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Outline (1)Outline (1)

▶ mechanical property

▷ mechanical response of a material to the applied stress (load)

▶ response of a polymer depends on 
▷ material (chemical structure)

▷ morphology (physical structure)

▷ temperature

▷ time

▷ magnitude of stress

▷ state of stress



Outline (2)Outline (2)

▶ magnitude of stress
▷ upon small stresses

• elastic deformation 

• viscous deformation (flow)

• viscoelastic deformation 

▷ upon large stresses
• plastic deformation 

• yielding ductile
• crazing brittle

• failure (fracture)

▶ response of the polymer chains
▷ deformations of the bond lengths and angles

▷ uncoiling of the chains

▷ slippage of the chains 

▷ scission of the chains 
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Stress and strainStress and strain

▶ stress: load (force) per unit area, σ = F/A [N/m2 = Pa]

▶ strain: displacement by load, ε = ΔL/L  [dimensionless]

▶ engineering (nominal) stress, s = F/A0

▶ true (natural) stress, σ = F/A

▶ engineering (nominal) strain, e = ΔL/L0

▶ true (natural) strain, dε = dL/L, ε = ln (L/L0)

▷ ε = ln (L/L0) = ln [(L0+ΔL)/L0] = ln [1+e]

▷ ε ~ e  for small strains only (e < 0.01)

▶ For UTT, s < σ and ε < e



Testing geometry and state of stress (1)Testing geometry and state of stress (1)

▶ uniaxial tension 
σxx = σ > 0 , all other stresses = 0

▶ uniaxial compression
σxx = σ < 0, all other stresses = 0

▶ simple shear ~ torsion
τxy = τ, all other stresses = 0
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Testing geometry and state of stress (2)Testing geometry and state of stress (2)

▶ plane stress
σzz = τzx = τyz = 0

▶ plane strain
εyy = 0, σyy = ν (σxx + σzz)

▶ bending or flexure
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Constitutive equation (1)Constitutive equation (1)

▶ Equations that relate stress to strain (rate)
σ = c ε c : stiffness
ε = s σ s : compliance

▶ c, s tensors ~ 81 components (9 x 9)

▶ by symmetry in σ, ε (equilibrium), 81 36 (6 x 6)

▶ by symmetry in c, s 36 21

▶ by symmetry in material, 

21 → 13 (1 sym pl) → 9 (3 sym pl) → 5 (fiber sym) → 2 (isotropic)

▶ For isotropic linear elastic solid in UTT

σ(xx) = E ε(xx) (Hooke’s law)

εyy = - ν εxx

σ

ε
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Constitutive equation (2)Constitutive equation (2)

▶ Stiffness and compliance can be time-dependent (viscoelastic), when 
stress and/or strain are time dependent. ~ viscoelastic behavior
▷ σ(t) = E(t) εo ~ stress relaxation
▷ ε(t) = D(t) σo ~ creep

▶ Stiffness and compliance can be strain-level-dependent (nonlinear), 
when the stress and/or time exceed linear region. ~ nonlinear behavior
▷ σ(t) = E(t, εo) εo

▶ Stiffness and compliance can be orientation-dependent, when the 
material is anisotropic (fibers, films). ~ anisotropic behavior
Exx ≠ Eyy; νzx ≠ νxy

It is hard to express the real mechanical response in a constitutive 
equation.



ViscoelasticityViscoelasticity

▶ Every material is viscoelastic.

▶ depending on time (strain rate) and temperature 

▷ elastic, solid-like 

▷ viscoelastic, polymer-like 

▷ viscous, liquid-like

▷ Deborah Number = material time / experimental time

▶ VE observation

▷ stress relaxation

▷ creep 

▷ recovery

▷ time-temperature superposition

▷ dynamic mechanical 



Application of VE Data to Product DesignApplication of VE Data to Product Design

▶ Correspondence principle
viscoelastic equation elastic equation 
σ(t) = E(t) ε σ = E ε

▶ Pseudoelasticity
From creep, stress relaxation, or isochrone stress-strain curve, estimate long-
term stress-strain relation, and design the product.



Creep curves and plotsCreep curves and plots

σ↑

different from transient σ−ε curve



An example of product designAn example of product design

▶ To design a pressure vessel that is required to be used for 1 year 
without yielding or fracture (say 5% maximum allowable strain),

σ = P r / t
r

t

P

30 MPa

σ = 40 MPa

10 MPa

20 MPa

t = 109 s

108 s
107 s

1 yr log t

ε(t)

ε

σ

0.05

0.05



Large deformation behaviorLarge deformation behavior
▶ Upon large stress beyond (visco)elastic limit, a polymer experience 

either yielding or crazing, the two competing processes.
▷ Yielding precedes ductile failure; crazing precedes brittle failure.

▷ ductility (연성) ~ ability to yield and be cold-drawn
▷ toughness (강인성) ~ resistance to crack propagation

▷ yield strength (항복강도)
~ stress at yield

▷ tensile strength (인장강도)
~ stress at failure

▷ elongation at break
(파단신장률)

stiff ~ high E
strong ~ high TS
ductile ~ high EB after 
yield
tough ~ high energy 
before fracture
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Yield criteriaYield criteria

▶ yield by shear only
τmax =  σ1 – σ3 = 2C = 2τy = σy

▶ pressure-independent YC
~ metals

▶ pressure-dependent YC 
~ polymers

σy(comp) = (1.1 – 1.3) σy(tension)

σy = σy
0 - μ (σ1+ σ2+ σ3)/3

▶ yield = start of plastic deformation 

Eqn (11.18) p572 Fig 11.10 p572



σx

σy

σz

When all τ’s = 0, then x, y, z are principal axes and 
σx, σy, σz are principal stresses (σ1, σ2, σ3).
σ1 > σ2 > σ3

If σx = σy = σz and τ’s = 0,
σ1 = σ2 = σ3 (purely hydrostatic)
σ1 – σ3 = 0 no yield

If σx > 0, and other σ’s & τ’s = 0,
σ1 – σ3 = σy yield at σ1 = σy

If σ1 = –σ3 and σ2 = 0,
σ1 – σ3 = 2σ1 = σy

yield at σ1 = τy = σy/2



Yield behaviorYield behavior

▶ strain rate YS ▶ Temp YS 

Fig 11.6 & 7Fig 11.5 p566

!!



PostPost--yield behavior (1)yield behavior (1)

▶ strian softening
▷ load drop 
▷ state of Tg at yield point

▶ strain hardening
▷ rise in stress
▷ orientation of chains
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PostPost--yield behavior (2)yield behavior (2)

▶ inhomogeneous deformation
▷ localized instability due to softening, which interacts with restraints

▷ with no restraint ~ necking

▷ with restraint in 1 direction ~ inclined necking

▷ with restrainst in 2 directions ~ shear band

Fig 11.9(b) p571

PS                   PMMA



Deformation of semicrystalline polymersDeformation of semicrystalline polymers

▶ semicrystalline = amorphous + crystal (lamellae)
▷ T < Tg < Tm (e.g. PET at RT)

• Glass and crystals have comparable mechanical properties.

• Yield behavior is similar to amorphous polymers.

▷ Tg < T < Tm (e.g. PE at RT)
• crystals in liquid (rubber)

• initial deformation (modulus) at rubber.

• Only crystals yield: As crystallinity increases, σy increases.

▶ post-yield ~ reorientation of crystals

Fig 11.8 p570



CrazingCrazing

▶ localized inhomogeneous plastic deformation by dilatational stress
▷ normal yielding ↔ (shear) yielding
▷ compete with shear yield

▶ structure of craze
▷ long, thin wedge of deformed polymer (microfibrils)

Fig 11.9(a)
p571



Formation and growth of crazeFormation and growth of craze

▶ Craze propagation
▷ thicken by drawing new materials from bulk

▷ lengthen by meniscus instability

▶ Craze initiation criteria

Fig 11.10 p572

No crazing by compression

Both craze and yield criteria 
are dependent on Temp 
and dε/dt.

ductile-brittle transition

Fig 11.30 p598



Craze failureCraze failure

▶ At very slow strain rates, 
▷ fibril breakdown at interface between craze and bulk void
▷ void grows impinge to other voids crack
▷ connecting cracks from other crazes fracture

▶ At high strain rates, 
▷ craze fracture
▷ craze fibrils found in fracture surface



Environmental stress cracking (ESC)Environmental stress cracking (ESC)

▶ Absorbed liquid plasticizes polymer. soften 
craze at a lower stress fracture

▶ effective when solubility parameter difference is small



FractureFracture

failure (파쇄, 파단) ~ rupture by exceedingly large stress
fracture (파괴) ~ failure by crack propagation

▶ micromechanism of fracture

▷ Chain scission or slip? 

▷ Upon stress,

i) chain slip (against crystal, crosslinking, entanglement)

iiA) crazing/yielding or

iiB) chain scission (with high Xc, low Mc, low Me)

iii) chain scission as stress increases

iv) voiding crack fracture

Fig 11.3 p562, Fig 11.29 p 595



Ductile fracture (1)Ductile fracture (1)

▶ failure of shear band

▶ thermal fracture
▷ necking, not stabilized
▷ cone-and-cup failure

▶ diamond cavity
▷ craze blunted by shear band



Ductile fracture (2)Ductile fracture (2)

▶ tensile rupture of elastomers
▷ elastomerixc up to failure

▷ ‘failure envelope’

• TS vs EB 

– at different Temp and dε/dt

• time – Temp superposition

– time to break, tb = εb/(dε/dt)

Fig 11.17 p581

Temp 
dε/dt



Brittle fracture (1)Brittle fracture (1)

▶ theoretical strength of solids
▷ σtheo = E/10 for interatomic separation

▷ For whiskers, σf ~ E/10 

▷ For isotropic glassy polymers,

� σf ~ E/100  < σtheo (E ~ 3 GPa, σf < 100 MPa)

• due to flaw (crack, notch, inclusion).

• stress concentration

• plastic constraint

▶ stress concentration
▷ ahead of crack tip

▷ stress concentration factor, 
k = σmax/σavg = 1 + (2a/b) = 1 + 2(a/ρ)1/2

W
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2a
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σmax
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Brittle fracture (2)Brittle fracture (2)

▶ plastic constraint

▷ ahead of crack tip

▷ triaxial stress state

� σ1 > 0 (applied), σ2 & σ3 > 0 (due to crack)

▷ triaxiality yield at higher stress ~ plastic deformation constrained

▷ yield at a stress higher than σc brittle

a



Fracture mechanics  (1)Fracture mechanics  (1)
▶ Energy balance approach

▷ specimen with crack length 2a

▷ Crack grows when released strain energy by stress (σ2πa/E) is greater 
than created surface energy (2γ)

▷ σf = [2Eγ/πa]1/2 : Griffith fracture criterion 

▷ for polymers; 2γ ~ 1 J/m2, fracture energy (Gc) ~ 100 - 1,000 J/m2

• Fracture energy higher by other process: plastic deformation at crack tip

▷ replacing 2γ with Gc

σf = [EGc/πa] 1/2 for plane stress

σf = [(EGc/π (1-ν2)a]1/2 for plane strain

▷ Gc: critical strain energy release rate; ‘fracture energy’ [J/m2]

▷ measurement of Gc

Gc = (P2/2B) (dC/da)

eqn (11.20) p586



Fracture mechanics (2Fracture mechanics (2--1)1)
▶ Stress intensity factor approach

▷ linear elastic fracture mechanics (LEFM)

▷ 3 modes of fracture

▷ stress at a point

▷ Crack grows when KI > KIc

▷ KIc: critical stress intensity factor; ‘fracture toughness’ [MPa m1/2]
(파괴강인성) 



Fracture mechanics (2Fracture mechanics (2--2)2)

▷ measurement of KIc
KIc = σf a1/2 Q

Q ~ geometry factor

P (σ)

Δ (ε)

Fig 11.22 p586

Fig 11.25 p587



Fracture mechanics (3)Fracture mechanics (3)

▶ relationship between G and K
▷ GIc = KIc

2 /E plane stress
▷ GIc = KIc

2 /E(1-ν2) plane strain

Table 11.3 p575

eqn 11.24 p587



a

Fracture mechanics (4)Fracture mechanics (4)
▶ plastic deformation in front of crack tip higher Gc and Kc

▶ plastic zone size
From stress analysis by LEFM

In front of crack tip (θ = 0), as r 0, σ infinity ~ impractical

σ is cut off by yield strength (σy)

σ1 = KI/(2πr)½ at θ = 0

When σ1 = σy, plastic zone radius  rp = (1/2π)(KI/σy)2

By plastic constraint, rp = (1/2π)(KI/mpσy)2

plastic constraint factor  mp = σy,effective/σy ≥ 1
Fig 11.23

2rp

crack

σy

r

1 (tensile)

2 (crack)

3 (thickness)

σy = σ1 – σ3

σ1 = σy + σ3 = σy,eff

eqn 11.23



Fracture mechanics (5)Fracture mechanics (5)
▶ effect of specimen thickness

▷ edge; plane stress condition; σ3 = 0
rp” = (1/2π) [KI/σy]2

▷ inside; plane strain condition; ε3 = 0, σ3 = ν(σ1 + σ2)
rp’ = (1/6π) [KI/σy]2

▷ B < 2 rp” ; plane stress condition

▷ B > 2.5 [KI/σy]2 ≈ 15.7 rp” ; plane strain condition ~ ASTM



Impact strength (1)Impact strength (1)
▶ testing methods

▷ flexed-beam impact test: Izod, Charpy; ASTM D256

▷ falling-weight impact test

▷ tensile impact test

Fig 11.11 p574

¶11.2.4 p573



Impact strength (2)Impact strength (2)
▶ impact strength (IS, 충격강도)

▷ energy absorbed per unit area (J/m2) or unit length (J/m)
• energy rather than strength

▷ not a material property depends on many factors
• Temp IS 

• thickness of specimen IS (pl. σ to pl. ε)

• with notch (notched IS) vs without notch (unnotched IS)

• notch tip radius IS 

* notch sensitivity

▷ Relation betw IS, GIc, and KIc

Table 11.3 p575



Fatigue fracture (1)Fatigue fracture (1)
▶ Upon stress fluctuation (oscillation), materials fail (fracture) at stress 

level well below they can withstand under monotonic loading (usually 
YS or TS).

▶ fatigue strength 
▷ S-N curve
▷ stress (σa or σmean) vs # of cycles to fracture
▷ endurance limit

Fig 11.25 p590



Fatigue fracture (2)Fatigue fracture (2)
▶ fatigue crack propagation

▷ da/dN = A ΔKI
m (Paris equation)

ΔK = Kmax - Kmin

▷ continuous craze propagation

▷ discontinuous crack propagation

Fig 11.26 p591



DuctileDuctile--brittle transition (1)brittle transition (1)

▶ crack length
▷ σf ∝ KIc/a0.5

▷ σy ∝ loaded area (1/a)
▷ D/B transition at a*

▶ thickness of specimen
▷ B KIc a*

▷ Plane stress (ductile) to plane 
strain (brittle) transition

a*

σf

σy

a

σf

σy

a
a*



DuctileDuctile--brittle transition (2)brittle transition (2)

▶ temperature
▷ T KIc

▷ T σy (faster) 

▶ strain rate
▷ (dε/dt) KIc

▷ (dε/dt) σy (faster)

σf

σf

σy

σy

T* T ε*
.

ε
.

D/B transition Temp



Toughening (1)Toughening (1)
▶ dream: modulus of steel with resilience of rubber
▶ goal: enhancing the ability to resist crack propagation
▶ ideas

▷ enlarging the volume in which energy dissipation (absorption) occurs
▷ limiting the growth of crack

▶ approaches
▷ plasticization by liquid (plasticizer)

• lowering YS ductile 
• lowering modulus and Tg also

▷ multiple deformation by 2nd phase
• increasing # of site of crazing or yielding
• increasing volume of energy absorption

▶ methods
▷ rubber toughening

• large energy absorption, modulus drop
• HIPS, ABS, toughened epoxy, etc 

▷ thermoplastic toughening
• small energy absorption, no modulus drop
• PC/ABS, PC/PBT, Nylon/PPO, etc

¶11.2.4.2 p573

Table 11.3 p575



Toughening (2)Toughening (2)

▶ toughening mechanisms



Toughening (3)Toughening (3)

▷ rubber particle deformation
• bridging
• effect on toughness not large



Toughening (4)Toughening (4)

▷ multiple crazing
• particles initiate and stop crazes
• stress-whitening observed

– HIPS

Fig 11.2 p561



Toughening (5)Toughening (5)

▷ cavitation and shear yielding
• particles debond or cavitate
• removing triaxiality

– removing hydrostatic 
component

• inducing yielding of matrix
• necking observed 

– toughened PVC

▷ crazing and shear yielding
• whitening and necking

– ABS



Toughening (6)Toughening (6)

▷ crack pinning
• increasing surface area
• tortuous path



Toughening (7)Toughening (7)

▶ factors governing toughness of toughened plastics
▷ matrix

• degree of crosslinking

• entanglement density

• Tg

• yield strength

▷ particle
• content (volume fraction)

• size

• size distribution

• Tg

• adhesion to matrix
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