Chapter 11

Mechanical Behavior of Polymers

Contents

- 1. Outline
- 2. Stress and Strain
- 3. Small-Strain Deformation
- 4. Yield
- 5. Crazing
- 6. Fracture

Outline (1)

- mechanical property
 - > mechanical response of a material to the applied stress (load)
- response of a polymer depends on
 - b material (chemical structure)
 - > morphology (physical structure)
 - ▷ temperature
 - \triangleright time
 - b magnitude of stress
 - > state of stress

Outline (2)

magnitude of stress

- b upon small stresses
 - elastic deformation
 - viscous deformation (flow)
 - viscoelastic deformation
- b upon large stresses
 - plastic deformation
 - yielding \rightarrow ductile
 - crazing \rightarrow brittle
 - failure (fracture)
- response of the polymer chains
 - b deformations of the bond lengths and angles

Fig 11.3 p562

- b uncoiling of the chains
- ▷ slippage of the chains
- > scission of the chains

Stress and strain

- ► stress: load (force) per unit area, $\sigma = F/A [N/m^2 = Pa]$
- strain: displacement by load, $\varepsilon = \Delta L/L$ [dimensionless]
- engineering (nominal) stress, $s = F/A_0$
- true (natural) stress, $\sigma = F/A$
- engineering (nominal) strain, $e = \Delta L/L_0$
- true (natural) strain, $d\epsilon = dL/L$, $\epsilon = \ln (L/L_0)$
 - $\triangleright \epsilon = \ln (L/L_0) = \ln [(L_0 + \Delta L)/L_0] = \ln [1+e]$
 - $\triangleright \epsilon \sim e$ for small strains only (e < 0.01)
- For UTT, s < σ and ε < e

Testing geometry and state of stress (1)

uniaxial tension

 σ_{xx} = $\sigma > 0$, all other stresses = 0

• uniaxial compression $\sigma_{xx} = \sigma < 0$, all other stresses = 0

simple shear ~ torsion
 τ_{xy} = τ, all other stresses = 0

Testing geometry and state of stress (2)

► plane stress $\sigma_{zz} = \tau_{zx} = \tau_{yz} = 0$

► plane strain $\varepsilon_{yy} = 0, \ \sigma_{yy} = v \ (\sigma_{xx} + \sigma_{zz})$

bending or flexure

Constitutive equation (1)

- Equations that relate stress to strain (rate)
 - $\sigma = c \epsilon$ c : stiffness
 - $\epsilon = s \sigma$ s : compliance
- ► c, s tensors ~ 81 components (9 x 9)
- ▶ by symmetry in σ , ϵ (equilibrium), 81 → 36 (6 x 6)
- ▶ by symmetry in c, s $36 \rightarrow 21$
- ▶ by symmetry in material,

 $21 \rightarrow 13$ (1 sym pl) $\rightarrow 9$ (3 sym pl) $\rightarrow 5$ (fiber sym) $\rightarrow 2$ (isotropic)

► For <u>isotropic linear elastic</u> solid in UTT $\sigma_{(xx)} = E \epsilon_{(xx)}$ (Hooke's law) $\epsilon_{yy} = -\nu \epsilon_{xx}$ linear elastic / non-linear elastic

σ

Constitutive equation (2)

Stiffness and compliance can be time-dependent (viscoelastic), when stress and/or strain are time dependent. ~ viscoelastic behavior

$$\triangleright \sigma(t) = E(t) \epsilon_o \sim \text{stress relaxation}$$

$$> \epsilon(t) = D(t) \sigma_0 \sim creep$$

- Stiffness and compliance can be strain-level-dependent (nonlinear), when the stress and/or time exceed linear region. ~ nonlinear behavior
 ▷ σ(t) = E(t, ε₀) ε₀
- Stiffness and compliance can be orientation-dependent, when the material is anisotropic (fibers, films). ~ anisotropic behavior
 E_{xx} ≠ E_{yy}; v_{zx} ≠ v_{xy}
- It is hard to express the real mechanical response in a constitutive equation.

Viscoelasticity

- Every material is viscoelastic.
- depending on time (strain rate) and temperature
 - ▷ elastic, solid-like
 - ▷ viscoelastic, polymer-like
 - ▷ viscous, liquid-like
 - Deborah Number = material time / experimental time
- VE observation
 - ▷ stress relaxation
 - ⊳ creep
 - ▷ recovery
 - b time-temperature superposition
 - b dynamic mechanical

Application of VE Data to Product Design

- Correspondence principle
 viscoelastic equation → elastic equation
 σ(t) = E(t) ε → σ = E ε
- Pseudoelasticity

From creep, stress relaxation, or isochrone stress-strain curve, estimate longterm stress-strain relation, and design the product.

Creep curves and plots

101, reproduced by permission of ICI Plastics Division)

different from transient σ - ϵ curve

An example of product design

► To design a pressure vessel that is required to be used for 1 year without yielding or fracture (say 5% maximum allowable strain),

Large deformation behavior

- Upon large stress beyond (visco)elastic limit, a polymer experience either yielding or crazing, the two competing processes.
 - > Yielding precedes ductile failure; crazing precedes brittle failure.

b ductility (연성) ~ ability to yield and be cold-drawn
 b toughness (강인성) ~ resistance to crack propagation

- ▷ yield strength (항복강도)
 ~ stress at yield
 ▷ tensile strength (인장강도)
 ~ stress at failure
- ▷ elongation at break (파단신장률)
- stiff ~ high E
- strong ~ high TS
- ductile ~ high EB after yield
- tough ~ high energy before fracture

Yield criteria

- ▶ yield = start of plastic deformation
- ► yield by <u>shear only</u> $\tau_{max} = \sigma_1 - \sigma_3 = 2C = 2\tau_y = \sigma_y$
- pressure-independent YCmetals

pressure-dependent YC
 polymers

$$\begin{aligned} \sigma_y(\text{comp}) &= (1.1 - 1.3) \ \sigma_y(\text{tension}) \\ \sigma_y &= \sigma_y^{\ 0} - \mu \ (\sigma_1 + \ \sigma_2 + \ \sigma_3)/3 \end{aligned}$$

When all τ 's = 0, then x, y, z are principal axes and σ_x , σ_y , σ_z are principal stresses (σ_1 , σ_2 , σ_3). $\sigma_1 > \sigma_2 > \sigma_3$

If $\sigma_x = \sigma_y = \sigma_z$ and $\tau's = 0$, $\sigma_1 = \sigma_2 = \sigma_3$ (purely hydrostatic) $\sigma_1 - \sigma_3 = 0 \rightarrow$ no yield

If $\sigma_x > 0$, and other σ 's & τ 's = 0, $\sigma_1 - \sigma_3 = \sigma_y \rightarrow$ yield at $\sigma_1 = \sigma_y$

If
$$\sigma_1 = -\sigma_3$$
 and $\sigma_2 = 0$,
 $\sigma_1 - \sigma_3 = 2\sigma_1 = \sigma_y$
 \rightarrow yield at $\sigma_1 = \tau_y = \sigma_y/2$

Yield behavior

▶ strain rate $\uparrow \rightarrow$ YS \uparrow

Figure 10-10. True stress-true strain curves for polystyrene determined in plane strain compression. From Bowden and Raha (1970); reproduced with permission of Taylor and Francis Ltd.

► Temp $\uparrow \rightarrow$ YS \checkmark

Figure 11.36. Variation in the yield stress with temperature at various strain rates for polymethyl methacrylate. [Redrawn with permission from Langford, Whitney and Andrews. *Mater. Res. Lab. Res. Rept. No. R63-49*, MIT School of Engineering, Cambridge, Mass., 1963.]

Fig 11.5 p566

Fig 11.6 & 7

Post-yield behavior (1)

- strian softening
 - \triangleright load drop
 - \triangleright state of T_{g} at yield point

Fig. 6. (a) Stress-strain curves obtained on a sample of PMMA in plane-strain compression. The test has been interrupted and the load reduced to zero five times during the test. The unloading paths are not plotted. (Reproduced from reference 9 by permission of the Editor of Polymer.) (b) Similar test on polystyrene at room temperature.¹⁰ (c) Test on polyethylene terepthalate in uniaxial compression.

(Reproduced from reference 8 by permission of John Wiley and Sons Inc.)

- strain hardening
 - ▷ rise in stress
 - ▷ orientation of chains

Post-yield behavior (2)

- inhomogeneous deformation
 - ▷ localized instability due to softening, which interacts with restraints
 - ▷ with no restraint ~ necking
 - ▷ with restraint in 1 direction ~ inclined necking
 - ▷ with restrainst in 2 directions ~ shear band

PS PMMA

Fig 11.9(b) p571

Deformation of semicrystalline polymers

- semicrystalline = amorphous + crystal (lamellae)
 - \triangleright T < T_g < T_m (e.g. PET at RT)
 - Glass and crystals have comparable mechanical properties.
 - Yield behavior is similar to amorphous polymers.
 - $\triangleright~T_g < T < T_m$ (e.g. PE at RT)
 - crystals in liquid (rubber)
 - initial deformation (modulus) at rubber.
 - Only crystals yield: As crystallinity increases, σ_v increases.
- post-yield ~ reorientation of crystals

Fig 11.8 p570

Figure 10-19. Model for transformation from lamellar (a) to fibrillar (b) morphology on drawing a semicrystalline polymer. From Peterlin (1965); reproduced with permission. © John Wiley & Sons, Inc.

Crazing

- Iocalized inhomogeneous plastic deformation by <u>dilatational stress</u>
 - \triangleright normal yielding \leftrightarrow (shear) yielding
 - compete with shear yield
- structure of craze
 - Iong, thin wedge of deformed polymer (microfibrils)

Dekker Inc.]

Formation and growth of craze

No crazing by compression

Both craze and yield criteria are dependent on Temp and $d\epsilon/dt$.

 \rightarrow ductile-brittle transition

Fig. 5.8. Comparison of envelopes for the initiation of craze yielding (eqn. (5.5)) and shear yielding (eqn. (4.14)) in PMMA. Heavy continuous line indicates failure envelope (after Sternstein & Ongchin⁶⁴).

Craze propagation

- ▷ thicken by drawing new materials from bulk
- ▷ lengthen by meniscus instability □Fig 11.30 p598

Craze failure

- ► At very slow strain rates,
 - \triangleright fibril breakdown at interface between craze and bulk \rightarrow void
 - \triangleright void grows \rightarrow impinge to other voids \rightarrow crack
 - \triangleright connecting cracks from other crazes \rightarrow fracture
- ► At high strain rates,
 - ▷ craze fracture
 - craze fibrils found in fracture surface

Environmental stress cracking (ESC)

- Absorbed liquid plasticizes polymer. → soften
 → craze at a lower stress → fracture
- effective when solubility parameter difference is small

Figure 15-17. Decrease in T_g of PS due to solvent absorption, and its effect on the critical strain for crazing (Kambour et al., 1973). (o) Swollen samples in various chemical solvents; (**a**) extended in air mixed with PS-dichlorobenzene.

Figure 15-18. Schematic relationship between the critical crazing strain of a polymer and the solubility parameter SP of solvents.

Fracture

- ✓ failure (파쇄, 파단) ~ rupture by exceedingly large stress
- ✓ fracture (파고) ~ failure by crack propagation
- micromechanism of fracture
 - ▷ Chain scission or slip? □Fig 11.3 p562, Fig 11.29 p 595
 - ▷ Upon stress,

i) chain slip (against crystal, crosslinking, entanglement)

- iiA) crazing/yielding or
- iiB) chain scission (with high X_c , low M_c , low M_e)
- iii) chain scission as stress increases
- iv) voiding \rightarrow crack \rightarrow fracture

Ductile fracture (1)

failure of shear band

- ► thermal fracture
 - ▷ necking, not stabilized
 - ▷ cone-and-cup failure

diamond cavity

craze blunted by shear band

Figure 15-53. A SEM micrograph of a diamond cavity in PMMA (Cornes et al., 1977).

Ductile fracture (2)

- ► tensile rupture of elastomers
 - ▷ elastomerixc up to failure
 - ▷ 'failure envelope' □ Fig 11.17 p581
 - TS vs EB
 - at different Temp and d ϵ/dt
 - time Temp superposition
 - time to break, $t_b = \varepsilon_b/(d\varepsilon/dt)$

Brittle fracture (1)

- theoretical strength of solids
 - $\triangleright \sigma_{theo} = E/10 \leftarrow for interatomic separation$
 - $\triangleright~$ For whiskers, σ_{f} ~ E/10
 - > For isotropic glassy polymers,

 $\Box~\sigma_{f}$ ~ E/100 $~<~\sigma_{theo}$ (E ~ 3 GPa, σ_{f} < 100 MPa)

- due to flaw (crack, notch, inclusion).
 - stress concentration
 - plastic constraint
- stress concentration
 - ▷ ahead of crack tip
 - stress concentration factor,

$$k = \sigma_{max}/\sigma_{avg} = 1 + (2a/b) = 1 + 2(a/\rho)^{1/2}$$

Brittle fracture (2)

- plastic constraint
 - ▷ ahead of crack tip
 - b triaxial stress state

 $\Box \sigma_1 > 0$ (applied), $\sigma_2 \& \sigma_3 > 0$ (due to crack)

 \triangleright triaxiality \rightarrow yield at higher stress ~ plastic deformation constrained

 \triangleright yield at a stress higher than $\sigma_c \rightarrow$ brittle

Figure 15-57. Elastic stress distribution in the interior of a thick plate with a notch whose radius is ρ .

Fracture mechanics (1)

- Energy balance approach
 - \triangleright specimen with crack length 2a
 - \triangleright Crack grows when released strain energy by stress ($\sigma^2\pi a/E$) is greater than created surface energy (2 γ)
 - $\triangleright \sigma_f = [2E\gamma/\pi a]^{1/2}$: Griffith fracture criterion Qeqn (11.20) p586
 - $\triangleright\,$ for polymers; 2 $\gamma\,\sim\,1$ J/m², fracture energy (G_c) $\sim\,100$ 1,000 J/m²
 - Fracture energy higher by other process: plastic deformation at crack tip
 - $\,\triangleright\,$ replacing 2 γ with G_c
 - $\sigma_{\rm f}$ = [EG_c/ π a] ^{1/2} for plane stress
 - $\sigma_{\rm f}$ = [(EG_c/ π (1- ν^2)a]^{1/2} for plane strain
 - ▷ G_c: critical strain energy release rate; 'fracture energy' [J/m²]
 - \triangleright measurement of G_c

 $G_c = (P^2/2B) (dC/da)$

Fracture mechanics (2-1)

- Stress intensity factor approach
 - ▷ linear elastic fracture mechanics (LEFM)
 - ▷ 3 modes of fracture

- \triangleright Crack grows when $K_I > K_{Ic}$
- ▷ K_{Ic}: critical stress intensity factor; 'fracture toughness' [MPa m^{1/2}] (파괴강인성)

Fracture mechanics (2-2)

polymers.

Fracture mechanics (3)

relationship between G and K $B_{Ic} = K_{Ic}^2 / E$ $G_{Ic} = K_{Ic}^2 / E(1 - v^2)$ plane strain

Table 11.3 p575

Material	Young's modulus, E (GPa)	$G_{\rm Ic}(kJm^{-2})$	$K_{\rm Ic}(MNm^{-\frac{3}{2}})$
Rubber	0.001	13	· · · · · · · · · · · · · · · · · · ·
Polyethylene	0.15	$20 (J_{1c})$	
Polystyrene	3	0.4	1.1
High-impact polystyrene	2.1	$15.8 (J_{Lc})$	
РММА	2.5	0.5	1.1
Epoxy	2.8	0.1	0.5
Rubber-toughened epoxy	2.4	2	2.2
Glass-reinforced thermoset	7	7	7
Glass	70	0.007	0.7
Wood	2.1	0.12	0.5
Aluminium-alloy	69	20	37
Steel-mild	210	12	50
Steel—alloy	210	107	150

Typical values of G_{Ic} and K_{Ic} for various materials

Fracture mechanics (4)

- ▶ plastic deformation in front of crack tip \rightarrow higher G_c and K_c
- plastic zone size
 - From stress analysis by LEFM
 - In front of crack tip ($\theta = 0$), as r $\rightarrow 0$, $\sigma \rightarrow$ infinity ~ impractical
 - σ is cut off by yield strength (σ_v)

- When $\sigma_1 = \sigma_y$, plastic zone radius $r_p = (1/2\pi)(K_1/\sigma_y)^2$
- By plastic constraint, $r_p = (1/2\pi)(K_1/m_p\sigma_y)^2$ plastic constraint factor $m_p = \sigma_{y,effective}/\sigma_y \ge 1$

 $\sigma_v = \sigma_1 - \sigma_3$

 $\sigma_1 = \sigma_v + \sigma_3 = \sigma_{v,eff}$

Fig 11.23

Fracture mechanics (5)

- effect of specimen thickness
 - \triangleright edge; plane stress condition; $\sigma_3 = 0$

$$r_p'' = (1/2\pi) [K_1/\sigma_y]^2$$

 \triangleright inside; plane strain condition; $\varepsilon_3 = 0$, $\sigma_3 = v(\sigma_1 + \sigma_2)$

$$r_p' = (1/6\pi) [K_1/\sigma_y]^2$$

- \triangleright B < 2 r_p"; plane stress condition
- \triangleright B > 2.5 [K₁/ σ_y]² \approx 15.7 r_p" ; plane strain condition ~ ASTM

Impact strength (1)

testing methods

🚇 ¶11.2.4 p573

- ▷ flexed-beam impact test: Izod, Charpy; ASTM D256
- b falling-weight impact test
- ▷ tensile impact test

Impact strength (2)

- ▶ impact strength (IS, 충격강도)
 - ▷ energy absorbed per unit area (J/m²) or unit length (J/m)
 - energy rather than strength
 - \triangleright not a material property \leftarrow depends on many factors
 - Temp $\uparrow \rightarrow$ IS \uparrow
 - thickness of specimen $\uparrow \rightarrow$ IS \downarrow (pl. σ to pl. ϵ)
 - with notch (notched IS) vs without notch (unnotched IS)
 - notch tip radius ↑ → IS ↑

* notch sensitivity

 \triangleright Relation betw IS, G_{Ic}, and K_{Ic}

Table 11.3 p575

(after Vincent¹).

Fatigue fracture (1)

- Upon stress fluctuation (oscillation), materials fail (fracture) at stress level well below they can withstand under monotonic loading (usually YS or TS).
- ► fatigue strength
 - \triangleright S-N curve
 - $\triangleright\,$ stress (σ_{a} or σ_{mean}) vs # of cycles to fracture
 - endurance limit

Fig. 6.5. Representative stress amplitude, σ_a , versus logarithm cycles-to-failure, N_f , curves for several polymers tested at a frequency, ν_d , of 30 Hz (after Riddell⁶²).

Fatigue fracture (2)

► fatigue crack propagation

\triangleright da/dN = A ΔK_{I}^{m} (Paris equation) \square Fig 11.26 p591

$$\Delta K = K_{max} - K_{min}$$

- ▷ continuous craze propagation
- ▷ discontinuous crack propagation

Fig. 6.8. Discontinuous crack growth process. (a) Composite optical micrograph of PVC showing position of crack (\downarrow) and craze (\downarrow) tip at given cyclic intervals; (b) Model of discontinuous crack propagation mechanism (after Skibo et al.⁹⁵).

Ductile-brittle transition (1)

- crack length
 - $\triangleright ~\sigma_f \propto ~K_{Ic}/a^{0.5}$
 - $\triangleright~\sigma_v \propto$ loaded area (1/a)
 - ▷ D/B transition at a*

- thickness of specimen
 - $\triangleright \ \mathsf{B} \land \mathbf{7} \not\rightarrow \mathsf{K}_{\mathsf{Ic}} \lor \mathbf{7} \not\rightarrow \mathsf{a}^* \lor$
 - Plane stress (ductile) to plane strain (brittle) transition

Ductile-brittle transition (2)

- ► temperature

 - \triangleright T $\uparrow \rightarrow \sigma_y \downarrow$ (faster)

- strain rate
 - \triangleright (d ε /dt) $\uparrow \rightarrow K_{Ic} \uparrow$
 - ▷ (dɛ/dt) $\uparrow \rightarrow \sigma_{y} \uparrow$ (faster)

Toughening (1)

- dream: modulus of steel with resilience of rubber
- ▶ goal: enhancing the ability to resist crack propagation
- ▶ ideas
 - ▷ enlarging the volume in which energy dissipation (absorption) occurs
 - ▷ limiting the growth of crack
- approaches
 - > plasticization by liquid (plasticizer)
 - lowering YS \rightarrow ductile
 - lowering modulus and T_g also
 - > multiple deformation by 2nd phase
 - increasing # of site of crazing or yielding
 - increasing volume of energy absorption
- methods
 - rubber toughening
 - large energy absorption, modulus drop
 - HIPS, ABS, toughened epoxy, etc
 - b thermoplastic toughening
 - small energy absorption, no modulus drop
 - PC/ABS, PC/PBT, Nylon/PPO, etc

Table 11.3 p575

¶11.2.4.2 p573

Toughening (2)

► toughening mechanisms

FIGURE 1. Toughening mechanisms in rubber-modified epoxies:

- (1) shear-band formation near rubber particles;
- (2) fracture of rubber particles after cavitation;
- (3) stretching, (4) debonding and (5) tearing of rubber particles;
- (6) transparticle fracture; (7) debonding of hard particles;

(8) crack deflection by hard particles;

(9) voided/cavitated rubber particles;

(10) crazing; (11) plastic zone at craze tip;

(12) diffuse shear-yielding; (13) shear band/craze interaction.

Toughening (3)

- > rubber particle deformation
 - bridging
 - effect on toughness not large

Figure 6 A TEM micrograph taken at the damaged crack wake of the CSR-B-modified epoxy system. The crack propagates through the rubber particles, instead of propagating around the rubber particles. The rubber particles appear to have deflected the crack path. The crack propagates from left to right.

Toughening (4)

- ▷ multiple crazing
 - particles initiate and stop crazes
 - stress-whitening observed

– HIPS

Fig 11.2 p561

Fig. 11.1. Transmission electron micrograph of a microtomed section of HIPS, stained with osmium tetroxide (after Kambour & Russell³³).

Toughening (5)

- ▷ cavitation and shear yielding
 - particles debond or cavitate
 - removing triaxiality
 - removing hydrostatic component
 - inducing yielding of matrix
 - necking observed
 - toughened PVC
- ▷ crazing and shear yielding
 - whitening and necking
 ABS

Figure 1 An example of shear banding. (From Ref. 7.)

Toughening (6)

- ▷ crack pinning
 - increasing surface area
 - tortuous path

Toughening (7)

- factors governing toughness of toughened plastics
 - ▷ matrix
 - degree of crosslinking
 - entanglement density
 - T_g
 - yield strength
 - ▷ particle
 - content (volume fraction)
 - size
 - size distribution
 - T_g
 - adhesion to matrix