Chapter 8

Glass(-Rubber) Transition

-<u>i</u>-----

Mechanical relations Transitions and relaxations Glass transition theories

1. Mechanical relations

stress and strain

- stress (응력), σ = F / A
 - F ~ force, vector, 2nd-rank tensor, 3 components (x,y,z)
 - A ~ area, vector, 2nd-rank tensor, 3 components (x,y,z)
 - then, $\sigma \sim 4^{\text{th}}$ -rank tensor, 9 components (xx, xy, xz ---)
- strain (변형), ε = ΔL / L
 - deformation by load
 - also a 4th-rank tensor, 9 components
- 9 stress components

direction of load direction of plane

Stress and strain 2

- stress components
 - 3 normal stresses (σ, 수직응력)
 - 6 shear stresses (τ, 전단응력)
 - by symmetry \rightarrow 3 τ 's
 - 9 components → 6 independent components
 - $\begin{array}{c} \nabla \\ \sigma_{x} & \tau_{xy} & \tau_{zx} \\ \tau_{xy} & \sigma_{y} & \tau_{yz} \\ \tau_{zx} & \tau_{yz} & \sigma_{z} \end{array} \right) = \left(\begin{array}{c} 81 \\ 81 \end{array} \right) \left(\begin{array}{c} \varepsilon_{x} & \varepsilon_{xy} & \varepsilon_{zx} \\ \varepsilon_{xy} & \varepsilon_{yz} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{yz} & \varepsilon_{z} \end{array} \right)$

 σ_{yy}

 $\sigma_x \tau_{xy} \tau_{xz}$

 $\tau_{yx} \sigma_y \tau_{yz}$

xy, yz, zx 12, 23, 31

- stiffness tensor components
 - 81 \rightarrow 36 \rightarrow 21 \rightarrow \rightarrow \rightarrow 2 (isotropic, 2 of E, v, G, B)

Three types of mechanical behavior ₭ Elastic (탄성) instantaneous solid-like ✗ Viscous (점성) rate-dependent liquid-like ✗ Viscoelastic (점탄성) time-dependent polymer-like?

- When $\sigma_y = \sigma_z = 0$, $\tau's = 0 \rightarrow$ uniaxial tension test (UTT)
- σ_(x) = E ε_(x)
 Hooke's law (for UTT)
 E ~ Young's modulus [영탄성률, 인장탄성률]
 modulus ~ resistance to deformation
 p355

 ε = D σ
 D ~ (tensile) compliance [순응도]

• definition, $v = -\epsilon_y / \epsilon_x > 0$

- rubbers, $v = 0.5 \sim$ no volume change
- plastics, v ~ 0.4
- metals, v < 0.4 (~ 0.33)</p>

Table 8.2

shear deformation

- When $\tau_{yz} = \tau_{zx} = 0$, $\sigma's = 0 \rightarrow$ simple shear
- $\tau_{(xy)} = G \gamma_{(xy)}$
 - another Hooke's law (for simple shear)
 - G ~ shear modulus [전단탄성률]
- $\gamma = J \tau$
 - J ~ shear compliance

 $\begin{array}{ccc} 0 & \tau_{xy} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$

• $\sigma_{(x)} = E \varepsilon_{(x)}$ UTT ($\sigma_y = \sigma_z = 0, \tau's = 0$) simple shear $(\tau_{yz} = \tau_{zx} = 0, \sigma's = 0)$ $\tau_{(xy)} = G \gamma_{(xy)}$ UTT $\varepsilon_v = -v \varepsilon_x$ When all stresses are present $\varepsilon_x = \sigma_x / E - v \varepsilon_v - v \varepsilon_z$ $\varepsilon_v = \sigma_v / E$ $= \sigma_x/E - \nu \sigma_y/E - \nu \sigma_z/E$ $= (1/E) [\sigma_x - \nu (\sigma_y + \sigma_z)]$ Generalized Hooke's law $\varepsilon_v =$ $\varepsilon_7 =$ (for isotropic materials) $\tau_{xy} = G \gamma_{xy}$ $\tau_{yz} =$ $\tau_{zx} =$

dilatation

 $\sigma_{x} + \sigma_{y} + \sigma_{z}) = \sigma_{m} - \text{mean normal stress}$ $\sigma_{z} + \sigma_{y} + \sigma_{z}) = \sigma_{m} - \text{mean normal stress}$ $\sigma_{z} + \sigma_{y} + \sigma_{z}) = \sigma_{m} - \text{mean normal stress}$ $volume, V_{0} \rightarrow V$ $\varepsilon_{m} = \frac{V - V_{0}}{V_{0}} - \text{volume strain}$ $\sigma_{m} = B \varepsilon_{m} - B (K) - \text{bulk modulus}$ $\varepsilon_{m} = \beta \sigma_{m} - \beta - \text{compressibility}$

relations betw elastic constants

• E = 3B(1-2v) = 2(1+v)G

Only 2 of 4 (E, G, B, v) are independent.

• e.g., E = 3G, $B = \infty$ for elastomers

Viscous and Viscoelastic

Xiscous ~ liquid-like, rate-dependent

- $\tau = \eta \dot{\gamma} = \eta_{(s)} (d\gamma/dt) \sim \text{Newton's law}$
 - $\eta_{(s)}$ ~ (shear) viscosity ~ resistance to flow
- $\sigma = \eta_E \dot{\varepsilon} = \eta_E (d\varepsilon/dt)$

• η_E ~ elongational [tensile] viscosity ~ resistance to flow

Viscoelastic ~ time-dependent

Chapter 10

stress (σ, τ), strain (ε, γ)
modulus (stiffness), σ = E ε τ = G γ
compliance, ε = D σ γ = J τ
Poisson's ratio (ν)

bulk modulus, B

T or t

- elastic, solid-like, Hooke's law, σ = E ε
 viscous, liquid-like, Newton's law, τ = η (dγ/dt)
 viscoelastic, polymer-like (?), σ = E(t) ε(t)
- Every material is viscoelastic.

Beborah number, $De = \tau/t$ [material time/expt time] $\square p521$

t-T-ε [time-temperature-strain] equivalence

2. Five Regions of Viscoelastic Behavior

(1) Glassy region

- E ~ 2 3 GPa ~ only local motions
- \square p357 E \propto B $\propto \delta^2 \propto$ intermolecular interaction
 - possible, but missing chain stiffness
- ② Glass transition region
 - E drops by 10³ in 10 30 °C
 - onset of segmental motion
 - Table 8.4 T_a motion involves 10 50 chain atoms

③ Rubbery plateau region

- E ~ 1 3 MPa
- width \propto mol wt \square Fig 8.3 p359
- $v = 0.5 \rightarrow G = E/3 = \rho RT/M = G_N^0$
 - G_N⁰ ~ plateau modulus
 - M ~ M_e for linear; M_c for crosslinked polymers
- 4 Rubbery flow region
 - time-dependent flow (Silly-Putty)
- 5 Liquid [viscous] flow region
 - slip & translation of individual molecules

3. Measuring Transitions (Relaxations)

transition ~ change of state ~ T_m, T_g ^[] ¶8.2.7 p361 relaxation ~ molecular motion ~ dielectric, mechanical cf. dispersion, damping, loss (of energy)

(1) Dilatometry ~ change in volume [expansion coeff]

Dilatometry 2

* Thermodynamics of phase transition (Ernfest)

- 1st-order phase transition
 - Discontinuous 1st derivatives of free energy
 - dG = VdP –SdT

$$\left(\frac{\partial G}{\partial T}\right)_p = -S$$
 $\left(\frac{\partial G}{\partial P}\right)_T = V$ $\left(\frac{\partial (G/T)}{\partial (1/T)}\right)_P = H$

• At T_m, T_b

S, V, H

Dilatometry 3

2nd-order phase transition
 discontinuous 2nd derivatives of G

$$\left(\frac{\partial^2 G}{\partial T^2}\right)_p = -\left(\frac{\partial S}{\partial T}\right)_p = -\frac{C_p}{T}$$

$$\left(\frac{\partial^2 \mathbf{G}}{\partial \mathbf{P}^2}\right)_T = -\left(\frac{\partial \mathbf{V}}{\partial \mathbf{P}}\right)_T = -\beta \mathbf{V}$$

superconducting para-ferro magnetic

$$\left(\frac{\partial \mathsf{H}}{\partial \mathsf{T}}\right)_{P} = \mathsf{C}_{P}$$

 $\left(\frac{\partial \mathsf{V}}{\partial \mathsf{T}}\right)_{P} = \alpha \mathsf{V}$

■ At T_g S, V, H ■Fig8.5 p363

Dilatometry 4

vol

0

SC

- kinetic T_a
- Glassy state is not in equilibrium.
- Glass transition is a pseudo-2nd-order phase transition.

Physical aging

- Holding glassy polymer at a T < T_g
- moves to equilibrium
- $T_g \uparrow$, $E \uparrow$, brittleness \uparrow

Fig8.18 p378

Thermal Analysis (2) Thermal Analysis DSC Heating (scan) at a constant rate (usually 10-20 K/min)

measures difference in heat flow cf. DTA

Mechanical Measurement

(3) Mechanical Measurement

- Static test
 - Measuring initial modulus at various T ?
- Dynamic mechanical test

Dynamic Mechanical Analyzer (DMA) [TA] Dynamic Mechanical Thermal Analyzer (DMTA) [Rheometrix] cf. Rheovibron® 🛄p370

DMA 2

18.12 p412 $\sigma = \sigma_0 \sin(\omega t + \delta)$ = $\sigma_0 \sin \omega t \cos \delta + \sigma_0 \cos \omega t \sin \delta$ = $\varepsilon_0 (\sigma_0 / \varepsilon_0) \cos \delta \sin \omega t + \varepsilon_0 (\sigma_0 / \varepsilon_0) \sin \delta \cos \omega t$ F' **F**″ loss modulus storage modulus $= \varepsilon_0 E' \sin \omega t + \varepsilon_0 E'' \cos \omega t$ in-phase with ϵ $\pi/2$ out-of-phase with ϵ elastic viscous energy stored energy dissipated Fig 8.6 p364

DMA 3

- $\varepsilon = \varepsilon_0 e^{i\omega t}$
- $\sigma = \sigma_0 e^{i(\omega t + \delta)}$
- $E = \sigma/\epsilon = E^* = (\sigma_0/\epsilon_0) e^{i\delta} = (\sigma_0/\epsilon_0) \cos \delta + (\sigma_0/\epsilon_0) i \sin \delta$ = $E' + i E'' \qquad \square eqn (8.14) p355$
- $\tan \delta = E''/E'$
- Actually, tan δ is small (0.1 at T_q) $\rightarrow E \approx E^* \approx E'$ (in magnitude)

- T_g depends on frequency (ω)
 - T_g (1 Hz) ~ T_g (10 °C/min, DSC)

Torsional pendulum test
 Torsional braid analysis (TBA)

• log decrement, $\Delta = \ln (A_1/A_2)$

• $\Delta = \pi (G''/G') = \pi \tan \delta$

Fig 8.12 p371

(4) Dielectric Measurement

Dielectric Analyzer (DEA) [TA] Dielectric Thermal Analyzer (DETA) [Rheometrix]

Fig 8.13 p372

 \checkmark T_g depends on frequency

(5) NMR

chain mobility $\wedge \rightarrow$ faster relaxation \rightarrow signal sharpens

Fig 8.14 p372

4. Other Transitions than Tg

Secondary relaxations (at T < T_a)

at lower temperatures than T_a

- with smaller E_a (~10 kcal/mol; ~100 kcal/mol for T_a) Fig 8.20 p380
- with smaller motion
 - Iocal main-chain motion (crankshaft (?)) I Fig 8.16 p375
 - side-chain motion Table 8.6 p377
- Affect property at room temp for glassy polymers
 - like toughness, especially for main-chain motion

***** Liquid-liquid transition (T_{\parallel})

- 'fixed' liquid to 'true' liquid
- moition of entire chain
- At T > T_g

Artifact of TBA?

E Fig 8.17 p376

5. Time and frequency effects in measurements
* Figs 8.18, 19, 20
* Why dependent?
• De

6. Theories of glass transition

Three groups

- free volume theories
- kinetic theories
- thermodynamic theories

Free volume theory

free volume ~ unoccupied volume (v_f = v - v_o)

 v_f/v at T_g of 2 – 25% suggested \Box Fig 8.22 p383

- ~ not a physical volume (hole)
- ~ for explanation only
- ~ volume for molecular motion DFig 8.21 p382

Ch 8-1 Slide 28

cf. PALS 📖 p391-392

Free volume theory

- By Doolittle (1950's)
 - $\ln \eta = \ln A + B/f$
 - η ~ viscosity ~ modulus
 - $f = v_f / v \sim fractional free volume (FFV)$
- By W, L, and F (1970's)
 - free vol, $f = f_0 + \alpha_f (T T_0)$
 - In $[\eta(T)/\eta(T_0)] = B (1/f 1/f_0)$
 - When $T_0 = T_{g'}$, $f_0 = f_g$
 - shift factor, a_T

$$a_{T} = ...\eta(T) = \exp \left[...(-B/f_{g}) (T_{-} T_{g}) \right]$$

$$\eta(T_{g}) \qquad (f_{g}/\alpha_{f}) + (T - T_{g})$$

📖 ¶8.6.1.2 p384-390

Free volume theory 2

• WLF equation Q eqn (8.42) p329 $\log a_{T} = \frac{-(B/2.303f_{g})(T - T_{g})}{(f_{g}/\alpha_{f}) + (T - T_{g})} = \frac{-C_{1}(T - T_{g})}{C_{2} + T - T_{g}}$

- Empirically, $C_1 = 17.44$, $C_2 = 51.6 \sim universal constants$
- When B = 1 (arbitrarily), $f_q = 1/(2.303)(17.44) = 0.025$
 - f_q of 0.025 is arbitrary!
- At T_g, FFV is constant.
 - may be 2.5% (or 8, 11.3, even 25%)
- T_g is an iso-free-volume state.

Kinetic theory

Kinetic theory

- T_g is rate-dependent
 - cooling rate (dilatometry)
 - heating rate (DSC)
 - frequency (DMA, DEA)
- Glass transition when $t = \tau$ [De = $\tau/t = 1$]
- rate \uparrow (freq \uparrow) \rightarrow t \checkmark \rightarrow De \uparrow \rightarrow T_q \uparrow
- According to WLF eqn, $T_g \uparrow by 3$ K by log t \checkmark by 1
 - $C_2/C_1 \sim 3$ $\square p390$
 - not always

Thermodynamic theory

* Thermodynamic theory

- Ernfest ~ pseudo-2nd-order phase transition
- Kauzmann Paradox
 - S(glass) < S(crystal)</p>
 - S < 0 at T > 0 K

Thermodynamic theory 2

- Gibbs-DiMarzio theory
 - metastable glassy state above crystal state
 - At $T_{2'}$, $S_{conf} = k \ln \Omega = 0$
 - T₂ obtained by infinitely slow cooling.
 - T₂ is the true 2nd-order phase transition temperature.
 - not rate-dependent
 - How low is T₂?
 - From WLF eqn, $a_T \rightarrow \infty$ (shift to t_{∞})
 - $T T_g = C_2 = -51.6$
 - T₂ ~ T_g 50 K

7. Factors affecting T_g

Repeat unit structure (chemical structure)

- chain stiffness (intramolecular steric hindrance)
 - aromatic > aliphatic
 - substitutents, branching > linear
 - single bond > double bond
 - syndiotactic > isotactic Table 8.12 p409
- intermolecular interactions (2ndary bonding, CED)
 - London dispersion forces (VdW forces)
 - substitutents \rightarrow distance $\uparrow \rightarrow$ forces $\lor \rightarrow T_a \lor$
 - compete with stiffening effect
 PE < PP > PB > C3 --
 - < C8 < C9

Fig 8.32 p409

- dipole interactions
 PVC > PVC > PVDC
- H-bonding polyamides, polyurethanes

Factors affecting T_g 2

Molecular weight 📖 p397-398

- $T_g = T_g^{\infty} K/M_n$
- $T_g \uparrow up$ to M_c
- mol wt $\uparrow \rightarrow$ # of chain ends \checkmark \rightarrow FFV $\checkmark \rightarrow$ T_q \uparrow

Crystallinity p404-406
 fringed-micelle explanation

Factors affecting $T_g 3$ * Crosslinking Density • $M_c \checkmark \rightarrow XD \land \rightarrow FFV \checkmark \rightarrow T_g \land$ • $G = \rho RT/M_c$

✗ Plasticization (가소화)

- plasticizer (가소제) ~ low mol wt agent that reduces T_a
- plasticization ~ increasing FFV

T_g of copolymers and blends
 Copolymers □ p399-404
 alternating and random ~ 1 phase
 block and graft ~ 2 phases when long (phase-separated)
 ₩ Blends □ Fig 8.29 p403

compatible (miscible) ~ 1 phase

incompatible (immiscible) ~ 2 phases

Relation between T_g and $T_m [T_f]$

- $# T_m^0 = \Delta H_f^0 / \Delta S_f^0$
 - $\Delta H_{f} \sim$ interchain interaction
 - $\Delta S_f \sim chain flexibility$

Two-thirds rule Fig 8.31 p407

- T_g~ 0.5 T_m for linear polymers (symmetrical)
 PE , POM , PVDF, ---
- T_g~ 2/3 T_m for vinyl polymers (asymmetrical)
 - PS, PVC, PMMA, Pester, nylon, ---
- T_g~ 0.8 T_m for unusual polymers
 - branched polymers, PC, PPO

Miscellaneous

🕮 ¶8.9.4 p406

- Glass transition temperature (T_g)
- Heat distortion temperature (HDT)
- Vicat softening temperature

- plastics (합성수지) ~ below T_g
- rubbers (합성고무) ~ above T_q ,crosslinked
- fibers (합성섬유) ~ drawn
- adhesives
- coatings and paints