Present Status and Future Prospect of Nuclear Fusion

Prof. Dr. Yong-Su Nat

What is nuclear fusion?

10

E = mc

.....

Origin of the Star Energy

Origin of the Star Energy

Thermonuclear fusion

Nuclear Fusion Reaction

🥩 D

Nuclear Fusion Reaction

Utilisation of the Fusion Energy

A Mark-17 Hydrogen bomb at the National Atomic Museum

Peaceful use of the fusion energy?

Peaceful Use of the Fusion Energy

 Lithium in one laptop battery + half a bath-full of ordinary water (≥ one egg cup full of heavy water) = 200 MW

Build a Sun on the Earth

Iron Man

How to confine the hot sun?

di

E = mc

.....

Gravitational Confinement

Inertial Confinement

Inward transported thermal energy

Fusion fuel microcapsule (microballoon)

Laser beams or laser-produced x rays rapidly heat the surface of the fusion target, forming a surrounding plasma envelope.

Fuel is compressed by the rocketlike blowoff of the hot surface material.

During the final part of the capsule implosion, the fuel core reaches 20 times the density of lead and ignites at 100,000,000°C.

Thermonuclear burn spreads rapidly through the compressed fuel, yielding many times the input energy.

Spiderman II

Spiderman II

Imitation of the Sun on Earth

Equilibrium in the sun

Plasma on earth much, much smaller & tiny mass!

Plasma – The 4th State of Matter

Plasma – The 4th State of Matter

lons and electrons are separated.

ion

Mirror Machine

old Hanbit Device in NFRI

Toroidalnaja kamera magnitnaja katushka (Toroidal chamber magnetic coil)

JET (Joint European Torus): $R_0 = 3 \text{ m}$, a = 0.9 m, 1983-today

JET (Joint European Torus): $R_0 = 3 \text{ m}$, a = 0.9 m, 1983-today

Tokamak

KSTAR (Korea Superconducting Tokamak Advanced Research): $R_0 = 1.8 \text{ m}, a = 0.5 \text{ m}, 2008$ -today

Fusion Power Plant System

Fusion Power Plant System

How to heat the plasma?

10

E = mc

.....

Plasma Heating

Plasma Heating – Ohmic Heating

Plasma Heating – Neutral Beam Injection (NBI)

Injection of a beam of neutral fuel atoms (H, D, T) at high energies ($E_h > 50 \text{ keV}$) H,D,T Ionisation in the plasma **Beam particles confined Collisional slowing down**

Plasma Heating – Wave (ICRH, ECRH, LHH)

Plasma Heating – Wave (ICRH, ECRH, LHH)

Tuning fork

Resonance

Plasma Heating – Wave (ICRH, ECRH, LHH)

KSTAR first plasma

What is the current status?

10

E = mc

....

Status of the Tokamak Research

- Present machines produce significant fusion power:
 - TFTR (USA) ~10 MW in 1994
 - JET (EU) 16 MW (Q=0.64) in 1997

Status of the Tokamak Research

• Progress in fusion can be compared with the development of computer chips and particle physics accelerator energy.

- Present machines produce significant fusion power:
- TFTR (USA) 10 MW (1994) - JET (EU) 16 MW (Q=0.7) (1997)

What are the critical issues?

00

E = mc

....

Stabilisation of Plasma Turbulence

Turbulence stabilisation → Increase of plasma pressure
→ High fusion power

Stabilisation of Plasma Turbulence

Gyrokinetic Simulations of Plasma Microinstabilities

simulation by

Zhihong Lin et al.

Science 281, 1835 (1998)

Suppression of Plasma Instabilities

Suppression of Neoclassical Tearing Mode by ECCD

Edge Region Instability and Disruption

Edge Localised Mode

Disruption

Plasma–Wall interactions

• High heat flux to the surrounding materials

The Underground

http://cafe.naver.com/gamebox26.cafe?iframe_url=/ArticleRead.nhn%3Farticleid=16140

Radioactivation of Materials

Neutron impacts on materials

What is the future of fusion?

....

E = mc

KSTAR Project

K§TAR

- Korea Superconducting Tokamak Advanced Research
 - superconducting tokamak using ITER-relevant magnets
 - capability of reactor-relevant plasma performances

 Objective - To integrate optimised plasma performance and continuous operation as a step toward an attractive tokamak fusion reactor

ITER Project

- International Thermonuclear Experimental Reactor
 - "the way" in Latin
 - the essential next step in the development of fusion

- Objective To demonstrate the scientific and technological feasibility of fusion power.
 - The world's biggest international research project

Fusion Energy Development

• The Fast Track Approach

Korean Plan for Fusion Energy Development

When he was asked how long it would take to build the first fusion power plant, the Soviet physicist Lev Artsimovich – one of the pioneers of tokamak research – replied that "fusion will be there when society needs it." That time is fast approaching, and with the construction of ITER finally about to start, efforts are now gearing up for the longer –term prospect of fusion energy.

- "Fusion: the way ahead, Physics World March 2006

"The entire cost of the fusion development programme is equal to only a week of spending in the international energy markets."

- I. Cook, IAEA 2005