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Theories for the glass transition

A. Thermodynamic phase transition

e Glass transition
H,V,S:continuous C, ar Kyt discontinuous

— by thermodynamic origin, 2" order transition

But, 1) Tg is dependent on thermal history of sample.

— If 2" order transition,
V.H. S Tg is not changed by kinetic factor.

glass og

Ta(13) Ta(r) Te(r)) Tc
Tg depends on the rate at which the Specific Volume (density)
liquid is cooled. Ty(r3)< Tg(ry)< Tg(r;) of the glass depends on the 2

ifry<n<rn time ata given T< T,



Ehrenfest Classification of Phase Transitions

* First Order Phase Transition at T+
— G 1s continuous at Ty
— First derivatives of G (V, S. H) are discontinuous at T

(G (9G) aG)
"=Gp).  ST\ar),  H=EOS 7(

— Second derivatives of G (a, B, C,) are discontinuous at Ty

o _[9H) _Lfary el
2= \ar/, “Tvlar/, AYI2E

— Examples: Vaporization. Condensation, Fusion, Crystallization.
Sublimation.



Second Order Phase Transition at T
— G 1s continuous at Ty

— First derivatives of G (V, S, H) are continuous at TT

(96 £ lea
=150 a7 =G—T{WJ
e .-'I- wrd .-"-P {JJ‘.P

---------------------------------------------------------------------------------------------------------------------------------

— Second derivatives of G (o, B, C,) are discontinuous at Ty

o (o) (o) _1fav)
P \er/, viaT/, “rvlap!,

— Examples: Order-Disorder 1ransitions in Metal Alloys, Onset of
Ferromagnetism, Ferrozslectricity, Superconductivity.



Value of the Prigogine Defay Ratio: R

allowed us to derive the Clapeyron equation lr" dPy AS AH
\dT/ AV TAV :

If T 1s a second order transition, continuity of V and S at T, leads
to two similar relations between materials parameters and state

variables.

KIG — ‘ﬂfr]'_. d “TG — d‘b‘r]'_. II"-’- E “'II B ;ﬁCP
dVg =0g Vg dT - kg Vg dP = a7 T VT
d‘b‘rL — 'D‘,L ‘(‘JL dT - I":L T\"TL dp

SG — SL dSG — dSL I/G'IP WII Adt
86 = (Co/ THT - oG Vgdp wemti  (Gr)= 700
dSL — {(:I:nL."Ir T)dT - C"'.*L 1\;]'_. dp

By combining both Ehrenfest equations without
Invoking a second-order thermodynamic transition,

=) Prigogine Defay Ratio:R v

 ACpAK
C VT(Aa)




Clausius-Clapeyron Equation in Real Life

“+ Why the bubbles form near the screw of the boat

= Whenriding a boat, bubbles formed near
the screw are seen. Mechanism of
bubble formation is closely related to
Clausius-Clapeyron equation.

High speed of the screw V1
— Velocity of fluid increases ’ \
V Bernoulli's Equation
Pressure of water near screw : 2 P
[ decreases J 2 0] + gh + P = constant
" - .
3 A
Boiling temperature of water AT = 0 Clausius-Clapeyron Equation
decreases - ir L
-~_ dT =~ TAV
Water tums into vapor ~ ot /
even at low temperature = A 00 MO H| ™ D http:/fwww. encyber com

WikKkipedia hitp/fwiki.answers.com



Value of the Prigogine Defay Ratio: R

* Continuity conditions for G or u at a first order phase transition
allowed us to derive the Clapeyron equation lr" dPy AS AH
\dT/ AV TAV
* If T, 1s a second order transition, continuity of V and S at T, leads
to two similar relations between materials parameters and state
variables.
KIG — ‘ﬂfr]'_. d “TG — d‘b‘r]'_. II"-’- E “'II B ;ﬁCP
dETG = U ‘ﬁ.f"G dT - KGETG dP * ll"‘GIT/I o VTAGL
d‘b‘rL — 'D‘,L ‘(‘JL dT - I":L T\"TL dp
SG — SL dSG — dSL I/G'IP WII Aa
dSL — {CPLI,-" T)dT - O TJL dP e E

By combining both Ehrenfest equations without R = E
Invoking a second-order thermodynamic transition, A

—> Prigogine Defay Ratio:R *Incentive H2: application of R




Theories for the glass transition

But, 2) Thermodynamic consideration S,V :continuous

(a) continuity of S

S, =S, Entropies of the high- and low-temp. forms
must be equal at the transition

— with respect to temperature and pressure,

dS, =dS, in terms of partial derivatives,

("1) at +("1)TdP (“2) at +(V5%P2T

using one of Maxwell’s thermodynamic relations



Theories for the glass transition

Cpl . Cp2
—_— TdT +Va-|-1dp = ?dT —VCZTzdP

1
- T (Cp —Cp,)dT =V (e, —7,)dP

dTg TV (aTz B aTl) TVEACZT}\ measureable
P~ (C,-C,)  AC,.




0’G v

= -V [ (compressibility)

8P} 0P,
But, 2) Thermodynamic consideration 2G ar | |
POT = o7 = Vo (thermal exp ansion)
(b) continuity of V ¢ P

T dT + (S 0P = (52,07 +(S2), o
— o, =V () ke == (E
Ut (@T)P Ky Vv (8P)T

— Ve, dT -Vi;,dP =V, ,dT -V« ,dP

— (07, —07,)dT = (7, —&5,)dP

JdTy Ak (2)
dP Aq; 10



dT, TV(e, —a;) TVAa,
L E e = e N\ (1)

measureable :

AT, Ax — @)

— Eq. (1) & (2) should be proved experimentally.

It is found by measuring the discontinuities Ao, ACp, AK; at the glass transition that
Eqg. (1) is almost always obeyed within experimental error, but that values for Ak;/Aa;
are generally appreciably higher than those of dT,/dP (Eq. (2)).

dT, g Ak
dP A

— Eq. (1) = satisfy Eq. (2) = dissatisfy :

— Therefore, it appears on this evidence that the glass transition is
not a simple second-order phase transition.

11



If a single ordering parameter determines R=
the position of equilibrium in a relaxing system,

If more than one ordering parameter is responsible, =
mm) The latter case seems to describe most glasses.

Goldstein (1973) has suggested that

Jackle (1989) has shown that

AT, _ Axy oy Ty _ A £0(INV,)/ 0,

dP Aa; dP Aa;

Additional consequence of the experimental verification,
“ Glasses prepared under high pressures to have higher than normal densities
but normal entropies or enthalpies. ” 12



Theories for the glass transition
B. Entropy S = ICPd InNT

e Description of glass transition by entropy (Kauzmann)

1) Heat capacity — dramatic change at Tg

Cp
Supercooled
IIqUId T < Tg CPglass ~ CPcrystal
L ..-—-—"'_'_'_._._._._._
(CP (L)” C‘? (G) T>T C >C
jli“—':'-",/ /Y et 9 PscL I:)crystal
: crystal (-- configurational degree

of freedom in S.C.L. )

TIT




e Laws of thermodynamics

1) Zeroth law: thermal equilibrium
Objects in thermodynamic equilibrium have the same temperature.

2) First law: conservation of energy
Energy can be neither created nor destroyed but only transformed.

3) Second law: entropy, S > 0
The entropy of an isolated system not in equilibrium will tend to
Increase over time, approaching a maximum value at equilibrium.

3) Third law: absolute zero
As a system approaches absolute zero of temperature, all processes
cease and the entropy of the system approaches a minimum value.
14



e The second law of thermodynamics S = 4
; The disorder of the universe always increase T
; all chemical and physical processes occur spontaneously
only when disorder is increased.

"SPONTANEOUS™ REACTION

| as time elapses *

ORGANIZED EFFORT REQUIRING ENERGY INPUT



Theories for the glass transition

B. Entropy

e Description of glass transition by entropy (Kauzmann)

2) The slow cooling rate, the lower Tg

— ideal glass transition temperature exist?

— YES

R Entropy of fusion

{ 44”'
iy
-5 40— .
L 36| :
o
E 32 |
= I
S 28 I t
oo I e
i o Crystal
20 38 ® Liquid and glass
i o | | i { f
(@ 350 400 450 500 550 600
T(K)(log scale)

Heat capacities of glassy, liquid and
crystalline phases of lithium acetate

JfCPd InT

The data are plotted against In T so that integrated
areas under the curves yield entropies directly,
and the entropy of fusion is shown shaded in the

upper part of the figure.
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Theories for the glass transition
B. Entropy

* Description of glass transition by entropy (Kauzmann)

Entropy of the liquid larger than in the crystal. Typically:

“lls=[c.dInT
liquid " !
\q\/ Kauzmann
4 (1948)extrapolates the
- specific heat data below
__.fﬂfff]——’// . melting
T, By

|
8a(Tm) = €a(T) + / T',':'."T o € {liquid, crystal}
o d

Cliquid = Coystar  €RUropy in the ligquid decreases Laster with T
than in the crystal




Theories for the glass transition

B. Entropy

* Description of glass transition by entropy (Kauzmann)

2) The slow cooling rate, the lower Tg

S = ICPd InT The temperature vanishing excess entropy
is termed the “ideal’ glass transition temp.

.y 7, Tm T,.(Wong and Angell 1976)
£5.0
oF 4.0|- dT
| T, >T,, as ——0
5 30 g 0C dt
L;}_;Z.G —
1.0~ 1 mm) Not satisfied with
| | /| | ‘] third law of thermodynamics
(b) 100 200 300 400 500 600

T(K)

The difference in entropy between liquid and
crystalline phases as a function of temperature

TOC: lower temperature limit to occur glass transition thermodynamically 18



* ldeal glass transition temperature (T
: lower temperature limit to occur glass transition thermodynamically

HEAT CAPACITY : Cp

oc)

supercooled ___@_;ﬂ!

liguid

('i'!,\'f!!;

TI'I'I

S{liquid)-S(crystal)

Toc Ty

TO C

TI'I'I

@ inT

(b)

Variation of (a) C,, and (b) excess entropy, S depending on temp. for glass,
crystal and liquid. Ideal glass transition temp, 7. is the temperature when

excess entropy is disappeared.

19



« Kauzmann'’s paradox Thermodynamics: The configurational entropy
apparently extrapolates to zero at low temperatures.

1.0 | , i 1 , ,
Squ'Scr

0.8

T K defined by an
extrapolation of equilibrium
properties. Not really
justified. If pomnt defects witk
finite formation energy are
present 1 a reference

. configuration. the
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Lactic acid 1 v O
02] RS o | extrapolation 1s incorrect
L | | (Stillinger).
T [in T
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e ——

— Measurement of Kauzmann temp. is almost impossible.
( -+ very slow cooling rate — longer relaxation time — crystallization )



Theories for the glass transition

A. Thermodynamic phase transition

» Glass transition
H,V,S: continuous C, oy K; : discontinuous

— by thermodynamic origin, 2" order transition

— In fact, it appears on some evidences that the glass transition is
not a simple second-order phase transition.

B. Entropy

 Heat capacity — dramatic change at Tg

* Description of glass transition by entropy (Kauzmann)

S=[CpdInT

— The slow cooling rate, the lower T, — T, or T,°

— Measurement of Kauzmann temp. is almost impossible.

( -- very slow cooling rate — longer relaxation time — crystallization )

Z |



How does thermodynamics different from kinetics?

Thermodynamics == There is no time variable.

says which process is possible or not and never says how long it will take.

The existence of a thermodynamic driving force does not mean that
the reaction will necessarily occur!!!

There is a driving force for diamond to convert to graphite
but there is (huge) nucleation barrier.

How long it will take is the problem of kinetics.
The time variable is a key parameter. = Relaxation & Viscosity



