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Plasmas as Fluids

 Two-fluid equations

The continuity equation will apply separately to each of the different
species. The momentum balance equation must consider the fact that
particles of one species can collide with particles of another species,
thereby transferring momentum between the different species.

The rate at which momentum per unit
volume is gained by species « due to
collisions with species g.

v,z - collision frequency of aon g

R, =—-m,n,v,, (U, —U,)

mn,( G @, 90, 0,0, (E+0,%B)-V B+ R,
B

The rate at which momentum per unit
” volume is gained by species fdue to
collisions with species «.

MmNV, =My,
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Plasmas as Fluids

 Plasma resistivity

The acceleration of electrons by an electric field applied along (or in
the absence of) a magnetic field is impeded by collisions with non-
accelerated particles, in particular the ions, which, because of their
much larger mass, are relatively unresponsive to the applied electric
field. Collisions between electrons and ions, acting in this way to limit
the current that can be driven by an electric field, give rise to an
important plasma quantity, namely its electrical resistivity, 7.

R, =-m.n,v, (U, —0,)

e e''e” ei

mn,( G 4@, 90, 0,0, (E+0,<B)-V B+ TR,
B

Homogeneous (heglecting the electron pressure and
velocity gradients along B)

0=-neE +R

ei|
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Plasmas as Fluids

 Plasma resistivity

0=-nek +Ry R =—M,n,v, (0, —G,)

e

Jy =-ne(Uuy —uy)

E o= eVei y _y y=Meei 3 _ g Simplified
|| e aTUWIT T T Ohs law
n:me<vel>
n.e’ I R

Ohm'’s triangle
Momentum gained by electrons due to collisions with ions

Iiei - _mene <Vei >(Ue - Ul) = _nnsez(ue - U|) = nneej



http://commons.wikimedia.org/wiki/Image:Ohm's_law_triangle.PNG

Plasmas as Fluids

» Single-fluid magnetohydrodynamics (MHDSs)

A single-fluid model of a fully ionised plasma, in which the plasma is
treated as a single hydrogynamic fluid acted upon by electric and
magnetic forces.

« The magnetohydrodynamic (MHD) equation

Hydrogen plasma,
charge neutrality
assumed

p=nM+nm=n(M+m)=nM mass density
o=(n,—n,)e charge density

V = (n,MU0; +n,mid,)/ p = (MG, + m@d,) /(M +m) ~ G, +(m/M)d, M=

velocity
J = e(nd. —n.,) ~ ne(t, —a,) electron inertia neglected:
electrons have an infinitely
j j fast response time because of
_ M . i
O ~V+——, O, ~V—— their small mass
M ne ne




Plasmas as Fluids

« The magnetohydrodynamic (MHD) equation

on

a'::,e +V-(n G .)=0 multiplied by M and m, respectively

and added together

Le-1e
Mass continuity equation

—+V-J =0 Charge continuity equation

di ~ ~ ~ !Equatiqns of motion:
Mn, —- =en. (E + U, X B) -Vp, +R, isotropic pressure assumed
dt In the case, where a plasma is
due - = _ nearly Maxwellian (or at least
mn, T —en,(E+U,xB)—=Vp, + Ry nearly isotropic), the pressure
t tensor term can be replaced by the
gradient of a scalar pressure, Vp

—

— VP Single-fluid equation of motion
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Plasmas as Fluids

_ L o o _
Rei — mn<vei>(ui _ue) — 77” € (ui _ue) - UneJ
= . = -V
E+U,xB=n) - Pe
ne
- = = JxB-V B
E+VxB=n+ Pe o g av- 2
ne ne
Generalized Ohm’s law Neglect electron inertia entirely:
valid for phenomena that are
- ~ 1 6E sufficiently slow that electrons
VxB =y, +—— have time to reach dynamical
c” ot equilibrium in regard to their
N OB motion along the magnetic field
VxE=——
ot Maxwell equation
V-B=0
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Plasmas as Fluids
e ldeal MHD model

E+V-p\7 =0 Mass continuity equation
v - = . . : :
pa =JxB-Vp Single-fluid equation of motion
d({ p 0 Energy equation (equation of state):
dt 7 B adiabatic evolution
E+VxB=0 Ohm’'s law: perfect conductor — “ideal” MHD
- 0B
VxE = Y Maxwell equations
VxB=puJ g, — 0 assmued
. (Full — low-frequency Maxwell’s equations)
V:-B=0 Displacement current, net charge neglected




Plasmas as Fluids
e Ideal MHD
- Single-fluid model
- Ideal:

Perfect conductor with zero resistivity

- MHD:
Magnetohydrodynamic (magnetic fluid dynamic)

| | I4/
- Assumptions: LM{(
Low-frequency, long-wavelength
collision-dominated plasma

- Applications: ._
Equilibrium and stability in fusion plasmas S 3 '
— £



http://web.gat.com/theory/File:Fig.1.png
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What is Ideal MHD?

e Ideal MHD: =0

e Resistive MHD: n = 0




What is Ideal MHD?

e Ideal MHD: =0 e Resistive MHD: =0




Applications

Plasma Eqauilibrium and Stability



http://web.gat.com/theory/File:Fig.1.png

Equilibrium and Stability

Equilibrium? Yes! Forces are balanced

Stable? Nol!
—




Equilibrium and Stability

Equilibrium? Yes! Forces are balanced

Stable? No! The system cannot recover.




 Basic Equations

« MHD equilibrium equations:

time-independent with v = 0 (static)

Force balance
Ampere's law

Closed magnetic field lines
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Equilibrium: 1-D Configurations
« The Z Pinch

- 1-D toroidal configuration with purely poloidal field

(0 —> )

— 2nR, ——»

ELECTRODE

self field induced longitudinal
by 1, plasma current

- Sequence of solution of the MHD equilibrium equations
1. The v:B =0

2. Ampere’s law: g, = VXxB

3. The momentum equation: JxB = vp
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Equilibrium: 1-D Configurations

e The Z Pinch
- Sequence of solution of the MHD equilibrium equations

1. The v:B =0 1@59_
r o0
. pere’s law: uyd = VXB ‘]z :__(rBe)
Ll dr
. dp
3. The momentum equation: JxB = vp J,B, _—d—
r
2 2
dp+B,9 d(rBe)zO i 0+ B, +Be 0
dr g,rdr dr 20y | ol

particle pressure + magnetic pressure force

V

tension force by the curvature of
the magnetic field lines .

—




Equilibrium: 1-D Configurations

e The Z Pinch
- It is the tension force and not the magnetic pressure gradient @

that provides radial confinement of the plasma.

P By B _ /uOIO r
0= 2 | 2
1/r 2 r°41y
2
1 j = l, Iy Bennett profiles
o (rP+rk)’ (Bennett, 1934)
.
FIELDS . J79 FE e
2 (02 | .2\2
_P, 8z (re+ry)

-Bg /r
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Stability: General Considerations

 Definition of Stability

- Suggested by physics, where stability means, roughly speaking,
that a small change (disturbance) of a physical system at some instant
changes the behavior of the system only slightly at all future times t.

- The fact that one can find an equilibrium does not guarantee
that it is stable. Ball on hill analogies:

\WEAUR VAL

stable linear unstable metastable non-linear unstable

linear: with small perturbation
non-linear: with large perturbation

- Generation of instability is the general way of redistributing energy
which was accumulated in a non-equilibrium state.
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 Definition of Stability

Equilibrium types
Stable W
Unstable A

Neutral p——

Marginally stable

Applied Applied Apphed
Force Force Force

POSITIVE NEUTRAL MEGATIVE
STATIC STABILITY STATIC STABILITY STATIC STABILITY

- assuming all quantities of interest linearised about their equilibrium values.

Q(F,t) = Q, (F) + Q(F 1) small 1st order

61/\Q0\<<1

Q(F,t) =Q,(F)s™

perturbation

Im w > 0: exponential instability

Im w < 0: exponential stability




Stability

* Various Approaches for Stability Analyses

1.

Initial value problem using the general linearised equations of motion

2. Normal-mode eigenvalue problem
3.
4. Energy Principle

Variational principle

23




Stability

e Initial Value Formulation

Jox By = VP, QFH=Q)(N+Q(FY)  Q/jQy|<<1

Uydo =V x B, linearized

V- éo =0 G 8_§ & displacement of the plasma
N 1= ot away from its equilibrium
V, =0 position

Aim: to express all perturbed quantities in terms of £ and then
obtain a single equation describing the time evolution of &

24
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e Initial Value Formulation

j X I§ =V " - ~
“Bo= ¥R QF.H=QM+QFY) Q/jQy|<<L
Uody =V X B linearized
V. I§ =0 7 8_§ & displacement of the plasma
17 away from its equilibrium
V.=0 ot 7
0 — position

Z’[(S F(§) momentum equation

F((f) — Jx |§1 + J~1 % B _V'f)l force operator

:ﬂi(Vx I§)><(3+ﬂi(V><(3)>< B+V(£-Vp+pV-&)

&(r,0)=0, 85(@!;,0) =V,(F,0) + Boundary conditions

Formulation of the generalized stability equations as an initial value problem
o




Stability
« Normal-Mode Formulation
Q(F.1) = Q,(F) exp(-ict)

o, =—V-(p&) conservation of mass

p,=—¢-Vp—pV-&  conservation of energy
(j = |§1 =Vx(&x I§) Faraday's law

—a)2p§ - If(é) normal-mode formulation
F (&) =i(V>< I§)x(§+i(Vx(5)>< B+V(E-Vp+pV-&)
Ko Hy

- An eigenvalue problem for the eigenvalue w?

26
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Stability
 Variational Principle

Classic eigenvalue problem

d
(f ayj+(/1—9)y:0 A: eigenvalue

dx\ ox
y(0)=y@) =0
P J(y?+ay)dx yyiipied by y
jyzdx and integrated over the region 0 < x <1

Why is this variational?

- Substitute all allowable trial function y(x) into the equation above.

- When resulting A4 exhibits an extremum (maximum, minimum,
saddle point) then 4 and y are actual eigenvalue and eigenfunction.

2f HTy,) + (o - 9) Yol
) J youx

oA

27
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 Variational Principle

—a)2p§ = If(f) normal-mode formulation

,  OW(&E*, &)  dot product with &* then integrated over
K * the plasma volume ’
o) j(fy2+gy )dx

jyzdx

O (4,6) = [£-F (©)ar
:_ljg*.[i(wcj)x E§+i(w BYxQ+V(pV-&+&-Vp)dr
2 Ky Ky
K(&4,6) = [ plef or

Any allowable function ¢& for which w? becomes an extremum is an
eigenfunction of the ideal MHD normal mode equations with eigenvalue w?.




-
Stability
 Variational Principle

— 0’ p& = If(g) normal-mode formulation

,  OW(E*, &)  dot product with &* then integrated over
- the plasma volume
K(&*,¢) g

_ 0)2 K + é\/\/ — O Conservation of energy

|

Kinetic energy

\%
- Change in potential energy associated with the perturbation

- Equal to the work done against the force F(&)
in displacing the plasma by an amount &,

29
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StaDIIITy
« Energy Principle

®° = M >0 stable
K

oW >0 stable
OW =W, + W, + W,

W =%Ldf H—51-(~Tx<§)+7|o\V-§\2+(ei-V|o)V-§I

Hy

W, =%j§ dS|fi- &, [*i-[[V(p +B?/ 2.1, I

2

~

B
W, =+ [, dris
2 Hy
Boundary conditions on trial functions
n-By, =0 n-Bj =B-V(n-&)-(n-&)n-(n-V)B]J,




Stability

é\NF:%LdF

G,
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82

Hy
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Hy

12
v-gﬁzg-x\ + 9D

destabilising

Al -
4 A\

V'g‘z _2(41 -Vp)(l?-éi)—J”(fi XE)'QJ_

, l | :

v

Y
stabilising

Pressure-driven modes (+ or -)

\’

current-driven (kinks) modes (+ or -)

Energy required to bend magnetic field lines: dominant potential energy
contribution to the shear Alfvéen wave

\

Energy necessary to compress the magnetic field: major potential energy
contribution to the compressional Alfvén wave

Energy required to compress the plasma: main source of potential energy
for the sound wave

31
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