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Quantum theory is a theory needed to describe physics on a
microscopic scale, such as on the scale of atoms, molecules,
electrons, protons, etc.
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=) 10 photons have an energy equal to ten times a single photon.



Contents for previous class

[ Considering Quantum theory,
Photons can be treated as “packets of light” which behave as a particle.

L To describe interactions of light with matter, one generally has to
appeal to the particle (quantum) description of light.

Photo-Electric Effect
Compton Effect

O Asingle photon has an energy given by
E =hv = hc/A,
where h = Planck’s constant = 6.6x10-3* [J s], ¢ = speed of light = 3x108 [m/s]
A = wavelength of the light (in [m]), v = frequency
O Photons also carry momentum. The momentum is related to the
energy by: p=E/c=h/A
¢ Both energy & momentum are inversely proportional to the wavelength!!!

=) The highest energy photons are those which have small wavelength
(that's why gamma rays are so dangerous).
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The Electromagnetic Spectrum
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On macroscopic scales, we can treat a large number of photons
as a wave.

When dealing with subatomic phenomenon, we are often dealing
with a single photon, or a few. In this case, you cannot use
the wave description of light. It doesn’t work !



Contents for today’s class

** Quantum Nature of Photons

** How do we reconcile this with particle picture?

< Matter Waves ?

** Real photographs of an electron interference pattern

* Wave length vs size

<+» Remarks on Particle Probes

« SALE 71571



Quantum Nature of Photons
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Quantum Nature of Photons

What do you expect
to see ?
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How do we reconcile this
with the particle picture ?

Partition with two very
avnall +hin alite fahAvm

| 3
o [ 4
xd
-3
L ]
]
L

] ol EEl= @
L

a4 2 1

L ]

g ® 4 as
ST Bt
o? 080810 ¥
-y
San®t 4.
::-:":.":

.1

R U P LA
'. Fl :" & '.-‘|'... : "' l-p.I.

\ery short exposure Longer exposure Much longer exposure
14 photon impacts ~ ~150 photon impacts a few thousand

photon impactsio



Photons, Digital Camera & Images

Using a digital camera with many
pixels !

Picture + Element: C|XI€ 0|0|X|2| Z| A S

A given pixel is very, very small
=>» gives fine image resolution

The individual spots on this image
and on the previous one are the
actual results of individual photons
striking the pixel array.

Wave picture cannot account for
Individual pixels in camera being
hit.

i

~1 M photons

~4 M photons ~30 M photons



Matter Waves ?

One might ask:
“If light can behave like a particle, might particles act like waves”?

The short answer is YES. The explanation lies in the realm of quantum
mechanics, and Is beyond the scope of this course.
However, you already have been introduced to the answer.

Particles, like photons, also have a wavelength given by:

A=hip=h/mvl

That is, the wavelength of a particle depends on its momentum,
just like a photon!

The main difference is that matter particles have mass, and photons don’t !
12




Do particles exhibit interference ?
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What if both slits are open ?

Partition
with slite Sereen

With bullets, you get
what appears to be a
simple “sum” of the
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—

V omp 0
Q
"
[l | [ S
"'
Position on screen

: With electrons, you find
’ an “interference” pattern,
: just like with light waves ?

Huh ? Come again ?

So, forms of matter do exhibit wave behavior (electrons) and
others (bullets) don’t ? What’s going on here ? 15



Real photographs of an electron
Interference pattern...
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Notice the clear interference
fringes. Clear indication of
wave phenomenon.




Matter Waves (cont)

Compute the wavelength of a 1 [kg] block moving at 1000 [m/s].
A =h/mv =6.6x10-34[J s] / (1 [kg])(1000 [m/s])

= 6.6x1037 [m].

This Is iImmeasureably small.

=>» For ordinary “everyday objects”, we don’t experience that
matter can behave as a wave.

17




But, what about small particles ?

Compute the wavelength of an electron
(m = 9.1x103! [kg]) moving at 1x107 [m/s].

A =h/mv
= 6.6x10-34 [J s]/(9.1x10-31 [kg])(1x107 [m/s])
= 7.3x10 [m].

=0.073 [nm]
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How do we see ?

Light reflects (scatters) from
a surface and reaches our eye.

Our eye forms an image
of the object.

19



Wavelength versus Size

Even with a visible light microscope, we are limited to being
able to resolve objects which are at least about
10 [m] =1 [um] = 1000 [nm] in size.

This is because visible light, with a wavelength of ~500 nm (=0.5 um)
cannot resolve objects whose size is smaller than it’s wavelength.

-

Bacteria, as viewed Bacteria, as viewed
using visible light using electrons ! 20



Electron Microscope

= The electron microscope is a device which uses the
wave behavior of electrons to make images
which are otherwise too small for visible light!

This image was taken with a Scanning
Electron Microscope (SEM).

These devices can resolve features down
to about 1-5 nm. This is about 250 times
better than can be done with visible light
microscopes!

Blood Cells

IMPORTANT POINT HERE:

High energy particles can be used to reveal the structure of matter !




scale
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Remarks on Particle Probes

d We have now asserted that high energy particles (electrons in the
case of a SEM) can provide a way to reveal the structure of matter
beyond what can be seen using an optical microscope.

1 The higher the momentum of the particle, the smaller the
deBroglie wavelength (A = h/mv).

1 As the wavelength decreases, finer and finer details about the
structure of matter are revealed !

L We will return to this very important point.
=>» To explore matter at its smallest size, we need
very high momentum particles !
=>» Today, this is accomplished at facilities often referred to as
“atom-smashers”. We prefer to call them *“accelerators”




Pohang accelerators




How we see
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Summary

O Light is made up of photons, but in macroscopic situations, it is
often fine to treat it as a wave.

L When looking at the microscopic world, there is only 1 thing that
works... Light is made up of photons (particles of light).

[ Photons carry both energy & momentum.
E=hc/A p=Elc=h/A

1 Matter also exhibits wave properties. For an object of mass m,
and velocity, v, the object has a wavelength, A =h/mv

1 One can probe ‘see’ the fine details of matter by using high energy
particles (they have a small wavelength !) =» Can reveal the tiniest things !
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