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FHase of glass formation: high glass forming ability

o Glass forming ability: basically depending on glass transition

=% unsolved mystery == no universal rule: empirical rules

=) still alchemy stage: by trial & error considering various aspects

1. Structure & topology aspect

© Internal energy : mainly considered in oxide glasses
=) Depends on the bonding types and arrangements of constituent element

=) Similar types and arrangements of atomic bonding in crystal and
amorphous (=similar atomic structure)

(1) Continuous Random Network (CRN) —  GFA I




1. Structure & topology aspect: (1) CRN

Oxygen is shared by two AO, triangles by three AO, triangles
A,0; (B,0,) | crystal AO
(a) b)
Small gap of internal energy Energy for orientation change
between crystal and glass is relatively large.

— GFA 1 — GFa §



(2) Randomly dense packed structure — ex) metallic glasses

1) Atomic size difference: TM — metalloid (M, ex) Boron)
— M is located at interstitial site of random packed structure of TM.
— denser B by increasing resistivity of crystallization, GFA I
— EX) Fe-B: tetrahedron with B on the center position

1) interstitial site, B= simple atomic topology

2) skeleton structure

3) bonding nature: close to covalent bonding

Zry 5Tiq3 50Uy, sNijoBe,
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Large size mismatch

between the components é
destabilization of the crystalline phases
( y p ) 03.

=) Randomly dense packed structure .“

— GFA 1 .w‘

Tang et al., Nature 402, 160 (1999)




2) min. solute content, C;*: empirical rule
By Egami & Waseda: in A-B binary system
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can be vitrified by liquid quenching.




1. Structure & topology aspect (atomic arrangement)

= Effect of atomic size difference can be represented as follows;
vV —V V.-V C V_ -V C V_ -V
P=C B Al C cC A p'— B B Al C C A
Bl v Cl v ' C_+C Vv C_+C v
A A I 8 cl 'a | "B c| 'a
Where, C,(i=A,B,C) = solute, v, = content atomic volume ; effective atomic mismatch per solute atom
by dividing by the total amount of solute contents
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Upper limitation of effective atomic mismatch



3) Multi-component system (over 3 elements)
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2. Thermodynamic aspect

© High GFA : low free energy |AG(T)

for transformation of liquid to crystalline phase

AG(T)=AH, —TAS,

AGJ - AH. § & AS; B

Enthalpy of fusion ~ Entropy of fusion

AS ‘t . proportional to the number of microscopic states

Entropy of fusion  \jylti-component alloy systems containing more than 3 elements

causes an increase in the degree of dense random packing

AH f 1 Large negative enthalpy of mixing among constituent elements

Enthalpy of fusion

* The free energy at a constant temperature also decreases in the cases of low

chemical potential caused by low enthalpy and high reduced glass transition

temperature (=T/T,) and high interface energy between liquid and solid phase.



2. Thermodynamic aspect

AH; J — deep eutectic condition: increase stability of stable liquid (=T/T4 1)
- decreasing melting point — less supercooled at T, = AG = Gliq-Gcrystl

ex) metallic / inorganic system

Glass forming region:
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Multi-component eutectic alloys with strong negative heat of mixing

7\ less supercooled at T, = AG= Gqu-(;crystl

: alsp changes depending on
allgy composition

B
P. Haasen, Physical Metallurgy 3 ed




Part of a regular
Eutectic phase diagram
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Tip temp.-growth rate
(cooling rate) relationship
for eutectic, dendritic o, B
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Schematic diagram showing skewed eutectic coupled zone and its relation to the glass-forming ability
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3. Kinetic aspect =) Decrease of nucleation and growth rate

Crystallization kinetics
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A. Masuhr et al. PRL, 2290 (1999)
R. Busch, JOM 52 (7), 39 (2000)

Nucleation rate:

|,(T)=A-Deff-exp(-AG*/KT)
with: Dgoc1/m, AG*=1616%/3AG?

Growth velocity:

u(T)=FfI""-D ¢ [1-exp(v,, AG/KT)]

X(t,T) ~ml(T)(T)*t4/3

Crystallization time:
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Important for high glass forming ability:

Bulk metallic glass forming liquids:

e multi-component eutectic alloys
with large atomic size mismatch

e high packing density and small free
volume (short range order, SRO)

Tang et al., Nature 402, 160 (1999)

= Melt energetically close to crystal
+ = slow

= Slow kinetics (high viscosity) crystallization



Glass formation

Formation of crystalline phases

Retention of liquid phase

p
Structural point

Highly packed random structure

Kinetic point
Low nucleation and growth rates

Thermodynamical point
Small change in free E. (lig.—+ cryst.)

| Empirical rules
(1) multi-component alloy system (2) significant difference in atomic size ratios
(3) negative heats of mixing (4) close to a eutectic composition

(5) compositions far from a Laves phase region

P

« Higher degree of dense random packed structure

* Suppression of nucleation and growth of crystalline phase

mm)  High glass-forming ability (GFA)




