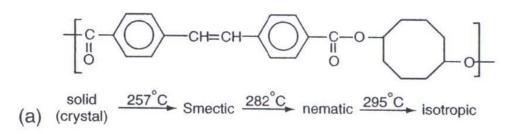
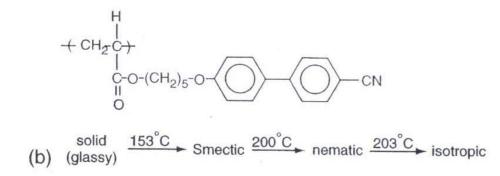

Chapter 7

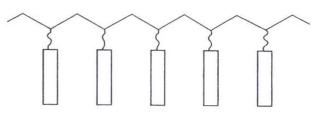
Liquid Crystalline State

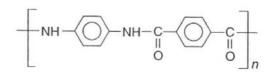

LC State

- □ LC ~ mesophase ~ order in 1 or 2 dimensions
 - amorphous ~ liquid ~ no order
 - crystalline ~ solid ~ order in 3 dimensions
- □ mesogen ~ rod or disc □□Fig 7.2
- mesophase structures Prig 7.1
 - smectic, nematic, cholesteric
 - discotic
- thermotropic LClyotropic LC



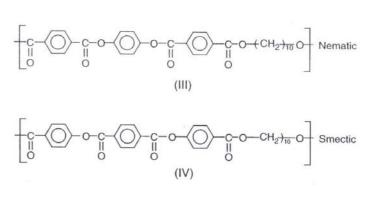

Liquid Crystalline Polymers

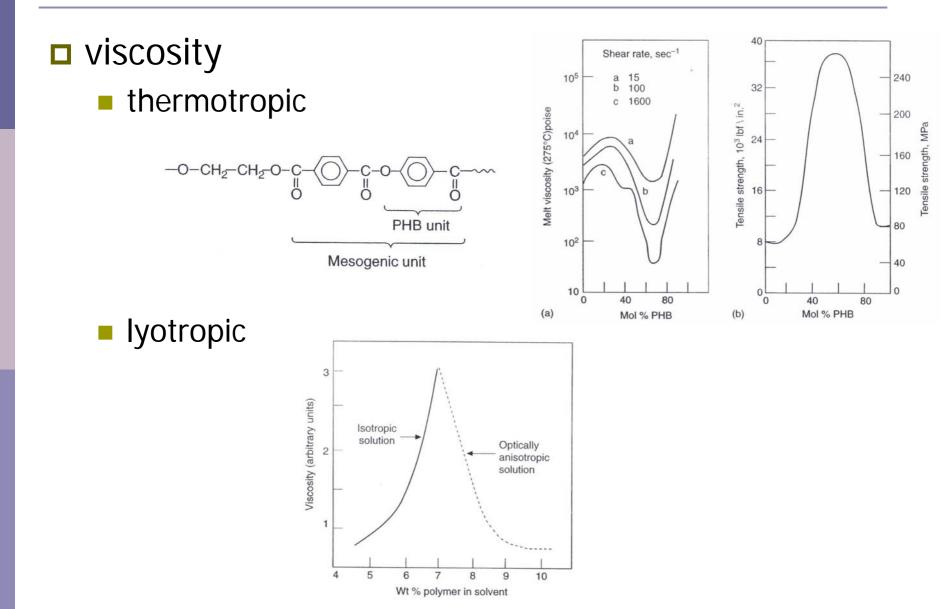

main-chain LCP side-chain LCP


Main-chain LCP

structure

all-mesogen


 T_m too high
 Iyotropic only


modifications

phase behavior

- nematic usual
- smectic
 - LCP with long spacer
 - in some special cases

properties

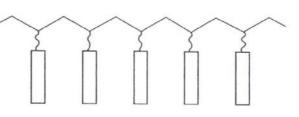
high thermomechanical property

stiff and self-reinforcing

processability

Iow viscosity ~ precision product

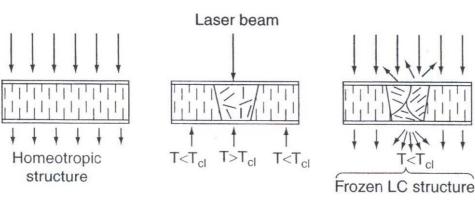
 \blacksquare low ΔH_c and time for Xtallization ~ low cycle time


applications

fiber

electronics parts

Side-chain LCP


structure

phases ~ nematic, smectic, cholesteric (chiral)

applications

- not for display
- optical storage

Properties of Polymers

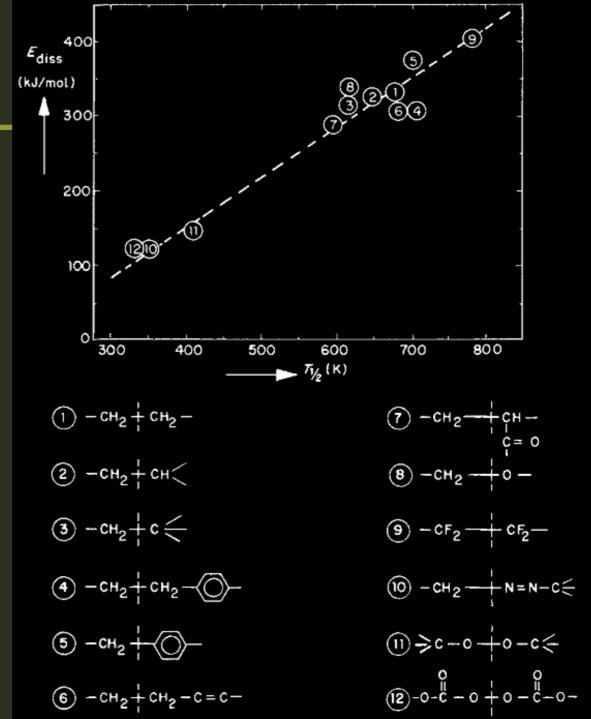
Properties of Polymers

Material properties

• 화학적 성질

» stability, solubility, permeability, flammability

- 전기적성질
- 광학적 성질
- 열적성질
- 기계적 성질
- Processing properties
- Product properties ~ product design
- There are no bad materials, but only bad articles.
- Structure-property relationship


✓ Properties are determined by chemical and physical structures.

Stability

- to heat
 - depends on the dissociation energy of the weakest bond
 - Measurement thermal gravitational analysis (TGA)
- to light (UV)
 - 300 nm ≈ 400 kJ/mol
 - depends on absorption wavelength
- to oxidation
 - thermal and photochemical
 - Indication ~ yellowing
- to hydrolysis
 - depends on constituent groups
 - ▶ weatherability (내후성)

E_{diss} ~ bond dissociation energy

T_{1/2} ~ half weight at 30 min

Permeability

- In membranes ~ semi-permeable
- In packaging ~ barrier property
- Diffusion-Solution model
 - absorption-diffusion-desorption Fig 4.18
 - P = DS
 - Diffusivity
 - » T_g of polymer Table 4.5 & Fig 4.19
 - » size of gas Table 4.5-6 & Fig 4.19
 - Solubility
 - » bp of gas
 - » polarity of gas and polymer
- Permeability vs Selectivity Fig 4.20

Gas	Р	D	S
N_2 (=1)	1	1	1
CÕ	1.2	1.1	1.1
CH_4	3.4	0.7	4.9
O ₂	3.8	1.7	2.2
He	15	60	0.25
H ₂	22.5	30	0.75
CO ₂	24	1	24
H ₂ O	(550)	5	-

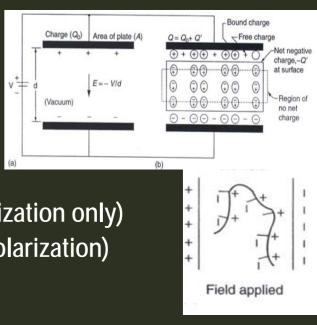
Flammability (↔ Flame retardancy)

Burning: 2 step process

- Pyrolysis (decompose) \rightarrow 'char' + gas Q₁
- Combustion (ignite & inflame) \rightarrow combustion product + Q_2

□ For flame retardation

- Iower gas (Q₂)
- higher 'char yield'
 - » lower H/C
- inhibiting gas
 - » halogen, phosphorus
- endothermic degradation (with releasing H₂O)
 - » inorganic flame retardants like Mg(OH)₂, Al(OH)₃


Group contribution to 'char yield'

GROUP	CFT in C-equiv	GROUP	CFT in C-equiv		
ALIPHATIC GROUPS		HETEROCYCLIC GROUPS			
-снон-	1/3	<u> </u>	1		
ALL OTHER *)	٥	°0″	ļ		
AROMATIC CROUPS			31/2		
- O-	1	СА нс—s	_ 14		
))	2	- č_,č-	31/2		
-@-	3	HC-CH -CN-N-	31/2		
-@-	6	N			
-\$	6		7		
-00-	6		7		
	10		9		
	14		11		
-o-ç-@-ç-o-	1 1/2		10		
CORRECTIONS DUE TO DISPROPORTIONING (H-SHIFT): GROUPS DIRECTLY CONNECTED TO			12		
AROMATIC NUCLEUS			tO		
>CHz and>CH-CHz-	-1				
-CH3	-1 ¹ /2				
$>C(CH_3)_2$ -CH(CH_3)_2	-3		15		
*) NO HALOGEN GROUPS INCLUDED					
N.B. SYSTEM IS NOT VALID FOR HALDGEN-CONTAINING POLYMERS					

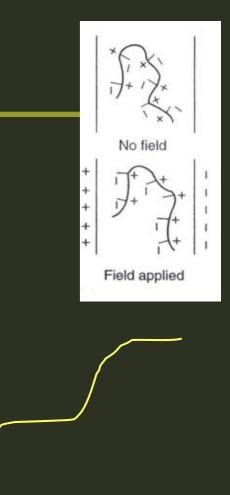
Electrical properties 1

- □ At high electric field
 - electrical failure, treeing
 - arc resistance
 - No direct relation to chemical structure
- □ At low electrical field
 - Polymers are insulators
 - » resistivity ~ 10^8 – $10^{20} \Omega$ cm
 - dielectric constant, $\varepsilon = C / C_{vac}$
 - $\epsilon \propto \text{polarization} \sim \text{refractive index}$
 - » Non-polar polymers, $\varepsilon = n^2$ (electronic polarization only)
 - » polar polymers, $\varepsilon > n^2$ (electronic + dipole polarization)
 - ε related to chemical structure

 $\approx \epsilon = \delta / 7.0$

Electrical properties 2

Frequency dependent ε


- high ε at low freq and/or at high temp
- Iow ε at high freq and/or at low temp
- dielectric relaxation

Types of dipole

- main-chain dipole
 - » better insulator at high frequency
- side-chain dipole

conducting polymers

- resistivity ~ 10³–10⁸ Ωcm (semiconductors)
- piezo-/pyro-/photo-electric polymers

Temperature

Frequency

3

Optical properties 1

- Light upon interaction with polymer
 - reflected ~ gloss ~ surface roughness
 - absorbed ~ color ~ chromophore
 - refracted, scattered, transmitted ~ clarity
 - » transparent < 30% haze < translucent < opaque</p>
 - haze ~ fraction of light 2.5° deviated by scattering
- Opaque by heterogeneity (different *n*) larger than λ of visible light (340 nm)
 - impurity
 - 2nd phase
 - crystallite

Optical properties 2

For a semicrystalline polymer to be transparent

- small crystallites
- $\rho_{crystal} \approx \rho_{amorphous}$
- biaxial orientation

□ refractive index

- Ienses
- optical fiber
- □ Non-linear optical behavior