Digital Logic Design
4190.201.001
2010 Spring Semester

11.Sequential Logic Examples

Naehyuck Chang
Dept. of EECS/CSE
Seoul National University

naehyuck@snu.ac.kr

Friday, March 19, 2010


mailto:naehyuck@snu.ac.kr
mailto:naehyuck@snu.ac.kr

Sequential logic examples

¢ Basic design approach: a 4-step design process
¢ Hardware description languages and finite state machines
¢ Implementation examples and case studies

©

Finite-string pattern recognizer
¢ Complex counter

¢  Traffic light controller

¢  Door combination lock
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General FSM design procedure

Determine inputs and outputs

Determine possible states of machine

¢  State minimization

Encode states and outputs into a binary code

@  State assignment or state encoding

¢ Output encoding

@  Possibly input encoding (if under our control)

Realize logic to implement functions for states and outputs
¢ Combinational logic implementation and optimization

€  Choices in steps 2 and 3 can have large effect on resulting logic
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Finite string pattern recognizer (step 1)

¢ Finite string pattern recognizer
€  One input (X) and one output (2)

¢  Output is asserted whenever the input sequence ...010... has been
observed, as long as the sequence ...100... has never been seen

®)

¥ Step 1: understanding the problem statement
€  Sample input/output behavior:

X: 00101010010...
Z: 00010101000...

X: 11011010010...
Z: 00000001000...
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Finite string pattern recognizer (step 2)

¢ Step 2: draw state diagram
¢  For the strings that must be recognized, i.e., 010 and 100
¢ A Moore implementation
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Finite string pattern recognizer (step 2, cont’'d)

¢ Exit conditions from state S3: have recognized ...010
@ If next input is 0 then have ...0100 = ...100 (state S6)
¢ If next input is 1 then have ...0101 = ...01 (state S2)

¥ Exit conditions from S1: recognizes
strings of form ...0 (no 1 seen)

¢ Loop back to S1 if input is O

¥ Exit conditions from S4: recognizes
strings of form ...1 (no 0 seen)

¢  Loop back to S4 if input is 1
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Finite string pattern recognizer (step 2, cont’'d)

¢ S2 and S5 still have incomplete transitions

@ S2=..01; If nextinputis 1,
then string could be prefix of (01)1(00)
S4 handles just this case

@ S5 =..10; If next input is 1,
then string could be prefix of (10)1(0)
S2 handles just this case

¢ Reuse states as much as possible
¢  look for same meaning

¢  state minimization leads to
smaller number of bits to
represent states

¢ Once all states have a complete
set of transitions we have a
final state diagram
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Finite string pattern recognizer (step 3)

®)

¢ Verilog description including state assignment (or state encoding)

module string (clk, X, rst, Q0, Q1, Q2, Z); always @ (posedge clk) begin
input clk, X, rst; if (rst) state = SO0;
output Q0, Q1, Q2, 7Z; else

case (state)
parameter SO = [0,0,0]; //reset state SO0: 1f (X) state = S4 else state = S1;
parameter S1 = [0,0,1]; //strings ending in ...0 Sl: if (X) state = S2 else state = S1;
parameter S2 = [0,1,0]; //strings ending in ...01 S2: if (X) state = S4 else state = S3;
parameter S3 = [0,1,1]; //strings ending in ...010 S3: if (X) state = S2 else state = S6;
parameter S4 = [1,0,0]; //strings ending in . . S4: if (X) state = S4 else state = S5;
parameter S5 = [1,0,1]; //strings ending in ...10 S5: if (X) state = S2 else state = S6;
parameter S6 = [1,1,0]; //strings ending in ...100 S6: state = S6;

default: begin

reg state[0:2]; Sdisplay (“invalid state reached”);
state = 3'bxxx;
assign Q0 = statel[0]; end
assign Q1 = statel[l]; endcase
assign Q2 = state[2]; end
assign Z = (state == S3);
endmodule
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Finite string pattern recognizer

¢ Review of process

©
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Understanding problem

¢  Write down sample inputs and outputs to understand specification

Derive a state diagram

¢  Write down sequences of states and transitions for sequences to be recognized
Minimize number of states

¢ Add missing transitions; reuse states as much as possible

State assignment or encoding

N

¢ Encode states with unique patterns
Simulate realization

p)

¢  Verify I/O behavior of your state diagram to ensure it matches specification
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Complex counter

¢ A synchronous 3-bit counter has a mode control M
Y When M = 0, the counter counts up in the binary sequence
€ When M = 1, the counter advances through the Gray code sequence

binary: 000, 001, 010, 011, 100, 101, 110, 111
Gray: 000, 001, O11, 010, 110, 111, 101, 100

¢ Valid I/O behavior (partial)

Mode Input M Current State Next State
0 000 001
0 001 010
1 010 110
1 110 111
1 111 101
0 101 110
0 110 111
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Complex counter (state diagram)

¢ Deriving state diagram
€  One state for each output combination

(8

¢  Add appropriate arcs for the mode control
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Complex counter (state encoding)

®)

module string

input clk,
output 70,

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

X,
z1,

SO0 =
S1 =
S2 =
S3 =
S4 =
S5 =
S6 =
ST =

(clk, M,

rst;
72 ;
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reg state[0:2];

assign z0
assign 71
assign 72
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= state[0];
state[1l];
state[2];

rst,

z0,

71,

& Verilog description including state encoding

722) ;

always @ (posedge clk)

if rst state =

else
case
S0:
S1:
S2:
S3:
S4:
SBE
S6:
S7 ¢
endcase

end

endmodule
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(state)
state =
if (M)
if (M)
if (M)
if (M)
if (M)
if (M)
if (M)

S0;

S1;

state =
state =
state =
state =
state =

state
state

begin

S3
S6
S2
S0
S4
S¥/
S5

else
else
else
else
else
else
else

P

state =
state =
state =
state =
state
state =
state =

Embedded
aboratory

S4;
SBF
S4;
SISF:

= S56;

S7;
SO;

ow-Power

Friday, March 19, 2010



Traffic light controller as two communicating FSMs

¢ Without separate timer
¢ SO would require 7 states TS'
¢  S1 would require 3 states

€S2 would require 7 states @

¢ 53 would require 3 states

~ . . TS/ST
¢ S1 and S3 have simple transformation @
¢ S0 and S2 would require many more arcs
¢ C could change in any of seven states @
¥ By factoring out timer =/ST

¢  Greatly reduce number of states
¢  4instead of 20

€  Counter only requires seven or eight states o N X
@ 12 total instead of 20 — | tafficlight
— controller -
ST T9 ML
timer
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Traffic light controller FSM

0

module FSM(HR, HY, HG, FR, FY, FG, ST,

output
output
output
output
output
output
output
input
input
input
input
input

reg [6:1]
reg

HR;
HY;
HG;
FR;
FY;
FG;
ST;
TS;
TL;
C;
reset;
Clk;

statey;
ST

Specify state bits and codes
for each state as well as
connections to outputs

TS,

14

¢ Specification of inputs, outputs, and state elements

TL, C,

reset, Clk);

parameter
parameter
parameter
parameter

assign
assign
assign
assign
assign
assign

HR

HY =

HG
FR

i =

FG

highwaygreen
highwayyellow
farmroadgreen
farmroadyellow

= state
state
= state
= state
state
= state
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6'b001100;
6'b010100;
6'b100001;
6'pb100010;
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Traffic light controller FSM (cont’'d)

initial begin state = highwaygreen; ST = 0; end

always @ (posedge Clk)
begin
if (reset)

case statement
triggerred by

begin state = highwaygreen; ST = 1; clock edge
else
begin
ST = 0;
case (state)
highwaygreen:
if (TL & C) begin state = highwayyellow; ST = 1; end
highwayyellow:
if (TS) begin state = farmroadgreen; ST = 1; end
farmroadgreen:
if (TL | !C) begin state = farmroadyellow; ST = 1; end
farmroadyellow:
if (TS) begin state = highwaygreen; ST = 1; end
endcase
end
end
endmodule
85 - B S
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Timer for traffic light controller

¢ Another FSM

module Timer (TS, TL, ST, Clk);

output TS;
output TL;

input ST;
input Clk;
integer value;

assign TS = (value >= 4); // 5 cycles after reset
(value >= 14); // 15 cycles after reset

assign TL
always @ (posedge ST) value = 0; // async reset

always @ (posedge Clk) value = value + 1;

endmodule

Y

N
7
25

s
S

ST

LSS

ML
NS
7

K
k((((L

.

Embedded ow-Power

16 ELPI

Friday, March 19, 2010



Complete traffic light controller

P

@ Tying it all together (FSM + timer)

¢  Structural Verilog (same as a schematic drawing)

module main (HR, HY, HG, FR, FY,

output HR, HY, HG, FR, FY
input reset, C, Clk;

Timer partl(Ts, TL, ST,
FSM  part2 (HR, HY, HG,
endmodule
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, FG;

Clk) ;
FR, FY,

FG,

FG,
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C, reset, Clk);
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Communicating finite state machines

¢ One machine's output is another machine's input

FSM 1 FSM 2
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CLK
FSM1

FSM2

Machines advance in lock step
initial inputs/outputs: X =0,Y =0
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Data-path and control

¢ Digital hardware systems = data-path + control

Q
&

-

control &
status control
info and state signal
inputs outputs
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data-path <~
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Datapath: registers, counters, combinational functional units (e.g., ALU),
communication (e.g., busses)

¢  Control: FSM generating sequences of control signals that instructs
datapath what to do next
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Digital combinational lock

N

Y Door combination lock:

€  Punch in 3 values in sequence and the door opens; if there is an error the lock must be reset; once
the door opens the lock must be reset

¢ Inputs: sequence of input values, reset
€  Outputs: door open/close
€ Memory: must remember combination or always have it available

¢  Open questions: how do you set the internal combination?
@  Stored in registers (how loaded?)
¢ Hardwired via switches set by user
DUEIND =
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Implementation in software

integer combination lock ( ) {

integer vl1, v2, v3;

integer error = 0;

static integer c[3] = 3, 4, 2;
while (!new value( ));

vl = read value( );

if (vl !'= c[1l]) then error = 1;
while (!new value( ));

v2 = read value( );

if (v2 !'= c¢[2]) then error = 1;
while (!new value( ));

v3 = read value( );

if (v2 !'= c¢[3]) then error = 1;
if (error == 1) then return(0); else return
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Determining details of the specification

¢ How many bits per input value?

¢ How many values in sequence?

¢ How do we know a new input value is entered?

¥ What are the states and state transitions of the system?

new value reset

L

CIOCk >

|

open/closed
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Digital combination lock state diagram

¢ States: 5 states
¢ Represent point in execution of machine
¢  Each state has outputs
¢ Transitions: 6 from state to state, 5 self transitions, 1 global
€ Changes of state occur when clock says its ok
¢  Based on value of inputs
¢ Inputs: reset, new, results of comparisons

¢ Output: open/closed ERR

Cl!=value
C3!=value
& new
& new
reset —( closed »( closed »( closed [ open
Cl==value C2==value C3==value
& new & new & new
not new not new not new
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Data-path and control structure

S
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V= Y
M)
R Y
7

VSV

¢  Finite-state m
€  Control for data-path\whi

Data-path
¢ Storage r

)

€ Multiplexer

isters for combination values
¢  Comparator
Control
J controller

lue to compare)

iplexer
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State table for combination lock

P

¢  Finite-state machine

@ Refine state diagram to take internal structure into account

Y

¢ State table ready for encoding

next
reset  new equal state | state  mux open/closed
1 — — — S1 C1 closed
0 0 - S1 S1 C1 closed
0 1 0 S1 ERR — closed
0 1 1 S1 S2 C2 closed
0 1 1 S3 OPEN - open
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Encodings for combination lock

Y Encode state table
@  State can be: S1, S2, S3, OPEN, or ERR

¢ Needs at least 3 bits to encode: 000, 001, 010, 011, 100
¢ And as many as 5: 00001, 00010, 00100, 01000, 10000
¢ Choose 4 bits: 0001, 0010, 0100, 1000, 0000

¢ Output mux can be: C1, C2, or C3
¢ Needs 2 to 3 bits to encode

© Choose 3 bits: 001, 010, 100 new reset
¢  Output open/closed can be: open or closed ccr)]:#?(ol 1
¢ Needs 1 or 2 bits to encode —
@ Choose 1 bit: 1, 0 controller
{+~—-clock
equal
next
reset new equal state | state mux open/closed open/closed
1 - — - 0001 o001 0
0 0 - 0001 | 0001 001 0
0 ! 0 0001 | 0000 - 0 Mux is identical to last 3 bits of state
0 1 1 0001 | 0010 010 0 open/closed is identical to first bit of state
therefore, we do not even need to implement
0 1 1 0100 | 1000 - 1 FFs to hold state, just use outputs
) 2 BAPDR it
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Data-path implementation for combination lock

¢ Multiplexer

¢ Easy to implement as combinational logic when few inputs

Y

¢  Logic can easily get too big for most PLDs

C1 C2 C3
41 44 44 mux
* Y * control

multiplexer
41
v

value—~—J] comparator

4 equal

e ®
% '\‘41
V= Y
V. - Y
Y E Y
X 4

/d“ééxL&K
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C1i

C2i

C3i

mux

r— control

S

S

=~

equal

EP

Embedded ow-Power
aboratory

Friday, March 19, 2010



Data-path implementation (cont’'d)

¢ Tri-state logic

@  Utilize a third output state: “no connection” or “float”
¢  Connect outputs together as long as only one is “enabled”

¢  Open-collector gates can
only output 0, not 1

¢ Can be used to implement
logical AND with only wires

C1 C2 C3

4// 4/ 4 A

mux
r 3 r control
multiplexer
41
v
value—~— comparator
4 equal

s 2D
AR

™,
A
¥
uE "

‘AéxL
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value C1i C2i C3i

mux

Yo Yo Y

LI

¥

ANN- +

equal

I control

Tri-state driver
(can disconnect
from output)

Open-collector connection
(zero whenever one connection is zero,
one otherwise — wired AND)
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Tri-state gates

¢ The third value
¢  Logic values: “0", “1”

¢ Don't care: "X” (must be 0 or 1 in real circuit!)

@  Third value or state: “Z” — high impedance, infinite R, no connection

@ Tri-state gates

)

¢  Additional input — output enable (OE)
€ Output values are 0, 1, and Z

¥  When OE is high, the gate functions normally

€  When OE is low, the gate is disconnected from wire at output

@  Allows more than one gate to be connected to the same output wire

¢ Aslong as only one has its output enabled at any one time (otherwise, sparks could fly)

OE

Out

Non . In OE |[Out
on-inverting
tri-state X 0 &
buffer 0 1 |0
1 1 1

In
OE
Out
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Tri-state and multiplexing

¢ When using tri-state logic

€  Make sure never more than one "driver" for a wire at any one time
(Pulling high and low at the same time can severely damage circuits)

@  Make sure to only use value on wire when its being driven

(Using a floating value may cause failures)

)

InputO

Inputl

Select

DUEDD
S 0
Faly

V.
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¢ Using tri-state gates to implement an economical multiplexer

When Select is high
Inputl is connected to F

When Select is low
InputO is connected to F

This is essentially a 2:1 mux
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Open-collector gates and wired-AND

¥ Open collector: another way to connect gate outputs to the same wire
¢  Gate only has the ability to pull its output low
¢ It cannot actively drive the wire high (default — pulled high through resistor)
¢ Wired-AND can be implemented with open collector logic
@ If Aand B are "1", output is actively pulled low
@ IfCand D are "1", output is actively pulled low
@ If one gate output is low and the other high, then low wins

¢ If both gate outputs are "1", the wire value "floats", pulled high by resistor
¢ Low to high transition usually slower than it would have been with a gate pulling high

¢  Hence, the two NAND functions are ANDed together

L
) $
_:jv—— With ouputs wired together
Open-collector 2 ' using "wired-AND"
NAND gates C

e to form (AB)'(CD)

;\‘_Lz sh
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Digital combination lock (new data-path)

¢ Decrease number of inputs

€ Remove 3 code digits as inputs
€  Use code registers
¢  Make them loadable from value

€ Need 3 load signal inputs (net gain in input (4*3)-3=9)

¢ Could be done with 2 signals and decoder

(Id1, Id2, Id3, load none)
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|C'l1 |C'12 Ic'l3
of ‘- C2 L C3
41 417 41 mux
y y control
multiplexer
41
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Section summary

©

FSM design
¢ Understanding the problem
¢ Generating state diagram
€  Communicating state machines
¥ Four case studies
¢ Understand I/O behavior
¢  Draw diagrams
¢  Enumerate states for the "goal"
€  Expand with error conditions
¢ Reuse states whenever possible
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Memory controller
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Sequential multiplier

:&ﬁif N P Embedded ow-Power
(B 38 i l aboratory
P

Friday, March 19, 2010



Serial communication controller
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