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 Teller —Ulam configuration (radiation implosion)

- A fission explosion is first triggered, contained inside a heavy metal case.

- The radiation (X-rays) from the fission bomb reaches the nearby fusion
fuel almost instantaneously and be used to compress and ignite it before
it is blown apart by the blast wave from the fission explosion.



http://upload.wikimedia.org/wikipedia/commons/3/3d/IvyMike2.jpg

Inertial Confinement Fusion (ICF)
- A process where nuclear fusion reactions are initiated by heating and
compressing a fuel target, typically in the form of a pellet that most

often contains deuterium and tritium
- To compress and heat the fuel, energy is delivered to the outer layer
of the target using laser beams, ion beams, or X-ray radiation.
- Aim: to produce a condition known as "ignition", where this heating
process causes a chain reaction that burns a significant portion
of the fuel
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ICF - Direct Drive

« Sequence of events — mini explosions
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ICF - Direct Drive

« Sequence of events

- A small pellet, with a radius less than —~5 mm and containing a mixture
of fuel atoms, is symmetrically struck by energetic pulses of EM radiation
from laser beams or by high energy ion beams from an accelerator.

- Absorption of this energy below the surface of the pellet leads to local
ionisation and a plasma-corona formation — outward directed mass
transfer by ablation and an inward directed pressure-shock wave

- A follow-up shock wave driven by the next laser or ion beam pulse
propagates into an already compressed region.

- With the temperature and fuel density sufficiently high, the fusion
reactions will occur until the pellet dissembles in a time interval of about
10-8 s, corresponding to the propagation of a pressure wave across the
pellet with sonic speed v..




ICF - Direct Drive

« Requirements
- Symmetric strike of the pellet by the incident laser or ion beam and
efficient energy coupling between the beam and the target:
deeper penetration using high frequency laser beams
- Very rapid attainment of high density of the inner core before internal
pressure build-up by e-heating that opposes high compression




ICF — Direct Drive

* Requirements
- Very rapid attainment of high density of the inner core before internal
pressure build-up by e-heating that opposes high compression:

The cloud of plasma formed by laser beams shields the fuel pellet
from being struck by further laser light so the laser light doesn’t
reach the surface anymore, where it can impart maximum
momentum. The plasma begins to act like a mirror, reflecting the
light. When laser light is reflected it creates waves in the plasma,
which in turn shoot energetic electrons to the core of the fuel
pellet. The very high energy electrons generated by the initial
laser penetrate into the centre before the arrival of the pressure
wave thereby causing an undesirable preheating of the central
core region resulting in an expanding outward force effect to
retard compression.
The trick is to keep the target cold, gently pushing on it until it
reaches hundreds of times solid density.
Accelerators transfer the beam energy more directly to ions in
the target — more efficient

—




ICF - Direct Drive

* Requirements
- Symmetric strike of the pellet by the incident laser or ion beam and
efficient energy coupling between the beam and the target:
deeper penetration using high frequency laser beams
- Very rapid attainment of high density of the inner core before internal
pressure build-up by e-heating that opposes high compression
- Achievement of substantial fusion reaction before pellet disintegration
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 Lasers

- The requirements of pellet compression and beam-target coupling
iImpose some very stringent demands on beam energy and the details of
pellet composition.

- Status of current laser technology and requirements

Parameter Nd Required
Wavelength (um) 1.06 0.25 ~ 0.3
Pulse rate (Hz) 0.001 5 ~5
Beam energy (MJ) 0.03 0.1 = [l

Representative

peak power (TW) e e - e




ICF — Beams
 Energetic ion beams
- Energetic ion beams introduce another set of problems:
beam focusing for high current accelerators

need for large high-vacuum ion transport facilities
- Status of current accelerator technology and requirements

Beam particle p, o, C4*
Particle energy _ . _
(MeV) 10 50 30000 > 10
Beam energy (MJ) 1 1 5 ~5

Peak power (TW) 20 20 200 ~ 1000




ICF - Targets

« Targets

- Typical fuel pellets (microcapsules or micro
balloons) are about the size of a pinhead and
contain around 10 milligrams of fuel: in
practice, only a small proportion of this fuel
will undergo fusion, but if all this fuel was
consumed it would release the energy
equivalent to burning a barrel of oil. Image of an inertial confinement

fusion fuel microcapsule.

» Major objectives TACILTER publication. -

- To optimise energy transfer, minimise
hot electron production, and reduce
requirements for symmetric beam

energy deposition

 Types

- Glass microballoons

- Multiple shell pellets

- High-gain ion beam pellets

The polished beryllium capsule
(2 mm in diameter) 18




ICF - Targets

* Glass microballoons

- Consisting of thin walled glass shells
containing a D,-T, gas under high
pressure

- The incident beam energy is deposited
in the glass shell causing it to explode
with part of its mass pushing inward
and the remaining mass outward.

- Being widely used in experiment,
however more efficient designs
needed for power plants




ICF - Targets

 Multiple shell pellets

- Consisting of an inner D-T solid fuel
core surrounded by a high-Z inner
pusher-tamper, a thicker layer of low
density gas surrounded by a pusher
layer and an outer low-Z ablator
material

- The outer layer is to ablate quickly
and completely when struck by the
incident beam

- The inner high-Z pusher-tamper is to
shield the inner core region against
preheating by hot electrons and X-rays

L7
25%

22 +——— High-Z Pusher-tamper
D-T Fuel

20




ICF - Targets

« High-gain ion beam pellets

- Consisting of a vacuum sphere
surrounded by a D,-T,-DT fuel shell
surrounded by tamper-pusher materials

- Thickness of the tamper-pusher
materials carefully matched to the
type and energy of the incident beams




ICF - Fast Ignition

Implosion laser
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- A new scheme separates the compression and heating phases much like a
petrol combustion engine. In the petrol engine the fuel is compressed by the
piston and then ignited via the spark plug. In the case of fast ignition, the
driving lasers are the pistons, compressing the fuel to high density around
the tip of a gold cone.

- The spark plug in this case is a multi kj, short pulse laser which is injected
into the tip of the gold cone. When the laser interacts with the gold, plasma
is formed and energetic electrons produced travel into the dense fuel to
deposit their energy and raise the fuel to fusion temperatures.

22



ICF - Fast Ignition

- Many powerful laser beams irradiate a capsule of DT fuel.
The lasers are arranged symmetrically around the capsule and
heat a thin layer of the capsule causing it to expand rapidly.
This forces the rest of the material in the opposite direction.

- f) - The material converges around the tip of a gold cone.
y The density of the DT is now hundreds of times the density
: of solid material.

~ d - An ultra intense laser is fired into the gold cone.
/’/ When the laser interacts with the tip of the gold cone a large
| number of energetic electrons are produced.

- The energetic electrons travel into the dense DT fuel and
~ O deposit their energy.
This raises the fuel to 100 million degrees centigrade
which is hot enough to initiate the fusion reactions.

23
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ICF — Shock Ignition
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2-D studies also give promising performance
Collaborations with NRL (Schmitt) & LLNL (Perkins)
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ICF — Shock Ignition

300 ! | T T
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- Nano-timescale laser pulse applied
- No need of cones and lasers for ignition
— economic competitiveness compared with fast ignition

26
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- This puts a very high requirement on symmetry of the spherical
capsule and of the distribution of energy contained within the
driving lasers/radiation.

- If these are not symmetrical then different parts of the capsule
will reach maximum density at different times and the capsule will
break apart without the fusion process taking place.
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ICF — Indirect Drive

* Indirect drive
- To achieve increased symmetric energy deposition over the surface of
the pellet
- Composed of a fuel pellet and a small cylindrical cavity (Hohlraum)
Hohlraum: a few cm long, made of a high-Z material such as
gold or other metal, having “windows” transparent to
the driver on each end
- The beams enter both ends of the hohlraum
obliquely and ablate the inner surface of the cavity.
- The high-Z material of the hohlraum emits
soft X-rays and by focusing the driver beams
to the appropriate points inside the cavity, a highly
symmetric irradiation of the fuel pellet results
— optimal pointing of the laser beams is important.




ICF — Indirect Drive
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ICF — Indirect Drive

« Sequence of events
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ICF - Indirect D
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* Pros and Cons compared with the direct drive

- Symmetric energy deposition on the pellet surface is efficient compared
with the direct drive where all the driver beams must symmetrically
impinge directly on the pellet.

- Better ablation and subsequent compression with X-rays

- Reduced instabilities during pellet compression

- Reduced energy coupling from the beam to the pellet

- Increased complexities of hohlraum manufacture

Richtmyer-Meshkov instability (RMI):
the instability occuring at an impulsively
accelerated interface between two different

gases.

Digtance, micromelers

Q 20 a0 60 a0 | 3 million kilometers
Distance, micrometers

Striking similarities exist between hydrodynamic instabiliies in (a) inertial confinement fusion capsule implasions
and (b) core-collapse supernova explosions. [Image (a) is from Sakagami and Nishihara, Physics of Fluids B2,
2715 (1990); image (b) is from Hachisu et al., Astrophysical Journal 368, L27 (1991).]
31




e | awrence Livermore — Siva and Nova (1984)

- Neodymium-YAG laser

- Producing over a kilowatt of continuous power at 1065 nm
- Achieving extremely high power in a pulsed mode (108 MW)




ICF National Ignition Facnllty (NIF)

Installation of the first wall inside the Target Chamber was complete in March 2005

- Very large facility, the size of a sports stadium

- Very small target, the size of a BB-gun pellet

- Very powerful laser system (192 laser beams, 1.8 MJ of energy),
equal to 1,000 times the electric generating power of the USA

- Very short laser pulse, a few billionths of a second

33
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- CEA, France

- Being build near Bordeaux
(expected to be completed in 2012)

- 1.8 MJ of laser energy

- Focusing on indirect drive







ICF — Power Plants

Flibe coolant outlets
640°C

HSI fusion target

One of the 350-nm
compression laser
beams

Flibe coolant inlets
610°C

Fission blanket

Be neutron multiplier

Lithium-lead first
moderator

wall coolant

A LIFE fusion-fission chamber for a 37.5-megajoule (MJ)
hot-spot ignition (HSI) target driven by a 1.4-MJ,
350-nanometer (ultraviolet) laser. 36
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* Increasing power of ICF lasers over time,
starting with the first "high-power" devices in the 1970s.
- Lasers with enough energy to create "
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The GEKKO Laser
(Osaka Univ. 1983)

Graph courtesy
S. Nakai

ignition" are boxed near the middle of the graph,
although KONGOH and EPOC were canceled, leaving only NIF and LMJ along the blue line.
- To the right are a series of lasers built not for high-power, but high repetition rates, which
would be needed for a commercial power reactor. To date only the first two dots along the
orange line have been built (FAP demonstrator and Mercury).
- The upper right of these lines represent hypothetical devices that have both the high-power
and high-repetition rates needed for commercial power production.
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ICF — Issues on Power Plants

* Protection for the reaction chamber wall

- Against radiation and energy deposition by pellet debris
released in a microexplosion

- Dry wall and various wet wall concepts such as a falling
liquid metal veil, liquid metal jets, liquid metal droplet
sprays or a thin surface layer of liquid metal

- Rapid purging of the chamber needed in preparation for the next pulse

- Pellet manufacture
- Spherical coating technology at the micro-scale of composition and geometry

* Pellet handling and positioning in the chamber
- Entry by gravity combined with pneumatic injection demanding extreme
trajectory precision

 Focusing magnets for ion beams, other beam
transport elements and protection of mirrors
38
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