재료의 전자기적 성질

PART II. ELECTRICAL PROPERTIES OF MATERIALS

Chapter 7 in the textbook

7.1 Introduction and Survey

$$V = RI, \quad j = \sigma E, \implies j = \frac{I}{A},$$

$$\mathbf{E} = \frac{V}{L} \quad , j = N\upsilon e, \quad R = \frac{L\rho}{A}, \quad \Longrightarrow \quad \rho = \frac{1}{\sigma}.$$

 $\nabla / CM = \frac{\text{# of electrons/cm}^2 \cdot \sec}{amphere(A) = coulomb(C) / \sec} \sigma(\frac{1}{\Omega \cdot cm})$ $= \frac{1}{16} electrons / cm^2 \cdot \sec = A / cm^2$

7.2 Conductivity-Classical Electron Theory

Understanding of electrical conduction

As Drude did,

A free electron gas or plasma ; valence electrons of individual atoms in a crystal

What is plasma?

$$N_{\rm a} = \frac{N_0 \delta}{M},$$

For a monovalent metal, N_a : # of atoms / cm³ N_0 : Avogadro constant (#/mole) δ : density (gram/cm³) **M** : atomic mass of element (gram/mole)

Without electric field ?

If E is applied

In a crystal,

Where, t is a relaxation time: average time between two consecutive collisions

$$\upsilon = \upsilon_{\rm f} \left[1 - \exp\left(-\left(\frac{t}{\tau}\right)\right) \right].$$

Final drift velocity

Mean free path between two consecutive collisions

$$l = \upsilon \tau.$$
 $(\upsilon \neq \upsilon_{\rm f})$

7.3 Conductivity-Quantum Mechanical Considerations

At equilibrium, no net velocity

The maximum velocity that the electrons can have is the Fermi velocity (i.e., the velocity of electrons at the Fermi energy)

What difference between Class. and QM

Only specific electrons participate in conduction and that these electrons drift with a high velocity (v_F)

$$j = v_F^2 e N(E_F) \hbar \Delta k.$$

$$F = m \frac{dv}{dt} = \frac{d(mv)}{dt} = \frac{dp}{dt} = \hbar \frac{dk}{dt} = e E,$$

$$dk = \frac{eE}{\hbar} dt, \quad \Delta k = \frac{eE}{\hbar} \Delta t = \frac{eE}{\hbar} \tau,$$

$$j = v_F^2 e^2 N(E_F) E \tau.$$

Population density at E_F

$$j = e^{2}N(E_{F}) \operatorname{E} \tau \int_{-\pi/2}^{+\pi/2} (\upsilon_{F} \cos \theta)^{2} \frac{d\theta}{\pi} = e^{2}N(E_{F}) \operatorname{E} \tau \frac{\upsilon_{F}^{2}}{\pi} \int_{-\pi/2}^{+\pi/2} \cos^{2} \theta d\theta$$
$$= e^{2}N(E_{F}) \operatorname{E} \tau \frac{\upsilon_{F}^{2}}{\pi} \left[\frac{1}{4} \sin 2\theta + \frac{\theta}{2} \right]_{-\pi/2}^{+\pi/2},$$
$$j = \frac{1}{2}e^{2}N(E_{F}) \operatorname{E} \tau \upsilon_{F}^{2}.$$

For a spherical Fermi surface,

$$j = \frac{1}{3}e^2 \upsilon_F^2 \tau N(E_F) E.$$

Since, $\sigma = j/E$

Fermi velocity, relaxation time, population density at Fermi energy

$$\sigma = \frac{1}{3}e^2 \upsilon_F^2 \tau N(E_F).$$
 vs

$$\sigma = \frac{N_{\rm f} e^2 \tau}{m}.$$

7.4 Experimental Results and Their Interpretation

7.4.1 For Pure Metals

$$\rho_2 = \rho_1 \Big[1 + \alpha \big(T_2 - T_1 \big) \Big],$$

Linear temperature coefficient of resistivity

Matthiessen's rule

$$\rho = \rho_{\rm th} + \rho_{\rm imp} + \rho_{\rm def} = \rho_{\rm th} + \rho_{\rm res}$$

$$\rho_{\text{th}}$$
 Ideal resistivity
$$\rho_{\text{res}} \neq f(T)$$

7.4.2 For alloys Linde's rule \propto (valence electrons)^{1/2} Sb Sb Sn Δρ Δρ (a) Sn In In (b) Cd Cd Ag Ag 3 4 5 Valency Z 2 at. % Solute

For dilute single-phase alloys

Atoms of different size cause a variation in the lattice parameters local charge valence alter the position of the Fermi energy.

$$\rho_{res} = X_A \rho_A + X_B \rho_B + C X_A X_B$$

(Nordheim's rule) for transition metal alloys

Two phase mixture: Matthiessen's rule

7.4.3 Ordering vs Disordering

7.5 Superconductivity

Materials	<i>T</i> _c [K]	Remarks
Tungsten	0.01	
Mercury	4.15	H.K. Onnes (1911)
Sulfur-based organic superconductor	8	S.S.P. Parkin et al. (1983)
Nb ₃ Sn and Nb–Ti	9	Bell Labs (1961), Type II
V ₃ Si	17.1	J.K. Hulm (1953)
Nb ₃ Ge	23.2	(1973)
La-Ba-Cu-O	40	Bednorz and Müller (1986)
$YBa_2Cu_3O_{7-x}^{a}$	92	Wu, Chu, and others (1987)
$RBa_2Cu_3O_{7-x}^{a}$	~ 92	$\mathbf{R} = \mathbf{Gd}, \mathbf{Dy}, \mathbf{Ho}, \mathbf{Er}, \mathbf{Tm}, \mathbf{Yb}, \mathbf{Lu}$
$Bi_2Sr_2Ca_2Cu_3O_{10+\delta}$	113	Maeda et al. (1988)
$Il_2CaBa_2Cu_2O_{10+\delta}$	125	Hermann et al. (1988)
$HgBa_2Ca_2Cu_3O_{8+\delta}$	134	R . Ott et al. (1995)

Table 7.1. Critical Temperatures of Some Superconducting Materials.

'The designation "1-2-3 compound" refers to the molar ratios of rare earth to alkaline earth to copper. (See chemical formula.)

7.5.1 Experimental Results

Transition metals and alloys consisting of Nb, Al, Si, V Pb, Sn, Ti, Nb₃Sn, Nb-Ti

Contains small circular regions called vortices or fluxoids.

Flux quantum:
$$\phi_0 = \frac{h}{2e} = 2.07 \times 10^{-15} (\text{T} \cdot \text{m}^2).$$

7.5.2 Theory

Postulate superelectrons that experience no scattering, having zero entropy (perfect order), And have long coherence lengths.

BCS theory: Cooper pair (pair of electrons that has a lower energy than two individual electrons

7.6 Thermoelectric Phenomena

 $\frac{\Delta V}{\Delta T} = S$

Thermoelectric power, or Seebeck coefficient

