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0.1 Introduction

The understanding of the behavior of electrons in solids is one of the key 
elements to understand the properties of materials such as electrical, optical, 
magnetic, and thermal properties.

There have been several approaches for the understanding of the 
electronic properties of materials.

(a) Continuum Theory – phenomenological description of the 
experimental observation
ex. Ohm’s law, Maxwell equation Hagen-Rubens equation etc.

(b) Classical Electron Theory – introducing atomistic principles into the 
description of matter
ex. Drude equation (free electron in metals)

(c) Quantum Theory – explain the interaction of electrons with solids 
which could not explain by the classical Newtonian mechanics 
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Wave- Particle Duality

What is an electron? – we experience merely the actions of electrons, e.g., 
television screen or in an electron microscope, showing particle-like and 
wave-like behavior of electrons, respectively.

Similar discussion to discuss the property of light.

We perceive light intuitively as a wave – electromagnatic wave
-as the color of light is related to its waverlength or to its frequency 
-Diffraction, interference, dispersion 

We also know that the light also has a particle nature.
-Photoelectric effect (1905, Einstein)

Newton’s Law: Light:
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Planck constant: h=6.626 x 10-34 J sec
=4.136 x 10-16 eV sec
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Wave- Particle Duality of Electron

In 1897, particle like property of electrons was discovered by J.J. Thompson at 
the Cavendish Lab.
Charge: 1.6X10-19C, Mass: ~1/2000 of the mass of hydrogen atom

In 1924 de Broglie postulated that the electrons should also possess wave-
particle duality and suggested the wave-nature of electrons.

From the equations of the light, such as:
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In 1926, Schrodinger provide a mathmatical
Form of this idea. – Schrodinger equation
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What is a wave?
A wave is a “disturbance” which is periodic in position and time.

Waves are characterized by a velocity, v, a frequency, , and a wavelength, , 
which are interrelated by,

Simplest waveform is mathematically expressed by a sine (or a cosine) function –
“harmonic wave”. 

The wave-particle duality may be better understood by realizing that the 
electron can be represented by a combination of several wave trains having 
slightly different frequencies, for example,  and and different wave 
numbers, k and k+k.
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Two extreme cases:

  and k=0, “infinitely long” wave packet – monochromatic wave
  and k assumed to be very large – short wave packet

if a large number of different waves are combined, having frequencies n
where n= 1, 2, 3,…), then the string of wave packets reduces to one wave packet only.
The electron is then represented as a particle. 
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Different velocities:

(1) The velocity of “matter wave” is called the wave velocity or “phase 
velocity”.
- stream of particles of equal velocity whose frequency, wavelength, 
momentum, or energy can be exactly determined.
- the location of particles, however, is undetermined.
- the phase velocity varies for different wavelength.

(2) Particle can be understood as a “wave packet” where, the velocity of a 
particle is called “group velocity”, vg.
- the velocity of a “modulated amplitude” is expressed as

- the location x of a particle is known precisely, whereas the frequency is 
not.
- the better the location, x, of a particle can be determined, the wider is 
the frequency range, 
- one form of Heisenberg’s uncertainty principle
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Derivation of Schrodinger Equation:

Matter wave equation is expressed as a harmonic wave form:

Energy(E) Momentum(p)

Particle: mv

Wave:

Since, E=

(time-dependent Schrodinger equation)
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Derivation of Schrodinger Equation:

At stationary state – time independent state
We are asking what energy states are allowed.

We can write, 

Then, (time-independent Schrodinger equation)

Solution:

1. Choose desired potential energy V(x, y, z)
2. Get the general solution of x, y, z)
3. Retain only mathematically well behaved terms

single valued
not=0
continuous and continuous derivatives
finite

4. Apply boundary condition - En
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1.1 Free Electrons
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Time-Independent Schrödinger Equation
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We consider electrons which propagate freely  with no potential barrier(V), 
namely, in a potential-free space in the positive x-direction. 

Taking on the standard time dependence
i xe 
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Traveling in the x direction
Traveling in the -x direction
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When we concern about  wave traveling in the x-direction

Because there are no boundary conditions, we can obtain an energy 
continnum

Energy continuum of 
a free

(Wave vector) k p
  k-vector describes the wave 

properties of an electron, just as 
one describes in classical 
mechanics the particle property of 
an electron with the momentum
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1.2 Electron in a Potential Well (Bound Electron)

The potential barriers do not allow the electron to escape from this potential well
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This result is called “Energy Quantization”
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For hydrogen model 

The potential ,V, is taken as the Coulombic
potential                   , and solve 
Schrodinger equation by setting the polar 
coordinates.

2
0/ 4V e r 

For electron in a box (3-D)

( , , :x y zn n n Integer )

“Degenerate States”: 
have the same energy 
but different quantum 
numbers

The smallest allowed energy is when nx=ny=nz=1
For the next higher energy,
(nx, ny, nz) = (1, 1, 2), (1, 2, 1), (2, 1, 1) 
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1.3 Finite Potential Barrier (Tunnel Effect)
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1.4 Electron in a Periodic Field of a Crystal
(The Solid State)

The goal of this section is to study the behavior of an electron in a crystal-periodic potential.
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Kronig-Penney Model
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(1)  At x=0

(2)  For  periodicity , Eq I = Eq II (at x=0,x=a+b)

From this 4 equations we can determine unknowns A,B,C,D and the 
conditions which tells us where solutions to the Schrödinger equations 
exist.
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0 ( ) 0V b Potential Barrier Strength finite and b 

The potential barrier will be of a kind that b is very small and V0 is very large.
It is further assumed that the product bV0 remains finite.

If V0 is very large, then E is considered to be small and can be neglected,

And since b ~ 0

Neglect 2 compared to 2 and b compared to a,
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1 cos 1ka  Because of 
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It means that Energy of electron is forbidden at specific regions

Because of this forbidden regions are called by 

“Energy band gap”.
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(a) bound electrons (b) free 
electrons (c) electrons in a 
solid

Special cases of this system

(a) Potential barrier strength       is large,
0V b

Curve in Fig 4.11 proceeds more steeply
-> The allowed bands are narrow

(b) Potential barrier strength       is small,
0V b

The allowed bands become wider

(c) Potential barrier strength       goes to 00V b

(Free electron like)

(d) Potential barrier strength       is large, 0V b P 
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(Bound electron like)


