

Inputs
Outputs

Outputs

P Embedded ow-Power
E l ‘ aboratory

Friday, March 19, 2010

State diagram (2)

¢ Asynchronous state diagram
¢ State machine remains forever in State 1 unless Start becomes active.

250

CA

4

ST
AN

e

)2
== A
««LL’

Y
y

E Pl

Embedded ow-Power
aboratory

Friday, March 19, 2010

State diagram (3)

¢ Synchronous state machine
© State transition has to be made in every clock cycle.
€ The sum of branch conditions has to be 1.

250

CA

4

ST
AN

e

)2
== A
««LL’

Y
y

E Pl

Embedded ow-Power
aboratory

Friday, March 19, 2010

State diagram (4)

¢ Branch condition example

All Other
Combinations

0*MM+10*12

P Embedded ow-Power
E L l aboratory

Friday, March 19, 2010

Abstraction of state elements

¢ Divide circuit into combinational logic and state
¢ Localize the feedback loops and make it easy to break cycles
¢ Implementation of storage elements leads to various forms of sequential logic

Inputs Combinational DELNE
Logic
State Inputs State Outputs
Storage Elements
& ; ST i

Friday, March 19, 2010

Forms of sequential logic

(elements may be simple wires or delay elements)

elements (using a periodic waveform - the clock)

\AA 4 JV A 4 A A 4

¥ Asynchronous sequential logic — state changes occur whenever state inputs change

¥ Synchronous sequential logic — state changes occur in lock step across all storage

v JV v

A A ‘P A

SUEID
N R
Sy,
. A
Y EHa Y 9
o4

P SSWZ

A A

Clock

EP

Embedded ow-Power
aboratory

Friday, March 19, 2010

Finite state machine representations

¢ States: determined by possible values in sequential storage elements
¢ Transitions: change of state
¢ Clock: controls when state can change by controlling storage elements

¢ Sequential logic
¢ Sequences through a series of states
¢ Based on sequence of values on input signals
@ Clock period defines elements of sequence

DUEDD
Y

v .» N

V/'E M

e

Embedded ow-Power
aboratory

Friday, March 19, 2010

FSM design procedure: state diagram to encoded state transition table

¢ Tabular form of state diagram
¢ Like a truth-table (specify output for all input combinations)

001

111)«

=@ 011

3-bit up-counter /

@)

¢ Encoding of states: easy for counters — just use value

11

Present state Next state
0 000 001 1
1 | 001 010 | 2
2 | 010 011 3
3 | 011 100 | 4
4 | 100 101 5
51 101 110 | 6
6 | 110 111 7
7 | 111 000 | O
B SR ——

Friday, March 19, 2010

State transition table

Y Format of state transition table

T
4
N
2

s

\ =y

Present Outputs
State Inputs Next State | Generated
S0 - Sn 10— Im S0 - Sn 00 - Op

EP

Embedded ow-Power
l aboratory

Friday, March 19, 2010

Implementation

¢ D flip-flop for each state bit

¢ Combinational logic based on encoding Verilog notation to show
function represents an
C3 C2 C1 N3 N2 M input to D-FF
0O 0 0 JO 0 1
o 0 1 |0 1 O
o 1 0 [0 1 1 N1 <=C1’
0 1 1 |1 0 o N2 <= C1C2" + C1'C2
<= C1 xor C2
10 0 LGS N3 <= C1C2C3’ + C1'C3 + C2'C3
10 1 (1 1 0 <= (C1C2)C3’ + (C1’ + C2')C3
1 1 0 |1 1 1 <= (C1C2)C3’' + (C1C2)'C3
1 1 1 |0 0 O <= (C1C2) xor C3

N3 C3 N2 C3 N1 C3
oo | 1] 1) 0 tj] 0 (1] 1] 1] 1)
ci| o o [1 cil 11l o | o E cillolo]| o] o

C2 C2 C2
-\&g’;\g Embedded ow-Power
v, %.y, E P
A i 13 aboratory
/‘A».(L&g(

Friday, March 19, 2010

Back to the shift register

)

¢ Input determines next state

OuUT3

In] C1 C2 C3| N1 N2 N3
oj]0 O O0]0 O O
oj0 0 110 0 O
oj0 1 01]0 0 1
oo 1 1]0 0 1
oco|j1 0 O0]0 1 O
ocoj1 0 1]0 1 O
oj1 1 0110 1 1
oj1r 1 110 1 1
10 O O0O}J1 0 O
ile 1 ol o 1 MN<=C oUTL OUT2
10 1 1|1 0 1 ‘ l
sl w—pd Ry
JAN JAN
11 1 O |1 1 1 CLK I I |
1/1 1 111 1 1
&) 14 ELP

Embedded ow-Power
aboratory

Friday, March 19, 2010

More complex counter example

¢ Complex counter
@ repeats 5 states in sequence
€ not a binary number representation
¢ Step 1: derive the state transition diagram
¢ count sequence: 000, 010, 011, 101, 110
¢ Step 2: derive the state transition table from the state transition diagram

Present State| Next State
C B A |C+ B+ A+
O O 0160 1 0
0O O 1 |1- - -
0 1 010 1 1
0 1 1 1 0 1
i o0 o|- - -
1 0 1 1 1 0
1 1 O |0 O O
@ TAS |N

Note the don't care conditions that arise from the unused state codes

R TR Embedded | ow-Power
Vel E borat

LEEL 15 aboratory

e

Friday, March 19, 2010

State assighment

State encoding

© Identify each state by a unique name
Non-redundant encoding

¢ Binary encoding

¢ Gray code encoding

¢ Redundant encoding

¢ One-hot encoding

¢ BCD encoding

SEER®

) E P Embedded ow-Power
‘vg&__lg aboratory

I E

Friday, March 19, 2010

One-hot encoding

© Use of n-bit code for » states
) S1: 0000000001

D)

@ S2: 0000000010
¢ S3: 0000000100

E P

Embedded ow-Power
aboratory

Friday, March 19, 2010

Model of state machines

Y Moore Model

Inputs —

Next State
Decoder

Registers

Output
Decode

Outputs

=

Outputs are Functions
of State Only

P Embedded ow-Power
E l_ t aboratory

Friday, March 19, 2010

Example

¢ Design a clock-enable DFF with a primitive DFF

%
”
P
N
Y
<1

%, P Embedded ow-Power
1Y E L l aboratory

N\ (1=

==

Friday, March 19, 2010

Example finite state machine diagram

¢ Combination lock from introduction to course
¢ 5 states

@ 5 self-transitions

¢ 6 other transitions between states

@ 1 reset transition (from all states) to state S1

not equal

not equal

not equal
& new
| S3 OPEN
a closed
reset —— > » open
. equal \mux=C equal P
& new & new
not new not new not new

DUEDD
Y Embedded ow-Power
%ﬁ\ﬁ;‘g 20 E P aboratory

Friday, March 19, 2010

Can any sequential system be represented with a state diagram?

)

¥ Shift register

¢ input value shown
on transition arcs

¢ output values shown OuT1 OuUT2 OUT3
within state node
IN—/D Q——D Q———D Q—
JAN JAN JAN
CLK 1 _ [N |

:&g;\.‘g E P Embedded ' ow-Power
%E Y 21 aboratory

Friday, March 19, 2010

Counters are simple finite state machines

®)

¢ Counters

(@)

¢ proceed through well-defined sequence of states in response to enable
¢ Many types of counters: binary, BCD, Gray-code

e

@ 3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...
@ 3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...

@ 3-bit up-counter @

(19 (0]
SR

Embedded ow-Power
aboratory

Friday, March 19, 2010

How do we turn a state diagram into logic?

)

¥ Counter
@ 3 flip-flops to hold state
¢ Logic to compute next state

¢ Clock signal controls when flip-flop memory can change
¢ Wait long enough for combinational logic to compute new value
¢ Don't wait too long as that is low performance

OuUT1 OouT2 OuUT3
D Q} D Q| D Ql}
e
’i’l_. (rar—S i -
"1"
L | l
@gﬁf’;\éj Embedded ow-Power
%ﬁ@fﬁ 23 E P aboratory

Friday, March 19, 2010

FSM design procedure

¢ Start with counters
¢ Simple because output is just state

¢ Simple because no choice of next state based on input

¢ State diagram to state transition table
¢ Tabular form of state diagram
¢ Like a truth-table
¢ State encoding
¢ Decide on representation of states
© For counters it is simple: just its value
¢ Implementation
¢ Flip-flop for each state bit
¢ Combinational logic based on encoding

EP

Embedded ow-Power
aboratory

Friday, March 19, 2010

More complex counter example (cont’d)

)

& Step 3: K-maps for next state functions

C+ C B+ C A+ C
ol ol o] x (1][1])] o |x 0 m 0| X
A [x 1 | X 1] Al xil o | x |1\ Al x [iJ X | 0
B B B
C+<=A

B+ <= B+ AC

A+ <= BC’
WEPR Embedded ow-Power
ey ELP

25 aboratory

v
o o
/d“ééxL&K

Friday, March 19, 2010

Self-starting counters

D

¢ Start-up states
¢ At power-up, counter may be in an unused or invalid state
@ Designer must guarantee that it (eventually) enters a valid state
¢ Self-starting solution
¢ Design counter so that invalid states eventually transition to a valid state

€ May limit exploitation of don't cares

Implementation
on previous slide

DUEDD
S 0
ALY

) E P Embedded ow-Power
Y 26

aboratory

Friday, March 19, 2010

Self-starting counters (cont’d)

¢ Re-deriving state transition table from don't care assignment

C+ C B+

0 0 0 0
A 1 1 1 1 A
B

Present State| Next State
C B A |C+ B+ A+
0O O 0 0 1 0
0O O 1 |1 1 0]
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 |[O 1 0]
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 |[1 0 0]

lwe |

A+

(we) |

27

EP

Embedded ow-Power
aboratory

Friday, March 19, 2010

Activity

¢ 2-bit up-down counter (2 inputs)
© Direction: D = 0 for up, D = 1 for down
¢ Count: C=0 for hold, C = 1 for count

@&if”\’% P Embedded ow-Power
.; LY 28 l_ t aboratory
T =DE

Friday, March 19, 2010

Activity (cont'd)

P Embedded ow-Power
29 E l l aboratory

Friday, March 19, 2010

Counter/shift-register model

© Next state

€ Function of current state and inputs

€ Outputs
€ Values of flip-flops

/ next state

Inputs

_ logic

>7

Current State

¢ Values stored in registers represent the state of the circuit
¢ Combinational logic computes:

Next State

30

> Outputs

EP

Embedded ow-Power
aboratory

Friday, March 19, 2010

General state machine model

(@)

¥ Values stored in registers represent the state of the circuit

~

¢ Combinational logic computes:
© Next state

\Y

€ Function of current state and inputs
€ Outputs

€ Function of current state and inputs (Mealy machine)
’ Function of current state only (Moore machine)

©

< output \ »Outputs
Inputs< ogic __/
next state Next State
logic
>

Current State

W72
= '\’h
\\; < |

Y L Y
\A\E_Li& 31

e Z

Embedded ow-Power
aboratory

Friday, March 19, 2010

State machine model (cont'd)

¢ States: S1, S2, ..., Sk

¢ Inputs: I1, 12, ..., Im

¢ Outputs: 01, 02, ..., On

¢ Transition function: Fs(Si, Ij)

¢ Output function: Fo(Si) or Fo(Si, Ij)

7< output) _.Outputs

Inputs< oge__/
next state Next State
logic
>

Current State

Next State DWWWW
State — Y X [X X
Cock 0 | 1] I I I

2 3 4 5

:&g;\.‘g E P Embedded ' ow-Power
%E Y 32 aboratory
p

Friday, March 19, 2010

Comparison of Mealy and Moore machines

¢ Mealy machines tend to have less states

@ Different outputs on arcs (n2) rather than states (n)
¢ Moore machines are safer to use
€ Outputs change at clock edge (always one cycle later)

¢ In Mealy machines, input change can cause output change as soon as logic is done — a big
problem when two machines are interconnected — asynchronous feedback may occur if one isn't
careful

¢ Mealy machines react faster to inputs
© React in same cycle — don't need to wait for clock

€ In Moore machines, more logic may be necessary to decode state into outputs — more gate delays
after clock edge

N, Lé‘/- _\»’h

Sl E P Embedded ow-Power
%\JE;L,(& 33 aboratory
I E

Friday, March 19, 2010

Comparison of Mealy and Moore machines (cont’d)

\; P)

¢ Mealy

¢ Synchronous Mealy

N ey

I S
>\<1; M rs
NERY
Rl

y 4

inputs

inputs

L

combinational
logic for

next state

Yy VvV VY
D
«Q

v v v

. —>
logic for

outputs — outputs

—>

state feedback

i

Y

logic for

outputs

combinational

JV v

logic for

next state

v

€g

inputs

 ———

state feedback

v

v v v

logic for

outputs

—

—>

combinational

logic for

Yy VvV V

next state

€g

state feedback
34

outputs

outputs

EP

Embedded ow-Power

aboratory

Friday, March 19, 2010

Model of state machines (3)

Y Basic model

Combinatorial Logic

) Next
Device Output
State E— -
Inputs Decode Decode Outputs
State : Memory :
L J L J
- —T——>

P Embedded ow-Power
E l_ t aboratory

Friday, March 19, 2010

Specifying outputs for a Moore machine

¢ Output is only function of state
¢ Specify in state bubble in state diagram
¢ Example: sequence detector for 01 or 10

current | next

reset input state state output

1 - - A

0 0 A B 0

0 1 A C 0

0 0 B B 0

0 1 B D 0

0 0 C E 0

0 1 C C 0

0 0 D E 1

0 1 D C 1

0 0 E B 1

0 1 E D 1
SLERD
(oh) - LD it o Rower

Friday, March 19, 2010

Specifying outputs for a Mealy machine

b

¢ Output is function of state and inputs
@ Specify output on transition arc between states
¢ Example: sequence detector for 01 or 10

current | next

reset input state state output

1 — — A 0

0 0 A B 0

0 1 A C 0

reset/0 0 0 B B 0

0 1 B C 1

0 0 C B 1

0 1 C C 0
NN PR Embedded ow-Power
%\SJ&E 37 E P aboratory

Friday, March 19, 2010

Registered Mealy machine (really Moore)

@ Registered state AND outputs

€ Avoids ‘glitchy’ outputs

¢ Easy to implement in PLDs
€ Moore machine with no output decoding

(@)

S EIND
S R
U "i{;/

¥
VR
I'e

Inputs<

¢ Synchronous (or registered) Mealy machine

output
logic

2

¢ Outputs computed on transition to next state rather than after entering
¥ View outputs as expanded state vector

» Outputs

J

next state \
logic

Current State

38

EP

Embedded ow-Power
aboratory

Friday, March 19, 2010

Output synchronization

¢ Prevent from glitch
¢ Increase output delay

\ Outppt
| Function

Transition . :
Inputs Function g‘;’t‘; Register Register
NS
AN PaN
Present State
PS
Clock—®

?
VIS

N

A ly
25 w4
el

\ =y

A

ELPL

OA
Outputs

Embedded ow-Power
aboratory

Friday, March 19, 2010

Input synchronization

¢ Prevent from timing fault

¢ Increase delay

A

»|

L

B1

gy ———p

B2

E.PL

Embedded ow-Power
aboratory

Friday, March 19, 2010

Generic synchronous state machine

¢

1Y
¥

T 4
Efs
o
R

P
=
S

Y
g

¢ I/O synchronization registers

AO
Combinatorial
' Input Logic Output | SO
—1 Register Register [
paN pAaN
State
Register [*—
L L
Clock l
.

E P

Embedded ow-Power
aboratory

Friday, March 19, 2010

Timing diagram

Clock

State

Input

Registered
Moore Input

Registered
Mealy Output

Asynchronous
Moore Qutput

Asynchronous
Mealy Output

: Sn+1 X Sn+2 X

:X On+1 XE On+2 X
E (éﬂ X é On +1 X é On+2
; X an X g On +1 ; On+2
é State n ' State n + 1 é Staten + 2 '

ELPL

Embedded ow-Power
|.aboratory

Friday, March 19, 2010

Maximum operating frequency

CLK
(Second
Chip)
Logic Register >

ts
e

fmax External: 1/(ts + tco)

532
4
N
2

P Embedded ow-Power
E '_ l aboratory

s

\ =y

Friday, March 19, 2010

Clock skew

&)

¢ Timing fault

D Q—
Combinational p —D Q D Q—
Logic D 3 \
D
—)

v

N
S I,
Yp '-3"1
Y v
N N

Nl

I E

E P Embedded ow-Power
aboratory

Friday, March 19, 2010

Clock skew (2)

¢ Clock skew is caused by
© Net delay
@ Artificial delay

L /)
NEES?
RS
N

y

[e X4
Hcd¥

V)
Y
g

ELPI

Embedded ow-Power
aboratory

Friday, March 19, 2010

Example: vending machine

¢ Release item after 15 cents are deposited
¢ Single coin slot for dimes, nickels
¢ No change

Reset

|

N
_ Vending
Coin Machine |_OP€N | Release
Sensor D FSM Mechanism
Clock
RS Embedded | ow-Power
%\A__I:g 46 E P aboratory

Friday, March 19, 2010

Example: vending machine (cont’d)

¢ Suitable abstract representation

(@)

¢ Tabulate typical input sequences:
€ 3 nickels

¢ Nickel, dime

@ Dime, nickel
¢ Two dimes

¢ Draw state diagram:

\Y

¢ Inputs: N, D, reset

\Y

¢ Output: open chute
¢ Assumptions:

2 Assume N and D asserted
for one cycle

¢ Each state has a self loop
forN=D=0 (nO COin)

p 3 \l,
Y
¥

QE_I

‘A»(L

47

EP

Embedded ow-Power
aboratory

Friday, March 19, 2010

Example: vending machine (cont’d)

¢ Minimize number of states - reuse states whenever possible

present inputs next output
state D N state open
O¢ 0 O O¢ 0
0 1 5¢ 0
1 0 10¢ 0
1 1 - -
5¢ 0 O 5¢ 0
0 1 10¢ 0
1 0 15¢ 0
1 1 - -
10¢ 0 O 10¢ 0
0 1 15¢ 0
1 0 15¢ 0
1 1 - -
15¢ = = 15¢ 1
symbolic state table
- E P c::)l:)?:;:l:rc; ow-Power

Friday, March 19, 2010

Example: vending machine (cont’d)

¢ Uniquely encode states

present state inputs next state output
01 Q0 D N D1 DO open
0 0 0O O 0 O 0
0 1 0 1 0
1 0 1 0 0
1 1 - = -
0 1 0O O 0 1 0
0 1 1 0 0
1 0 1 1 0
1 1 = = —
1 0 0O O 1 0 0
0 1 1 1 0
1 O 1 1 0
1 1 - = —
1 1 A 1 1 1
49

EP

Embedded ow-Power
aboratory

Friday, March 19, 2010

Example: Moore implementation

(\

¥ Mapping to logic

o[o/ 1] 1\ NI o[o[1y 0
0/1\1\1N \1\01/1N 0010N
ol XAX] Y X ol L X 1AX ol LXLX[1] X
\1]| 1\1| Y 01\ I ol of1)0
Q0 Qo0 Qo0
Qﬁj R ol B A
1:._3__1‘)’/ _r:? Di=01+D+Q0N
- '——} ali
#90 DO=Q0'N+QON +Q1LN+Q1D
e o |1
R « e OPEN = Q1 QO
R —] Q—ER
3=
D r——i
Clock 1 Rezet'
%’A);{’g m W- wer
& . T ey

Friday, March 19, 2010

Example: vending machine (cont’d)

()

&€ One-hot encoding

present state inputs | next state output
Q3020Q1Q0 D N D3 D2 D1 DO open
00 0 1 0 0 0 0 01 0
0 1 0 010 0
1 0 01 00O 0
1 1 - - - - -
00 1 0 0 0 0 010 0
0 1 01 00 0
1 0 1 0 0O 0
1 1 - - - - -
01 00 O0O0]01GO0GO0 O
0 1 1 0 0O 0
1 0 1 0 0O 0
1 1 - - = - -
10 00 - - 1 0 0O 1

S EIND
N R
U "i{;/

V.
LERLY
I'e

51

DO = Q0 D’ N’
D1=QON+Q1D'N
D2=Q0D+ QLN+ Q2D'N’
D3=Q1D+Q2D+ Q2N+ Q3

OPEN = Q3

E P Embedded ow-Power
aboratory

Friday, March 19, 2010

Equivalent Mealy and Moore state diagrams

(@)

¢ Moore machine

Qo

¢ Outputs associated with state

Reset N’ D’ + Reset

m N’ D’

DUEDD
Y
Ve N
e o\
fu&

Mealy machine

€ Outputs associated with transitions

Reset/0 (N’ D' + Reset)/0

N"D’/0

N"D’/0

N"D’/0

Reset’/1

E P Embedded ow-Power
aboratory

Friday, March 19, 2010

Example: Mealy implementation

Reset/0 Reset/0
present state inputs next state output
01 Q0 D N D1 DO _open
0 0 0 O 0 0 O
0 1 0o 1 0
1 0 1 0 O
1 1 — _ — B
0 1 0 O 0 1 0
0 1 1 0 0
1 0 1 1 1
1 1 - = =
1 0 0 O 1 0 0
0 1 1 1 1
1 0 1 1 1
1 1 - - -
1T 1 - - 1 1 1
Q1
L DO = QO'N + QON’ + Q1IN + Q1D
;N D1 = Q1 + D + QON
by

53

EP

OPEN = Q1Q0 + QIN + Q1D + QOD

Embedded ow-Power
aboratory

Friday, March 19, 2010

Example: Mealy implementation

., jul |

D, £ TR v

Qo

DO = QO'N + QON’ + Q1IN + Q1D » —
D1 = Q]. + D+ QON L
OPEN =Q1Q0+ QIN+QiD+ Q0D .

—

D Q

Make sure OPEN is 0 when reset }. p—
— by adding AND gate .

Clock |

54 E PL

Qu
B

Embedded ow-Power
aboratory

Friday, March 19, 2010

Vending machine: Moore to synch. Mealy

implementation

improve delay

¢ OPEN.d = (Q1 + D + QON)(QO'N + QON' + Q1IN + Q1D)
= Q1QON' + Q1N + Q1D + QO'ND + QON'D

¢ Implementation now looks like a synchronous Mealy machine
@ It is common for programmable devices to have FF at end of logic

¥ OPEN = Q1QO0 creates a combinational delay after Q1 and QO change in Moore

& This can be corrected by retiming, i.e., move flip-flops and logic through each other to

14

Q0
QU

1]
%2
4!1!3

R

Q

I

—{
LI’J

g

Cp

L =

I i1 1

(\WZ-ZY
LY 55)
¥ LY 4 .
A

Embedded ow-Power
aboratory

r;—4>—0 -
"~
a
ot

Friday, March 19, 2010

Vending machine: Mealy to synch. Mealy

¢ OPEN.d = Q1Q0 + QIN + Q1D + QOD —

¢ OPEN.d = (Q1 + D + QON)(QO'N + QON' + Q1N + Q1D)
= Q1QON' + Q1IN + Q1D + QO'ND + QON'D

Q - Open.d Ql Open.d Ql
D TR Q , A 0 0

» o[1] 0 o[1] O
-N:D__P"/ i 0011|N o[o[1[1]| ,
< ol o[1] 1 o| XX 1] %
- of 1| 1] 1 of 1] 1] 1
e @ &
- D Q)0
0 Dl
i‘ :D’lj_f o * . T 9 1
[~}

) _:)_ , :}11/ g

| e | = TR > Q per
L Je T D

| — v tp

. v A

':Ill : s Open - Do F" q

1 > = [y

= — - *

> i— Clock Reset ik L

Embedded ow-Power
56 E ! Pl aboratory

Friday, March 19, 2010

Mealy and Moore examples

\;' P

¥ Recognize A,B = 0,1
¢ Mealy or Moore?

-—‘A So——] out
B |
A i>° :
D o out
B [clock > Qb—
A
D Q
> Q-
B D Q
clock Qp—
DUEND

out

Embedded ow-Power
aboratory

Friday, March 19, 2010

Mealy and Moore examples (cont’'d)

¢ Mealy or Moore?

R
|
r> QpP—
B 1 D O
~>> Qp—
clock
= =
A D o—+ D Q)j
> QP > Qe
B D Q D Q
clock
%AAXLL‘%; 58 E P

Embedded ow-Power

aboratory

Friday, March 19, 2010

Hardware description languages and sequential logic

Flip-flops
¢ Representation of clocks - timing of state changes

N

¢ Asynchronous vs. synchronous

FSMs

¢ Structural view (FFs separate from combinational logic)

¢ Behavioral view (synthesis of sequencers — not in this course)

Data-paths = data computation (e.g., ALUs, comparators) + registers
¢ Use of arithmetic/logical operators

¢ Control of storage elements

Embedded ow-Power

55 EP

Friday, March 19, 2010

Example: reduce-1-string-by-1

)

Moore

60

¥ Remove one 1 from every string of 1s on the input

Mealy

0/0 1/0

E P Embedded ow-Power
aboratory

Friday, March 19, 2010

Verilog FSM - Reduce 1s example

(@)

¢ Moore machine

State assignment
(Easy to change,

module reduce (clk, reset, in, out); if in one place)
input clk, reset, in;
output out;

parameter zero = 2'b00;
parameter onel = 2'b01;
parameter twols = 2'bl0;

reg out;
reg [2:1] state; // state variables 1 0
reg [2:1] next state;

always @ (posedge clk)
if (reset) state = zero;
else state = next state;

QULEIS
L‘\

o 3:, Embedded ow-Power
Y L_' s(y 61 aboratory

I NEE

Friday, March 19, 2010

Moore Verilog FSM (cont’d)

always @(in or state) . i
‘ crucial to include

case (state)

Zero:
// last input was a zero
begin
if (in) next state = onel;
else next state = zero;
end
onel:
// we've seen one 1
begin
if (in) next state = twols;
else next state = zero;
end
twols:

// we've seen at least 2 ones

begin
if (in) next state = twols;
else next state = zero;
end
endcase

m\g’-*-‘hh
M FRY
FAPNY
Vs - Y
Y v
e)

/4‘53)44& 62
Friday, March 19, 2010

all signals that are
input to state determination

note that output
depends only on state

always @(state)

case (state)

Zero:
onel:
twols:
endcase

endmodule

out
out
out

EP

Embedded ow-Power
aboratory

Mealy Verilog FSM

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;
reg out;
reg state; // state variables
reg next state;

always @ (posedge clk)
if (reset) state = zero;
else state = next state;

always @(in or state)
case (state)

Zero: // last input was a zero
begin
out = 0;
if (in) next state = one;
else next state = zero;
end
one: // we've seen one 1
if (in) begin
next state = one; out = 1;
end else begin
next state = zero; out = 0;
end
endcase
endmodule

<5y
T
I‘}ITI\\
5t
Yy
==)3
S

NS
EX

I
¥
K

N

63

E.P

Embedded ow-Power
aboratory

Friday, March 19, 2010

Synchronous Mealy Machine

module reduce (clk, reset, in, out);
input clk, reset, in;
output out;
reg out;
reg state; // state variables

always @ (posedge clk)

if (reset) state = zero;
else
case (state)
Zero: // last input was a zero
begin
out = 0;
if (in) state = one;
else state = zero;
end
one: // we've seen one 1
if (in) begin
state = one; out = 1;
end else begin
state = zero; out = 0;
end
endcase
endmodule

4
4
y
==)3
S

WSS

N
&L
A

64

ELPI

Embedded ow-Power
aboratory

Friday, March 19, 2010

Finite state machines summary

Models for representing sequential circuits

@ Abstraction of sequential elements

¢ Finite state machines and their state diagrams
¢ Inputs/outputs

¢ Mealy, Moore, and synchronous Mealy machines
Finite state machine design procedure

¢ Deriving state diagram

@ Deriving state transition table

¢ Determining next state and output functions
¥ Implementing combinational logic

Hardware description languages

65

EP

Embedded ow-Power
aboratory

Friday, March 19, 2010

