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Glass Formation results when

Liquids are cooled to below TM (TL) sufficiently fast to avoid crystallization.

Nucleation of crystalline seeds are avoided

Growth of Nuclei into crystallites (crystals) is avoidedGrowth of Nuclei into crystallites (crystals) is avoided

Liquid  is “frustrated” by internal structure that hinders both events

Glass Formation



Kinetic Approach to Glass Formation

 Kinetic approach to glass formation asserts:

 All liquids can be made into the glassy state

 The question is how fast must the liquid be cooled?

 Fast quenching, >> 100 K/sec, implies “marginal” glass forming ability

 Slow cooling << 1 K/min (0 017 K/s) implies “strong” glass forming ability Slow cooling,<< 1 K/min (0.017 K/s), implies strong  glass forming ability

 The critical cooling rate, Rc, measures how fast a liquid must be 

cooled to avoid crystallization and render the liquid into the glassy state



Calculating the Critical Cooling Rate

 The kinetic approach to glass formation then becomes:pp g

 What is the Rc value for a particular liquid?c

If Rc >> 100 K/sec, then the liquid is a poor glass former
If Rc is << 1 K/min, the liquid is a good glass former

 How can Rc be calculated?

 What are the factors that control Rc?



Time Temperature Transformation diagram

low cooling rate

high cooling rate



Measurement of Rc in Ca65Mg15Zn20 (Dmax>15 mm)
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Measurement of Rc in Mg BMG (Dmax=14 mm)
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Bulk formation of a metallic glass: Pd40Ni40P20g 40 40 20

recalescence

A.J. Drehman, A.L. Greer, D. Turnbull, Appl. Phys. Lett. 1982; 41: 716.



Time Temperature Transformation diagram
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Critical Cooling Rates for Various Liquids



Barrier of Heterogeneous Nucleation
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How about the nucleation at the crevice or at the edge?
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Nucleation Barrier at the crevice

What  would be the shape of nucleus and the 
nucleation barrier for the following conditions?
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How do we treat the non-spherical shape?How do we treat the non spherical shape?
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Nucleation and Growth Rates Control Rc

 Nucleation, the first step… Nucleation, the first step…

 First process is for microscopic clusters (nuclei) of atoms or ions to form
 Nuclei possess the beginnings of the structure of the crystal Nuclei possess the beginnings of the structure of the crystal
 Only limited diffusion is necessary
 Thermodynamic driving force for crystallization must be present



Growth of crystals from nuclei

 Growth processes then enlarge existing nuclei

 Smallest nuclei often redissolve

 Larger nuclei can get larger

 Thermodynamics favors the formation of larger nuclei



Nucleation and Growth Control Rc

 Poor glass formers:

 Liquids which quickly form large numbers of nuclei close to Tm

 That grow very quickly

 Good glass formers

 Liquids that are sluggish to form nuclei even far below Tm

 That grow very slowlyg y y



Nucleation and Growth Rates – Poor Glass Formers

Tm

 Strong overlap of growth
and nucleation rates
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 Growth rate is high Growth rate is high
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Nucleation and Growth Rates – Good Glass Formers

Tm Rate
 No overlap of growth
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Nucleation Rate Theory

 Rate at which atoms or ions in the liquid organize into q g
microscopic crystals, nuclei

 I = number of nuclei formed per unit time per unit volume of liquid

N l ti R t (I) b d it f t Nucleation Rate (I)      number density of atoms x 
fastest motion possible x 
thermodynamic probability ofthermodynamic probability of 
formation x 
diffusion probabilitydiffusion probability  



Nucleation Rate Theory

I = nexp(-NW*/RT)exp(-ED/RT)p( ) p( D )

n = number density of atoms molecules or

Number density Fastest motion Thermodynamic probability Diffusion probability

n = number density of atoms, molecules, or 
formula units per unit volume

=  N/Atomic molecular formula weight=  N/Atomic, molecular, formula weight
 = vibration frequency ~ 1013 sec-1

N = Avogadro’s numberN  Avogadro s number 
= 6.023 x 1023 atoms/mole

W* = thermodynamic energy barrier to form nucleiy gy
ED = diffusion energy barrier to form nuclei

~ viscosity activation energy



Nucleation Rate – Thermodynamic barrier W*

W*
WS = 4r2, surface

 is the surface energy

W
+

0
r WB = 4/3r3Gcrsyt(T), bulk

Gcryst(T), the Gibb’s Free-Energy 

r*

-

0

cryst( ), gy
of Cryst. per unit volume, Vm

Wtot = WS + WB

 At r*, (W(r)/ r)r=r* = 0

tot S B

 r* = -2/ Gcryst(T)

 W(r*)  W* = 16 3/3(G t(T))2 W(r )  W  16  /3(Gcryst(T))



Nucleation Rate I(T)

 I = nexp(-N 16 3/3(Gcrsyt(T))2 /RT)exp(-ED/RT)

G (T) H (T )(1 T/T )/V H (T )(T /T ) Gcryst(T) = Hcryst(Tm )(1 – T/Tm)/Vm  Hcryst(Tm )(Tm/Tm)

Gcryst(T)+ Liquid is Stable
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Growth Rates  (T)

 Crystal growth requires 
 Diffusion to the nuclei surface Diffusion to the nuclei surface
 Crystallization onto the exposed crystal lattice

lc = exp(-ED/RT)
cl = exp(-(ED- Gcryst) /RT)y

net = lc - cl = 

exp(-ED/RT) -
exp(-(ED- Gcryst) /RT)

G
ED

exp( (ED Gcryst) /RT)

 = a net = a  exp(-ED/RT) xGcryst (1 – exp(Gcryst) /RT)



Growth Rates - (T)
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Nucleation and Growth Rates

Nucleation and Growth Rates for Water
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Nucleation and Growth Rates

Nulceation and Growth for Silica
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Time–Temperature–Transformation Curves (TTT)

 How much time does it take at any one temperature for aHow much time does it take at any one temperature for a 
given fraction of the liquid to transform (nucleate and grow) 
into a crystal?

 X(t,T) ~I(T)(T)3t4/3( ) ( )( )

 where X is the fractional volume of crystals formed typically where X is the fractional volume of crystals formed, typically 
taken to be 10-6, a barely observable crystal volume



Time Transformation Curves for Water

T-T-T Curve for water
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Time Transformation Curves for Silica

T-T-T Curve for Silica
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TTT curves and the critical cooling rate, Rc
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Summary

Glass formation results when the internal structural timescale of the 
liquid becomes or is forced to become significantly longer thanliquid becomes or is forced to become significantly longer than 
the external time scale of the surroundings near the melting or 
liquidus temperature of the liquid

 Create high viscosity of the liquid (= dense packed structure) near 
the melting point of the liquid that frustrates crystallization
 Network bonding favorable for high viscosity
 Configurational complexity that frustrates crystallization 

pathwayspathways
 Suppress the melting point through compositional complexity to 

slow crystallization process
S t lli ti b li iti il bl t t f Surpass crystallization processes by limiting available to system for 
them to occur
 Exceed critical cooling rate in region near and below the fusion 

point of the liquid 


