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PART I.

FUNDAMENTALS OF ELECTRON
THEORY



Introduction: Wave & [Particle




0.1 Introduction

The understanding of the behavior of electrons in solids is one of the key
elements to understand the properties of materials such as electrical, optical,
magnetic, and thermal properties.

There have been several approaches for the understanding of the
electronic properties of materials.

(@) Continuum Theory — phenomenological description of the
experimental observation
ex. Ohm'’s law, Maxwell equation Hagen-Rubens equation etc.

(b) Classical Electron Theory - introducing atomistic principles into the
description of matter
ex. Drude equation (free electron in metals)

(c) Quantum Theory - explain the interaction of electrons with solids
which could not explain by the classical Newtonian mechanics
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Wave- Particle Duality

What is an electron? — we experience merely the actions of electrons, e.g.,
television screen or in an electron microscope, showing particle-like and
wave-like behavior of electrons, respectively.

Similar discussion to discuss the property of light.
We perceive light intuitively as a wave — electromagnatic wave
-as the color of light is related to its waverlength A, or to its frequency v.

-Diffraction, interference, dispersion

We also know that the light also has a particle nature.
-Photoelectric effect (1905, Einstein)

Newton’s Law: Light:

F=ma speed of light: c=vA
1, energy quanta (photon): E=hv =%w

Ekin. = Emv N

—mv (h=—, w=27v)

P ; 27T

thus, E,. _P Planck constant: h=6.626 x 103 J sec
"o2m =4.136 x 10°16 eV sec



Wave- Particle Duality of Electron

In 1897, particle like property of electrons was discovered by J.J. Thompson at
the Cavendish Lab.

Charge: 1.6X10-1°C, Mass: ~1/2000 of the mass of hydrogen atom

In 1924 de Broglie postulated that the electrons should also possess wave-
particle duality and suggested the wave-nature of electrons.

From the equations of the light, such as:

E:hV C
, E=hv=h==nt?
E=mc - A
_ 1
p=me h—=me=p E = hv = ho
C=vA —hi—hk
p=h==

In 1926, Schrodinger provide a mathmatical - h _ K —
Form of this idea. — Schrodinger equation (7= o W=cenv, &= R



What is a wave?

A wave is a “disturbance” which is periodic in position and time.

Waves are characterized by a velocity, v, a frequency, v, and a wavelength, A,
which are interrelated by,

V=/1V=Q
k

Simplest waveform is mathematically expressed by a sine (or a cosine) function —
"harmonic wave”.

Y =sin(kx —wt)

The wave-particle duality may be better understood by realizing that the
electron can be represented by a combination of several wave trains having

slightly different frequencies, for example, ® and w+Aw, and different wave
numbers, k and k+Ak.

¥, =sin(kx — wt)
¥, =sin[(k + Ak)x — (0 + Aw)t]

Yo 4P, = 2cos(%‘”t —%kx)[sm[(k +A7k)x—(a)+A7w)t]



Modulcted Amplitude ("beats”)
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Figure 2.1. Combination of two waves of slightly differer AN
distance over which the partucle can be found

Two extreme cases:

(o) Aw and Ak=0, “infinitely long"” wave packet — monochromatic wave

(B) Ao and Ak assumed to be very large — short wave packet
if a large number of different waves are combined, having frequencies o+nA®
(where n= 1, 2, 3,...), then the string of wave packets reduces to one wave packet only.
The electron is then represented as a particle.




Different velocities:

(1) The velocity of "matter wave” is called the wave velocity or “phase
velocity”.
- stream of particles of equal velocity whose frequency, wavelength,
momentum, or energy can be exactly determined.
- the location of particles, however, is undetermined.
- the phase velocity varies for different wavelength.

X o+tAo o

t k+Ak K

(2) Particle can be understood as a "wave packet” where, the velocity of a
particle is called “group velocity”, vg.
- the velocity of a "modulated amplitude” is expressed as

X Ao do

°Tt Ak dk
- the location x of a particle is known precisely, whereas the frequency is
not.

- the better the location, Ax, of a particle can be determined, the wider is
the frequency range, Ao

- one form of Heisenberg's uncertainty principle

10 Ap-AX >h



TABLE 1.1 Particle and Wave Properties®

Particlelike Wavelike Correlation
Has a position in space; s Is extended in space; spatial  Heisenberg indeterminacy
location can be specified characteristics are speci- principle:

by giving spatial
coordinates.

Has a momentum given by
p o= mo.

Has Kinetic and potential
encrgy given by
Em= imv’ -V

Can take on all values of
encrgy E = 0.

fied by a wavelength 4.

Momentum is described 1n
terms of a wave number
k= 2arl

Has an angolar frequency
w = v,

Can exhibit all frequencies
w if the wave s effectively
infintte, i.¢., unconfined.

Can exhibit only a set of
discrete frequencies a, if
the wave is finte, 1.e.,
confined 10 a specific
region of space,

Av-All/i)= V2=

Totally particlelike:

Ax = 0, AM1/4) = =

Totally wavelike:

A(172) = 0, Ax = oo,

If particlelike momentum is
mu, wavelike wavelength
15 A = h/mv where v is the
group velocity of the
corresponding waves.

If particlelike energy is £,
wavelike frequency is
w = E/h.

Can exhibit all energies
E = ko = 0if the
“wave' is effectively
infinite, i.e., a free
particle’ with V = 0,

Can exhibit only a set of
discrete encrgies £, = he,
if the “*wave'" 15 confined,
v.e.. if the “*particle’ is
constrained by ¥ = 0,

“ A comparison of particlelike and wavelike properties and the correlation between them when
both are used in appropriate circumstances to describe the behavior of entities with particlelike
and wavelike properties, c.g.. an electron.

T ————————————————————————————————



Solution of Schrodinger

Equation for Four Speciiic Problems

12



Derivation of Schrodinger Equation:

Matter wave equation is expressed as a harmonic wave form:

Y = Aexp[i(kx — wt)]

Energy(E Momentum(p)
2
Particle: SRY mv
2m
Wave: ho hk
aLP . aij — _quJ
E = —lo¥ x>
ih 0¥ pr O
¥ at v ox
2 : 2 2
Since, E= P v ﬂﬁ—‘P:_ 10 Lf+v
2m Y ot 2m ¥ ox
2 A2
Vi ov = — - oW +VV¥Y (time-dependent Schrodinger equation)
ot 2m ox°




Derivation of Schrodinger Equation:

At stationary state — time independent state
We are asking what energy states are allowed.

We can write, W =/ (X)-exp(—lwt)

h° 0w (X . . .
Then, E:,u(x):—2m g{g )+V(x)1//(x) (time-independent Schrodinger equation)
2m
Vzl//-l‘?(E—V)W:O
Solution:
1. Choose desired potential energy V(x, v, 2)
2. Get the general solution of y(x, y, z)
3. Retain only mathematically well behaved terms
single valued
not=0
continuous and continuous derivatives
finite
4. Apply boundary condition - E_




1.1 Free Electrons

Time-Independent Schrodinger Equation
2m
2
\Y% W—i_?(E —V)W =0.

We consider electrons which propagate freely with no potential barrier(V),
namely, in a potential-free space in the positive x-direction.

2
dw+2m
dx* A°

Ey =0.

2m

w(X) = Ae'”, a-= = E

X

U= Aeikx + Be‘"‘x, Taking on the standard time dependence €
U = Aeilecat) | gaitecat)
¥ IE 2N

o . Traveling in the -x direction
Traveling in the x direction




When we concern about wave traveling in the x-direction E

16

\P(X) _ Aeiax .eia)t

»

E

2 2
h°a

2m

Energy continuum of
a free

Because there are no boundary conditions, we can obtain an energy
continnum

mE

2
o= 7

-2

(Wave vecto r) "

k-vector describes the wave
properties of an electron, just as
one describes in classical
mechanics the particle property of
an electron with the momentum



1.2 Electron in a Potential Well (Bound Electron)

The potential barriers do not allow the electron to escape from this potential well

d’y 2m
q l// h EW O. (In side of potential well V=0)
x w4 iy
2m
w = Ae' + Be ™ —7 E
Boundary condition
= =0 (forx<0,x>a)
0 e

‘ nucleus
B=_A One-dimensional

potential well.

O _ Aeiaa + Be—iaa _ A(eiaa _e—iaa).

=Y



. 1, .
SIn p = 2— (e"’ — e"") (Euler Equation)
I

A[e‘“a — e““a] =2Ai-sinaga=0.

» aa=nr, n=0,12,3,...

o’ hr’

2
E. = T -n°, n=123,...

m ma

E
Es=26C - n= . . " NPT

This result is called “Energy Quantization
E,=16C - n=4
E3=9C - n=3
E,=4C - n=2
E;=1C - =1
her?
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Now, since

*

y =2Ai-sinaXx, y =-2Ai-sinax,

wy =4A%sin® ax.

Normalization

j: wy dx = 4A j:sinz(ax)dx _4A

a

2

n =
1 her?
2ma’
h2r? v
2 4 2ma’
3 9 hr? L

(a)

n=1

n=1

vy

{ 1 . ax}
——SINaXCOoOSaX+—
2 2

T

(b)

=1

0

A
27 =nA, r=——n.

27



For hydrogen model ETO W=
The potential |V is taken as the Coulombic 2; g
potential V =—€° 1 4ne,t and solve
Schrodinger equation by setting the polar
coordinates.

o oomet 1 136. 1 (V) 1366V i
2(472'8072)2 n2 : n2 : (lonization energy)

For electron in a box (3-D)

h22

=5 ~(nZ+n2+n?).  (N,N,,N,: Integer)
ma’

E

n

The smallest allowed energy is when n,=n,=n,=1
For the next higher energy,

(e n,n)=(@112,(121,211) ;
Degenerate States”:

1 have the same energy
but different quantum
numbers



1.3 Finite Potential Barrier (Tunnel Effect)

d2 2m .

(1) deJrhz Ey =0. VT
I

() ‘?jx‘” 2m(E V) =0. ;

» (I) W, = Ae'™* + Be“‘”,a= Zir;E’
(o) y,, =Ce” +De™, ﬂ=\/2—m(E—VO).
=i mp y= -E).  (V,>E)

=Ce” + De™ ",

v, =C-0+D-0. (x>, -0 for bound state)

21



Thus, C — 0.

Ly, =De™,

Y — De—yx ] ei(a)t—kx)

(1) The function ¥: and ¥, are continuous at x=0. As a consquence, at x=0.

Ae'** + B = De7* wmmmp A4 B =D,

(2) The slopes of the wave functions in Regions I and II are continuous at x=0, i.e.
(dy, /dx) = (dy,, / dx)

Aiae'™ + Biae™™ = —yDe ™. _0' Aia — Bla = —yD.
X =

<
)

o

_D(1,i7) g_D(y_:7 A
EEPCEE
~_" 7
M/\énﬂ
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1.4 Electron in a Periodic Field of a Crystal
(The Solid State)

The goal of this section is to study the behavior of an electron in a crystal-periodic potential.

Kronig-Penney Model

d? 2m /\
(1) 5+ Ey =0, o el Sl
I / 1 /i
() ‘:'j‘z” iT(E _V)y =0, i
2m
O[zzzh—TE, 72:?(VO—E). -b 0 a aldls ¥

W(X):U(X)’e- (Bloch function) V Surface potentia

2
oy (St \ﬂﬂﬂﬂ
dx dx®  dx

U\U&C]%H—-
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- Put it to equation (I) , (II) then

d’u . du
I) — +2ik——(k?*—a®)u =0,
( )dx2 dx (K =a’)

d’u ... du
(O) — +2ik——(k*+7*)u =0.
dx? dx ( 7)

. ( I) U= e—iKX(Aeiax + Be—iaX)’

— (O) u=e"(Ce” +De™).

Boundary condition

» W =Vy
(dlﬂ/dX)I Z(dl///dX)H



(1) At x=0
A+B=C+D.

A(ic —ik) + B(—icx —ik) = C(=y — ik) + D(y — ik).
(2) For periodicity , Eq1I = Eq II (at x=0,x=a+b)

Aplie-ia | gal-ia-ik)a _ calkenb | palik-7)b

AI(O{ _ k)eia(a—k) . BI(O( 4 k)e—ia(a+k)
= —C(y+ik)e™ ™ + D(y —ik)e™ ",

» From this 4 equations we can determine unknowns A,B,C,D and the
conditions which tells us where solutions to the Schrodinger equations
exist.



2 2

# 72_ d sinh(yb) -sin(aa) + cosh(yb) cos(axa) = cosk(a + b).
ay

The potential barrier will be of a kind that b is very small and V, is very large.
It is further assumed that the product bV, remains finite.

V,b = Potential Barrier Strength( finite) and b — 0

If V, is very large, then E is considered to be small and can be neglected,

2 2
y= h—T\/\Z b= h—T\/W-

And since b ~ 0
cosh(yb) =1 and sinh(yb) = yb.

‘ 8
P%ﬁﬂ-cosaa

Neglect a? compared to y2 and b compared to a,

m . : -
| — Vpbsinaa+cosaa=coska. 7~y

V& 4 V IR

ah

sin ¢a
P + CoS aa = cos ka. P= ¥
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‘ Because of —1<coska<1

Sin ¢a
P

+C0Saa are allowed at specific region of @

t

It means that Energy of electron is forbidden at specific regions

aa

m
Because of «a’ = F E, this forbidden regions are called by

“Energy band gap”.



Special cases of this system N

(a) Potential barrier strength V,b is large,

Curve in Fig 4.11 proceeds more steeply
-> The allowed bands are narrow

(b) Potential barrier strength V,b is small,
» The allowed bands become wider

(c) Potential barrier strength V,b goes to 0

h°k?
» E= (Free electron like)
2m
(d) Potential barrier strengthV,b is large, P —> o0

sinaa :
) —0 =sinaa—>0,ca=nx
aa

. E 7 n?
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(a) (b) (©

(a) bound electrons (b) free
electrons (c) electrons in a
solid

B 2ma’ (Bound electron like)



