
Digital Logic Design

Naehyuck Chang
Dept. of EECS/CSE

Seoul National University
naehyuck@snu.ac.kr

4190.201.001

2010 Spring Semester

E
L
P

L
E

m
b

e
d

d
e

d
 L

o
w

-P
o

w
e

r

L
a

b
o

ra
to

ry

10. Sequential Logic Technology

Friday, March 19, 2010

mailto:naehyuck@snu.ac.kr
mailto:naehyuck@snu.ac.kr

ELPL
Embedded Low-Power

Laboratory2

Sequential logic implementation

Implementation
Random logic gates and FFs

Programmable logic devices (PAL with FFs)

Design procedure
State diagrams

Design

Verification (branch condition)
Reduction (implicant chart or raw matching)

State transition table

State assignment
Tight encoding for random logic
One-hot for FPGA
Output-based for PLD

Next state functions

Input synchronization

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory

Remove single 0s between two 1s (output = NS3)

3

Median filter FSM

000

0

1

0

100

010 110

111 011001

1

1

1
1

1

1

0

0

0

0

0

Reset

I PS1 PS2 PS3 NS1 NS2 NS3
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 0 1 0
0 1 0 1 X X X
0 1 1 0 0 1 1
0 1 1 1 0 1 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 1 1 1
1 0 1 1 1 1 1
1 1 0 0 1 1 0
1 1 0 1 X X X
1 1 1 0 1 1 1
1 1 1 1 1 1 1

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory

Realized using the standard procedure and individual
FFs and gates

4

Median filter FSM (cont’d)

I PS1 PS2 PS3 NS1 NS2 NS3
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 0 1 0
0 1 0 1 X X X
0 1 1 0 0 1 1
0 1 1 1 0 1 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 1 1 1
1 0 1 1 1 1 1
1 1 0 0 1 1 0
1 1 0 1 X X X
1 1 1 0 1 1 1
1 1 1 1 1 1 1

NS1 = Reset’ (I)
NS2 = Reset’ (PS1 + PS2 I)
NS3 = Reset’ PS2
O = PS3

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory5

Median filter FSM (cont’d)

But it looks like a shift register if you look at it right

000

0

1

0

100

010 110

111 011001

1

1

11

1
1

0

0

0

0

0

Reset000

0

1

0

100

010 110

111 011001

1

1

1
1

1

1

0

0

0

0

0

Reset

101

1

0

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory6

Median filter FSM (cont’d)

An alternate implementation with S/R FFs
Personally I do not recommend this!

The set input (S) does the median filter function by making the next state 111 whenever
the input is 1 and PS2 is 1 (1 input to state x1x)

R = Reset
S = PS2 I
NS1 = I
NS2 = PS1
NS3 = PS2
O = PS3Out

CLK

D Q
R S

D Q
R S

D Q
R S

In

Reset

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory

FSM implementation with a shift register

String recognizer
Good candidate for a shift register implementation

7

Shift register
SI

Q0 Q1 Q2 Q3

Combinational
logic

Match

Mealy machine

Shift register
SI

Q0 Q1 Q2 Q3

Combinational
logic

Match

Input

Moore machine

 � � � � � � � � � � � � �

 �

	 � 	 � 	 � 	 �

� � �
 �

� � � � �

� � � � � � �

	 � 	 � 	 � 	 �

� � � � � � � � � � � � � �
� � � �

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory

FSM implementation with a counter

Three functions of a counter
Count

Reset

Jump

State machine implementation with a counter
Next state function

Count (CNT), Reset (R) and Load (LD)

Sequencer

8

Input/Current StateInput/Current StateInput/Current StateInput/Current StateInput/Current StateInput/Current StateInput/Current StateInput/Current State Next StateNext StateNext StateNext State OutputOutputOutputOutputOutputOutputOutputOutput

I0 I1 I2 I3 Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3 LD* R* EN* A B C D E

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory

FSM implementation with a ROM

PS + FSM input
Address input

NS
Data output

Input synchronization is
applied here
Both Moore and Mealy
machines can be implemented
Advantage and
disadvantages?

Same to the combinational
logic implementation with a
ROM

9

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory

Programmable logic building block for sequential logic
Aacro-cell: FF + logic

D-FF

Two-level logic capability like PAL (e.g., 8 product terms)

10

D Q
Q’

FSM implementation using PALs

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory11

D0 = reset'(Q0'N + Q0N' + Q1N + Q1D)

D1 = reset'(Q1 + D + Q0N)

OPEN = Q1Q0

Vending machine example (Moore PLD mapping)

DQ

DQ

DQ

Q0

Q1

Open

Com

Seq

Seq

CLK

N

D

Reset

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory

OPEN

DQ

DQ

DQ

Q0

Q1

Open

Seq

Seq

Seq

CLK

N

D

Reset

12

OPEN = reset'(Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D)

Vending machine (synch. Mealy PLD mapping)

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory13

22V10 PAL

Combinational logic
elements (SoP)
Sequential logic
elements (D-FFs)
Up to 10 outputs
Up to 10 FFs
Up to 22 inputs

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory14

22V10 PAL macro cell

Sequential logic element + output/input selection

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory

FSM implementation with an FPGA

Altera MAX 3000 CPLD architecture

15

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory

FSM implementation with an FPGA

Altera MAX 3000 CPLD macrocell

16

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory

FSM implementation with an FPGA

Xilinx Vertex-5 slice

17

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory18

Example: traffic light controller

A busy highway is intersected by a little used farmroad
Detectors C sense the presence of cars waiting on the farmroad

With no car on farmroad, light remain green in highway direction

If vehicle on farmroad, highway lights go from Green to Yellow to Red, allowing the farmroad lights
to become green

These stay green only as long as a farmroad car is detected but never longer than a set interval

When these are met, farm lights transition from Green to Yellow to Red, allowing highway to return
to green

Even if farmroad vehicles are waiting, highway gets at least a set interval as green

Assume you have an interval timer that generates:
A short time pulse (TS) and

A long time pulse (TL),

In response to a set (ST) signal.

TS is to be used for timing yellow lights and TL for green lights

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory

Highway/farm road intersection

19

highway

farm road

car sensors

Example: traffic light controller (cont’)

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory20

Example: traffic light controller (cont’)

Tabulation of inputs and outputs

inputs description outputs description
reset place FSM in initial state HG, HY, HR assert green/yellow/red highway lights
C detect vehicle on the farm road FG, FY, FR assert green/yellow/red highway lights
TS short time interval expired ST start timing a short or long interval
TL long time interval expired

Tabulation of unique states – some light configurations imply others

state description
HG highway green (farm road red)
HY highway yellow (farm road red)
FG farm road green (highway red)
FY farm road yellow (highway red)

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory21

Example: traffic light controller (cont’)

State diagram

Reset

TS'

TS / ST

(TL•C)'

TL•C / ST

TS'

TS / ST

(TL+C')'

TL+C' / ST

HG

FG

FYHY

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory

Generate state table with symbolic states
Consider state assignments

22

Inputs Present State Next State Outputs
C TL TS ST H F
0 – – HG HG 0 Green Red
– 0 – HG HG 0 Green Red
1 1 – HG HY 1 Green Red
– – 0 HY HY 0 Yellow Red
– – 1 HY FG 1 Yellow Red
1 0 – FG FG 0 Red Green
0 – – FG FY 1 Red Green
– 1 – FG FY 1 Red Green
– – 0 FY FY 0 Red Yellow
– – 1 FY HG 1 Red Yellow

SA1: HG = 00 HY = 01 FG = 11 FY = 10
SA2: HG = 00 HY = 10 FG = 01 FY = 11
SA3: HG = 0001 HY = 0010 FG = 0100 FY = 1000 (one-hot)

Output encoding – similar problem
to state assignment
(Green = 00, Yellow = 01, Red = 10)

Example: traffic light controller (cont’)

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory23

Logic for different state assignments

SA1
 NS1 = C•TL'•PS1•PS0 + TS•PS1'•PS0 + TS•PS1•PS0' + C'•PS1•PS0 + TL•PS1•PS0
 NS0 = C•TL•PS1'•PS0' + C•TL'•PS1•PS0 + PS1'•PS0

 ST = C•TL•PS1'•PS0' + TS•PS1'•PS0 + TS•PS1•PS0' + C'•PS1•PS0 + TL•PS1•PS0
 H1 = PS1 H0 = PS1'•PS0
 F1 = PS1' F0 = PS1•PS0‘

SA2
 NS1 = C•TL•PS1' + TS'•PS1 + C'•PS1'•PS0
 NS0 = TS•PS1•PS0' + PS1'•PS0 + TS'•PS1•PS0

 ST = C•TL•PS1' + C'•PS1'•PS0 + TS•PS1
 H1 = PS0 H0 = PS1•PS0'
 F1 = PS0' F0 = PS1•PS0

SA3
 NS3 = C'•PS2 + TL•PS2 + TS'•PS3 NS2 = TS•PS1 + C•TL'•PS2
 NS1 = C•TL•PS0 + TS'•PS1 NS0 = C'•PS0 + TL'•PS0 + TS•PS3

 ST = C•TL•PS0 + TS•PS1 + C'•PS2 + TL•PS2 + TS•PS3
 H1 = PS3 + PS2 H0 = PS1
 F1 = PS1 + PS0 F0 = PS3

Friday, March 19, 2010

ELPL
Embedded Low-Power

Laboratory24

Sequential logic implementation summary

Models for representing sequential circuits
Finite state machines and their state diagrams

Mealy, Moore, and synchronous Mealy machines

Finite state machine design procedure
Deriving state diagram

Deriving state transition table

Assigning codes to states

Determining next state and output functions

Implementing combinational logic

Implementation technologies
Random logic + FFs

PAL with FFs (programmable logic devices – PLDs)

Friday, March 19, 2010

