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Global Warming: How to Win?
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Hard Times: The End of Prosperity?
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MOONSCAPE Catile Jeacross parched land
in Ethiopia. The amount of the earth’s surface affficted
by drought has more than doubled since the 19705

DOBEY MANB-=NATIONAL GECGRAFWIC IMAGE COLLECTION
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AT 5 EA Inthe Canadianhigh Arctic, a polar bear
negotiates what was once solid ice. Bears are drowning
as warmer waters widen the distance from fioe to floe
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P H Y | E lll " ﬂ H Y EARTH AT NIGHT: composite satellite image

APRIL 2002

SPECIAL ISSUE: THE ENERGY CHALLENGE
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Ascension Island (1970~1990)

BEND;F{T (ONE HUNDRED YEARS OF IDIOCY), 2002
Tetsuya Ozaki




U.S. / San Francisco (1989)
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Argentina / Buenos Aires (1993)
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Philippine / Lubango (1996)
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Zaire / Goma (1994)

cholera
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Science vs. Art
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Synthesis/Control of Nanostructures for Desirable Applications

Nanowires Nanocomposites
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A Nanoscale (Nanocar) Vehicle

James M. Tour’s Group
Rice University
Science 315, 1199 (2006)
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Organic Electronics

N

o HYSICS TODHY

MAY
2005

The growth of
organic electronics
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Advanced Inorganic Materials for Photovoltaics

Serving the International
Materials Research Community

A Publication of the Materials Research Society

March 2007, Volume 32, No. 3 v o
e el ”:'*v.r__.

Advanced Inorganic Materials
for Photovoltaics .

Diffusion I-V
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Photovoltaic Conversion Efficiencies & Novel Conducting Polymers

Photovoltaic conversion efficiencies

Laboratory

. : best* . |
Single junction 31%
Silicon (crystalline) 25%
Silicon (nanocrystalline] 10%
Gallium arsenide 25%
Dye sensitized 10%
Organic 3%
Multijunction 32% b66%
Coricentrated sunlight 289, 1%
[single junction) =i
Carrier multiplication 42% j s : ki
R A e e e S Al
the literature. (Image courtesy o Konarka Technologies. )

Physics Today (March 2007)
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Solar Energy Conversion

H., CH,
CH4OH

400--3000 °C
Natural 5 50-200 4C Heat engines,
photosynthesis Acrtificial Space, water electricity [generaﬂcm,
(biomass) photosynthesis heating industrial processes

Solar electric 2 Solar fuel " 4 Solar thermal f

Figure 1. Solar photons convert naturally into three forms of energy —electricity, chemical fuel, and heat—that link seam-
' lessly with existing energy chains. Despite the enormous energy flux supplied by the Sun, the three conversion routes supply
only a tiny fraction of our current and future energy needs. Sgi::nr electricity, at between 5 and 10 fimes the cost of eleciricity
from fossil fuels, supplies just 0.015% of the world's electricity demand. Solar fuel, in the form of biomass, accounts for
approximately 11% of world fuel use, but the majority of that is harvested unsustainably. Solar heat provides 0.3% of the
 énergy used E;r heating space and water. It is anticipated that by the year 2030 the world demand Enr electricity will double
- and the demands for fuel and heat will increase by 60%. The utilization gap between solar energy’s potential and our use of
it can be overcome by raising the efficiency of the conversion processes, which are all well below their theoretical limits.

Physics Today (March 2007)
G. W. Crabtree and N. S. Lewis
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Environment-Friendly Power Sources

Mobile
Electronics

Hyundai Motors
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High-Technology Electronics Equipments

Mobile

rPhone

Laptop
Computer

MP3
Player

Digital Camera

PMP
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Microelectronics

Thin-Film Battery

Capsule-Type Endoscope

Micro Syringe, Micro Optics

Temp.Sensor,
PH Sensor,
Chemica Sensor

Micro pump

Fixing
Mechanism

Tissue Compatible
Material

RF-Comm.
Module

DC-DC
Converter

Hardness =
Sensor

Signal,Processor, ¥
System-on-Chip

Wireless

Power

Trans.Module
Extension/
contraction

Mechanism Micro Battery

* Smart Card

* Portable Sensors
 ID Tags

* SRAM

General Materials Science Bp
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e RF Communication
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The Materials Science of Cosmetics -- Future ???

Serving the International
- Materials Research Community

A Publication of the Materials Research Society

ober 2007, Volume 32, No. 10
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Whitesides’ Group: Writing a Paper

— ADVANCED

: e MATERIALS —
*» What is a Scientific Paper?

A paper is not just an archival device for storing a completed research program.
It is a structure for planning your research in progress.

“* Why do I do the work?

*» What are the central motivations and hypothesis?

Prof. George M. Whitesides

Department of Chemistry and Chemical Biology
Harvard University

Cambridge, MA 02138 (U.S.A))

Adv. Mater. (2004)
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Thermodynamics = \Why.

Phase liranstormations = How

Attractive Research
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Phase Transformations of Nanomaterials

How do phase

A Activated _
transformations occur?

(=H-TS)

Metastable Thermodynamic
Driving Force

Equilibrium

Configurational Coordinates
(for ~10% atoms)
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Prof. David Turnbull

Jeju Island (Aug. 2005)
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Vitamin C

(,

~0®

http://www.3dchem.com/

]
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Gibbs Free Energy

Low Temperature High Temperature

H-TS

Enthalpy Entropy
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Characteristics of Phase Transformations

D
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(a) (b)

Fig. 5.82 The thermodynamic characteristics of (a) first-order and (b) second-
order phase transformations.

- 2010-09-01
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First-Order Transition

T, T>T{:'u-

E T.=T _l,_ <_T_|:\,

Landau free energy ——
o

Figure 15 Landan free energy lunction versus (polarization}® in a first-order
transition, at representative temperatures. At T. the Landan function has
equal minima at P =0 and at a Anite P as shown, Far T below T, the ahsolute
minimum is at larger values of Py as T passes through T, there is a discon-
timuous L'i'nnl}_I_E in the position of the absolute minimuwm. The arrows mark
the minima.

], A, Gonzalo, Phys. Rev. 144, 662 (1966); P, P, Craig, Phys. Letters 20, 140 {1966),
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Heat Capacity of Second-Order Transition

8,32 : l
768
= 1 o
7.04 '\ ¥l
5 | T
= 7 L0
g. 540' .‘_.___,_.,- , oy 1
B 576 - — - -
W
: /1
e 612 — : j ‘
2 ‘ |
L ]
% 4.48 T - I |
& / \
m f |
T 384 1 )f N1
¥
3.20 -v-:':{ et {
- _-._-__-;.E.": = S
2.56L |

0 100 200 300 400 500 600 700
Temperature in "C

Figure 21 Heat capacity versus temperature ol CuZn (B-brass) alloy,
[After I. C. Nix and W. Shockley, Revs, Mod. Physies 10, 1 (1938).]
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Stability of Nanostructures - Scheme

The general problem of the stability of microstructure

Centre of
mass

The minimum work required
to render unstable is a
measure of metastability

o’

’

o E E g
e GoD =
s & =2 i
2S  Si2 22
83 Z3 S 3
2 O 3 & A o
Metastability Instability

Fig. 1.1. Difference between metastability and instability. (After Cahn 1968,
courtesy of A IM.E))

i i http://bp.snu.ac.kr 36
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Sta

bility of Nanostructures — Free Energy

F

Free energy, F

General Materials Science Bp

The general problem of the stability of microstructure

Transition state

A F, =Activation free energy

e __l
|

AF = Driving
: force

S

Final state

Reaction co-ordinate

Fig. 1.2. The change in free energy of an atom as it takes part in a transition.
The ‘reaction coordinate’ is any variable defining the progress along the
reaction path.

o T———
http://bp.snu.ac.kr
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Two General Cooling Paths — Crystalline vs. Amorphous Phases

Route (D: path to the
crystalline solid state

=» discontinuous

VOLUME —=

Route (2): rapid quenching
to the amorphous solid

=» continuous

I | |
TEMPERATURE —»
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Schematic Sketches of Atomic Arrangements

CRYSTAL GLASS {c) GAS
/ LI 3 P
z:.. '. . :. # : .'.
]
: " ] [ ]
'o’o o &g Bl E
. .‘ ’ I .’ o ® °
Pl W, M TP

(a) Crystal = The bond lengths and angles are exactly (almost) equal.

(b) Amorphous = High degree of local correlation.

(c) Gas = The particles are rarely correlated.
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Glass-Transition Temperature vs. Cooling Rate

-16

POLYVINYLACETATE ;:2
€ 0.85 {s §
S 2
E E I, N
S g == Liquid—glass transition
w
5 e
> 0.84 -0
O
L
e
a
1 p]

0.83 l
340
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Relaxation

General Materials Science Bp

KAL
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Specific Heat of Amorphous Phase

T T T T T T T
N'\
\'\
\\\ LIQUID
S N
< SOLID |
¥
o _
3 CRYSTALLINE SOLID
a
w .
Aug gSig, Geg |
Ty T
1 1 L 1 1 Li 1
0 200 400 600 800
T (°K)
No Latent Heat Second-Order Transition Glass - Liquid Transition
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Examples of Applications for Amorphous Solids

TABLE 1.2 Some examples of applications of amorphous solids

Type of Representative
Amorphous Solid Material Application Special Properties Used
Oxide glass (8104).8(NasO)g 9 Window glass, etc. Transparency, solidity, formabil-
ity as large sheets
Oxide glass (Si09)0 o(GeO3)g 4 Fiber optic waveguides for Ultratransparency, purity, forma-
communications networks bility as uniform fibers
Organic polymer Polystyrene Structural materials, ‘‘plas-  Strength, light weight, ease of proc-
tics”’ essing
Chalcogenide Se, AsySeg Xerography Photoconductivity, formability as
glass large-area films
Amorphous Tey gGeg o Computer-memory elements  Electric-field-induced amorphous <
semiconductor crystalline transformation
Amorphous SipoHg 4 Solar cells Photovoltaic optical properties, large-
semiconductor area thin films
Metallic glass FeggBp o Transformer cores Ferromagnetism, low loss, forma-

bility as long ribbons

Amorphous InGaZnO Semiconductor for Thin-Film Transistor (TFT)

General Materials Science Bp http://bp.snu.ac.kr 43



Diffusion

- Redistribution of atoms from regions of high concentration
of mobile species to regions of low concentration.

- It occurs at all temperatures.

- The diffusivity has an exponential dependence on T.

Random Walk

. final  Age of Universe ~ 1017 sec (10 years)
Gas: D~1lcm¥s —» (Dt)¥2~3000km
| initial | Liquid: D~105cm/s —» (Dt)¥2~ 10 km

‘ ! Solid: D~10%cm?%s — (Dt)¥?2 ~300 m

~
R
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Fick’s Law

Fick’s 15t Law

j) . diffusive flux (atoms/cm?2esec)

D : diffusion coefficient (cm?/sec)

%
J=-D— C : atomic concentration (atoms/cm?)

X : distance (cm)

Fick’s 2" |_aw

If D is independent of C, then

> aC 0°C  aC
V-J+—==0 m—> |D -

General Materials Science Bp http://bp.snu.ac.kr 45



How Do Atoms Diffuse?

<Vacancy Mechanism> <Interstitial Mechanism>

PRI L

(a) Direct interstitial mechanism
(b) Direct exchange of a pair of atoms

(a) Before jumping
(b) After jJumping into the right-hand side

(c) Ring mechanism

General Materials Science Bp http://bp.snu.ac.kr 46



Kick-Out Mechanisms

fa)
(a) Interstitial Si has approached (b) Au has exchanged its (c) Au has re-occupied a
substitutional Au. original position with Si. regular site by kicking a

Si atom into an interstice.

ex) Au diffusion in c-Si

General Materials Science Bp http://bp.snu.ac.kr 47



How Fast? — Thermal Activation

For interstitial diffusion

AH
D=D exp[— m]
’ kT

Activation enthalpy : Q =AH_~ 1eV

Prefactor: D, ~ 102 — 103 cm?/sec

Thermally assisted energy-release
mechanism via the vibrational

state marked by the heavy For substitutional diffusion
horizontal line. AH . + AH
D = D, exp| ——— i
-

Activation enthalpy : Q =AH;+ AH_,~3-5¢eV

Prefactor: D, ~ 10 — 10t cm?/sec

General Materials Science Bp http://bp.snu.ac.kr 48



Several Points for Self Diffusion

(1) Rough correlation between Q (=AH:+AH_)and T,
Interatomic bond strength (cohesive energy)t — Q 1 T,1 D

Q~20kgT, kg = 8.617 x 105 eV/K

(2) Temperature Dependence

For Ge self-diffusion T,=1211 K D =3.12102 A%s (Dt)¥2~1000 A
B ) T,=298 K D=1.4¢10% A%s (Dt)¥2~101° A
D = 4.4 cm?/s X exp(-3.4 eV/KgT) For t= 1 hour

(3) Measurements (S.1.M.S.)

By deposition ( ~ 200 A ) Implant Si2® ~ 100 keV
/\_/
gi26  [sjzd  sjes Si28 IIII ‘\‘
/\:/\
< 5000 A

General Materials Science Bp http://bp.snu.ac.kr 49



Solution to the Diffusion Equation

Governing Equation

cl
C,‘ t=0
t
t2
Gl oo oo
L -
0 X
C +C X
C(x)==2—2_—erf
W= (25]

et ()=~ [ expl-y)oy

General Materials Science Bp

v

D.-VC =

oC

ot

JJ\Q Gaussian
X

C(x) =

Area

eEXPp| ——
2/7Dt p( 4Dt]

D>0
D independent of C

C(x)=C + 4, sin(lﬂ) exp(_—tj

T
|2
7°D

Superlattice (Si/SiGe)

T
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Empirical Survey of Self Diffusion

D [cm?/s] * Extended Structural Defects
- Dislocation

10°F —7am5r— - Grainboundary
10 i - Short circuit: easy diffusion path
IS Ee— R ~ amorphous dominant at low T
104 ---------- Fooooo-- . N

i ’ S,

i | defect * Structure

: i crysta
L0 | | - fcc: D(T,) ~ 108 cm?/s

" T -Dbcc: D(T,) ~ 107 cm?/s

. boiling melting ) m

high T low T - diamond: D(T,) ~ 10"2cm?/s

General Materials Science Bp
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Self Diffusivity

l 072 9.8 92 % «— 108 cm?/s
|

Comparison between the self-diffusivities
of the cubic semiconductors Ge and Si,
the trigonal semiconductors Te and Se,
and the typical metals Cu, Ag, and Au.

Teile)

Tefllc)

- 2010-09-06 L ——

General Materials Science Bp http://bp.snu.ac.kr 52



Self Diffusion in Ge

900 800 700 500 500
1 _i _| T I |
A |
v
= 0%t q:‘gq , } R F 10-12 CmZ/S
Q yLE | ee
L
8
10180 ¢ . . ..
%s0 Tracer self-diffusion coefficient of
L Ge as a function of temperature.
- ! L .
107% | . Data are from various groups.
w .
b |
K
- ]
1-021, | :
167 :
]
1:3‘23 1 \ | ; ) L 5 L 1 ] |
8 9 10 1 12 13

1097 (K] ———-
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Self Diffusion in Si

=T fc]

-5 1300 1200 100 1000 900
m T T T ] T

I | <— 1012 cmé?/s
™

Tracer self-diffusion coefficient of
Si as a function of temperature from
various groups. Deviations may
arise from several reasons which
need to be further investigated.

-

& 7 i E 9
1091 [K' |——e
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Tracer Diffusivities of Foreign Atoms in Si

-~ Tl°C]
1300 1100 900 800 700 600 500 . ¢ 104 cm2/s

Survey of the diffusivities of foreign
atoms in silicon. Foreign atoms include
Cu, Ni, Li, Fe, O, C; groupIll (Al, Ga, As);
g;lmmm group V (P, As, Sh); and Ge.
3 elements For comparison, Si self-diffusion data

are included.

F
{As}ﬁroup Y

Sh elements

R e ks R
WYTIK'] —=
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Device Applications

* |n semiconductor devices, solute atoms control electrical
conductivity and n-type (or p-type) doping.

» Concentration and distribution of dopants play a critical role
in the device operation.

Gate insulating layer
Source Gate{V) A
, - uminum
W) Channe] Dram ,
[t S
o F

Isoletion /Si02 /Epitaxial layer

¥ \p )

p—type silicon ? it )
/L( 4N\ -
N ' 2
Base
Buriea layer —/ Silicon substrate/

Conventional npn transistor

(V,,) Substrate

MOSFET (Metal Oxide Semiconductor  BJT (Bipolar Junction Transistor)

Field Effect Transistor)

General Materials Science Bp http://bp.snu.ac.kr 56



DIFFUSION ON
SEMICONDUCTOR

Semicanductor devices
continue to pget ever
smaller, which means that
individual defects play an
inereasingly important role
in their performance. In the
process of fabricating more
innovative, better perform-
ing devices, crystal growers
have developed an amazing
intuition about how atoms
and molecules behave on
crystal surfaces. Their intu-
ition, formed from knowl-
edge of fundamental atomie-

scale processes and honed through experience, concerns
such questions as where atoms and molecules stick, how
they interact with each other and the substrate, and how

they diffuse.

General Materials Science Bp

SURFACES

Atomic-resolution imaging techniques
show that a good deal of surface physics
can be understood with elementary
statistical mechanics, but some
surprisingly complex behaviors
occur even in simple systems.

Harold J. W. Zandvliet, Bene Poelsema,
and Brian S. Swartzentruber

rapidly and quickly finds
another atom with which to
form an adsorbed dimer.
Adzorbed dimers ecan be
bound either on top of, or
hetween, the substrate
dimer rows and can haye
their dimer bonds oriemted
parallel or perpendicular to
the rows. Dimers on top of
the substrate rows can
rotate, changing their orien-
tation from parallel to per-
pendicular and back. They
can also diffuse, both along

and across substrate rows. The stability of binding sites,
along with rotational and diffusion barriers, can all be
readily extracted from real-time scanning tunneling
microscopy (STM) experiments —with the help of elemen-

Physics Today (July 2001)
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Individual Si Atom and Dimer on Si (001)

Height z as function of time
(Scanning tunneling microscope tip)
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- Transition between A and B
- Different transition rates

Energy vs. coordinate
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Atomic image of o—Fe/Si interface
along [110] Si direction.

Appl. Phys. Lett.

A schematic diagram
showing the twinned epitaxy.

http://bp.snu.ac.kr
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Plan-View TEM: Si, ,Ge, Epitaxy on Si (001)

The average dislocation distance
- measured directly.

Distance of Moire’ fringes
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Spiral Growth from Screw Dislocations in SiC
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STM: Nanostructural Growth of Si on Si (001)

Islands — anisotropic
Measured by STM

60 nm x 60 nm

Single dimer

25nm x 25 nm
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Growth Characteristics — Silicon (001) Surface

FIGURE 1. A SCANNING tun-
neling microscope image of a
silicon (001) surface after the
deposition of a small amount
of Si at room temperature. The
image shows two single-layer
steps (the jagged interfaces) sep-
arating three terraces. Because
of the tetrahedral bonding con-
figuration in the silicon lattice,
dimer row directions are
orthogonal on terraces joined
by a single-layer step. The area
pictured 1s 30 X 30 nm.
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Bandgap Engineering — Si/Ge Superlattice

shutter—;
. 3
shutter— IR R S 7 :
6 TR 0 . At K
Ge ; ) ‘ ’ ' ' . " o e
. 2 . : . :
shutter—;
SiC) 2
shutter—;
6
Ge 5
3
h
shutter—;
SI(A) 2
shutter—;
7
Ge _;
4

FIG.-4. A [110] Z-contrast electron microscope image of a nominal (Si,Geg). superlattice revealing unexpectedly
complex interfacial arrangements that developed during growth. The schematic and simulation show the structures
expected to arise through a Si/Ge atomic exchange process at growing step édge [D. E. Jesson, S. J. Pennycook,
.and J.-M. Baribeau, Phys. Rev. Lett;; 66,750 (1991)]. Open circles represent Ge columns, solid circles Si columns,

and shaded circles alloy columns.
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Gold Nanopyramids on Silicon Pedestals

Joel Henzie and Teri W. Odom, Northwestern University, J. Phys. Chem. B (2006)

The orientation-dependent optical properties of the nanoparticle arrays have
revealed new insight into the interaction between light and materials at the
nanoscale. These structures are also being explored in applications such as
chemical /biological sensing and nanophotonics.
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Atomic Layer Deposition (ALD)

AX(g) + BY(g) — AB(s) + XY(g)

Substrate Chemisorption of A Source Purge
& Saturation Mechanism

“B” Source Feedmg Q_, *@J

T T
- 333333
A Source : #_ﬁ W

Purge Chemical Reaction between B and A Sources
B Source ,}' & Saturation Mechanism

Advantages of ALD  Accurate and simple thickness control.
» Good reproducibility.

» Sharp interfaces.
II « Low processing temperature.

e Uniform, conformal, and dense films.
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Controlled Growth of Silicon Nanocrystals in a Plasma Reactor

Hydrogenated Si nanoparticles Electron density of Si,gH,, isomer Phys. Rev. Lett. 95, 165502 (2005)
in SiH, plasma reactor @ 300 K with cylindrical configuration

Strong permanent dipole moment (1.9 D)
—> 2 building blocks align themselves
—> Beginning of nanowire formation

Geometrical isomer
(30° rotation of center hexagon ring)

Molecular Dynamic (MD) Simulations 0| &
CVD Plasma -- Si Nanostructures2| Growth Mechanisms

Amorphous, H-Rich Crystalline, Poor Crystalline, or Tubelike Si;qH;,
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Non-Uniform Distribution of Local Strain

[

defect-free
—|do - - single crystal
NO STRAIN
AT
lattice mismatch —‘J
between substrate
and thin films
\ /7
UNIFORM STRAIN ,I
distortion of lattice i .
due to the point defect Non-Uniform Local Strain
or dislocations etc.
G:EE Enil Point Defects, Off-Stoichiometry,
NON-UNIFORM STRAIN - Stacking Faults, Dislocations, etc.
]
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A SURFACE VIEW

hemical etehing has been

practiced since at least
the late Middle Ages. [n its
carly form. it involved coat-
Ing ian 4|;||';|_'r4_~|_*1,_ such as a metal
plate, with wax, caretully
patterning the hardened wax
by cutting down through it
with a shurpened tool to ex-
pose but not oenetrate the
object’s surtace and then ex-

posing the ohject to an etehing solution, repically an acid.
With time. the etchant molecules in the solution would
react with aonms of ihe exposed surface o form reaction
products that would dissolve, thereby removing material

Frimm the aurbiee,

General Materials Science Bp

OF ETCHING

Experiments conducted with scanning
tunneling microscopes in ultrahigh
vacuum reveal a fascinating, step-by-step
picture of the etching process.

John J. Boland and John H. Weaver

tures. for even Lh et

s L

¢ st
3 i -

hance the formation of volatile specios
eilled assisted otehing rechniques have been developed to
merease etching rates, W achieve direeted or anisotropic
etehing and to nuke etehing [:u:;mijlu. at reduced rempera-
T materils.

exposed o gaseous mole-
cules. rather than to liquids,
and the etch products are
desdrbed into the vapor.
Since desorption requires en.
erey to break surface bonds,
temperatures as high as
200 K may be needed. 1In
muny cose=, therefore. @ g
advantageous to alter the
aurface chemistry and on-
NUIMeTE S0

1 SRR, S A — TR N

Physics Today (Aug. 1998)
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Schematic views of etching - starting with a silicon (100) surface

a lon o
h%”l‘\‘ . %= = |(a)Being exposed primarily to
e l T | bromine molecules, but also to
o541} - electrons, protons and ions

T SiBr, desorption '7 i

I (b) Deeply indented surface

(c) Desorption at different surface
sites.
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Before and after the removal of adatoms from a
reconstructed 7 x 7 (111) surface as imaged by STM

The adatom layer of the clean
Si(111) 7 x 7 surface.

The rest layer following removal of the adatom layer
by bromine etching at 675 K.

General Materials Science Bp
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Silicon (100): STM Image (55 X 55 nm?)

The dark areas represent pits,
one atom layer deep.

The bright lines are silicon
dimer chain.
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Ferromagnetic Domains in a Single Crystal

Single Crystal Ni

Figure 27 Ferromagnetic domain pattern on a_single crystal platelet of

nickel. The domain boundaries are made visible by the Bitter technique.
The direction of magnetization within a domain is determined by observing
growth_or contraction of the domain in a magnetic field. (After R. W. De
Blois.) - d
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Magnetic Domain Width

Figure 32 The structure of the Bloch wall separating domains. In iron the
thickness of the transition region is about 300 lattice constants.
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Domain Size (L) vs. Correlation Length of Fluctuations (&)

& : Correlation Lengths of Fluctuations

L : Domain Size

75
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Analysis of Nanomaterials —What Is Going On?

STRIKE THREE!
-..Probqbly. —

PHYSICS TODAY AUGUST 1920

- 2010-09-08 R EEEEEEEEEE——
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Scanning Tunneling Microscopy

Silicon atoms on Si (111) surface of a
silicon single crystal form a repeated
pattern (produced by STM).

The tungsten probe of
a scanning tunneling microscope.
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PRYSICS TODRY

SEPTEMRER 2001

THINK FHYSICS AT NIH

Reconstructing the brain activity from magnetic-resonance imaging.
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Atomic Hypothesis

% e v

If in some cataclysm, all scientific knowledge were
to be destroyed, and only one sentence passed on to
the next generation of creatures, what statement would
contain the most information in the fewest words? |
believe it is the atomic hypothesis (or atomic fact, or
whatever you wish to call it) that all things are made

of atoms.

R. P. Feynman

*“The Feynman Lectures on Physics™
Addison-Wesley Publishing Company
Reading, Massachusetts

Vol. 1, p. 1-2, 1963
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Atomic Arrangement

The atomic-resolution electron microscope permits imaging of the regular arrange-
ment of atoms in a crystaliine structure. For this ceramic material, the arrangement of
zirconium and oxygen ions can be compared with the atomic-scale geometry of Fig-

ure 3.4-3. (Courtesy of R. Gronsky, National Center for Eleciron Microscopy, Berke-
ley, California)
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Schematic Structure of CH,: sp? Orbital

FIGURE 10

Schematic structure of the methane
molecule., The §p? orbitals produce
bonds arranged like the straight lines
joining the center of a tetrahedron to
its four corners (angles of 109°28').
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Schematic Structure of C,H,: sp? Orbital

FIGURE §

Schematic structure of the ethylene molecule C,H,. The two carbon atoms form a double hnml
with each other _WWME tvpe of those shown in figure 8 (the other two sp°

hybrid orbitals at 120° with this one form the € —H bonds), and o M{hmg_

of the p_ orbitals.

General Materials Science Bp http://bp.snu.ac.kr 82



Schematic Structure of C,H, : sp Orbital

FIGURE 7

Schematic structure of the acetylene molecule
For each carbon atom, two electrons are
n (he sp. hybrid orbitals (¢f. fig. 6) and contri-
bute to the C —H and C—C bonds (¢ bonds). In
addition, two electrons are in the p_ and p, orbi-
tals and form addifional bonds between the two
i carbon atoms (z_bonds, weaker than ¢ bonds),
shown by the vertical lines in the figure. The C —C

| bond is therefore a * triple bond .
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Icosahedral Crystal (Ga-Mg-Zn)

) ) _ Fig. 3 Scanning electron micrograph of icosahedral crystals with
Fig. 1 Electron diffraction pattern from a Ga, (Mg, sZn,, pentagonal dodecahedral growth morphology found in a shrinkage
icosahedral crystal in a melt-spun ribbon. cavity of a slowly cooled Ga, Mg, ,Zn, jingot.
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Adsorption vs. Absorption

Adsorption Absorption

HHHHHHHHH

Surface Process Bulk Process

Dr. K. L. Yeung (Hong Kong Univ.)
http://teaching.ust.hk/~ceng511/notes/
T
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Adsorption vs. Absorption

Top view NI{1T1) + (2x21H

{22 unil call

o i afoan

H atam

[110]

- The model of the UHV low-T p(2x2) structure of H adsorbed on Ni(111)
proposed. The fitting parameters of the atomic model are shown.

- The values of these parameters found from our SXRD data compare

well with the ones found from the LEED study.

- K. Miiller’s group (Universitat Erlangen-Nurnberg, Germany)

Phys. Rev. B 47, 15969 (1993)

Hydrogen-induced restructuring of close-packed metal surfaces: H/Ni(111) and H/Fe(110)

L. Hammer, H. Landskron, W. Nichtl-Pecher, A. Fricke, K. Heinz, and K. Miiller
Festkarperphysik, Universitat Erlangen-Niirnberg, Staudt-Strasse 7, D-8520 Erlangen, Germany
iReceived 4 March 1993)

We report that hydrogen can induce surface reconstructions by adsorption even on close-packed sub-
strates. New low-cnergy electron-diffraction analyses for H/Ni(111) and HA/Fe(110) show that considera-
tion of reconstruction is essential for a convincing experiment-theory fit as well as for reliable determina-
tion of the adsorption site. There are two different types of reconstruction: Hydrogen pulls nickel atoms
out of the surface but pushes iron atoms towards the bulk. These findings are mirrored by a different
sign of work-function change for both systems and demonstrate the correlation between geometric and
electronic structure.

]
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Metal Hydride —

H, gas Metal hydride
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Schematic of Metal Hydride
from MRS Bulletin 27 (2002)

H site in
3 | Li; octahedra

Meutron Counts

| LTI EE SO PRI WL LN RS LI P SN LS| I S |
40 60 &0 100 120 140 160 180 200 220 240
Hydrogen Vibration Energy (mel/}

General Materials Science chunjoong

Hydrogen Storage

SEM and Crystal Structure of AlH 3

DOW Chem. Co.
http://www.dow.com

Structure and Vibration of Hydrogen Atoms bound in Li4Si2H

University of Maryland
http://www.mse.umd.edu/research/spotlight/h-storage.html
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Metal Hydride — Hydrogen Storage

® ™

‘, AlHg

PHYSICAL EEVIEW B 71, 184115 (20053)

Structures and thermodynamics of the mixed alkali alanates

FIG. 7. (Color online) Structural diagram of MyMAlHj show- J. Graetz.! Y. Lee® I J Reilly.! S. Park.” and T. Vogt’
ing AlH, octahedra, M cations (large) and M” cations (small). 'Department of Energy Sciences and Technology, Brookhaven National Laboratory, Upton, New York 11973, US4
XDepartment of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA
J. Graetz et al. {Received 20 January 2005 revised manuscript received 10 March 2005; published 27 May 2003)

Phys. Rev. B 71, 184115 (2005)

The thermodynamics and structural properties of the hexahydride alanates (M,M"AlH;) with the elpasolite
structure have been investigated. A series of mixed alkali alanates (Na,LiAlH; E,LiAlH; and K,NaAlHg)
were synthesized and found to reversibly abserb and desorb hydrogen without the need for a catalyst. Pressure-
composition 1sotherms were measured to investigate the thermodyvnamics of the absorption and desorption
reactions with hvdrogen. Isotherms for catalyzed (4 mol%e TiCl;) and uncatalyzed Na,LiAlH; exhibited an
increase in kinefics, but no change in the bulk thermodynamics with the addition of a dopant. A structural

analysis using synchrotron x-ray diffraction showed that these compounds favor the Fm3m space group with
the smaller ion (M') occupying an octahedral site. These results demonstrate that appropriate cation substitu-
tions can be used to stabilize or destabilize the material and may provide an avenue to improving the unfa-
vorable thermodynamics of a number of materials with promising gravimetric hydrogen densities.

DOI: 10.1103/PhysRevB.71.184115 PACS numberis): 82.60.—s, 61.10 Nz, §1.66.Fn. 82.60.—s

T
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Types of Adsorption Modes

o9
> %9%%
3% %%

%% i‘b‘b‘o‘

Physical Adsorption or
Physisorption

Bonding between molecules and
surface is by weak van der Waals

forces.
m Chemical bond is formed between
molecules and surface.
Chemical Adsorption or Dr. K. L. Yeung (Hong Kong Univ.)
Chemisorption http://teaching.ust.hk/~ceng511/notes/

T
General Materials Science chunjoong http://bp.snu.ac.kr 89



General Material

www.nanockorea.net

®

2008, 8 =zt

ru
K

LE=SH7 I ED R0 MEA ST TR S TR ST} 308 T I0STE50-E E 02-PO5IES00 Eo ranohrealing s0k0mmanes

7|%17)At | Special Report

Ll 8817l& R&D % &

& | Column .
LA 23S Zichst_,
CMECien e Ea)

glio|l= ‘E‘_'EIH-_I INSIDE view
LiteEjo] 39S LieAXy S
(KIST W=+ 22l -

B -
2008Hs L= i .T"': )
=gas ar
LIEHE [ BB B8 MG
Lp-ajojm

% "NSTI| nanclech &
Conference & Trad

Bt ol = B

e

@it Ie e TR

.//bp.snu.ac.kr

90



MRS Spring Meeting
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Mountaineering
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House Party
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Covalent Bonding
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