1 Linear Equations and Matrices

1.1 Vectors and Matrices

- Matrix.
\Longrightarrow An m by n matrix is a rectangular array of mn real(or complex) numbers arranged in m horizontal rows and n vertical columns.
- Vectors.
\Longrightarrow A 1 by n or an n by 1 matrix is also called an n -vector and will be denoted by lowercase boldface letters.
- ith component of $A x \quad$ (strang, p846)

$$
\begin{aligned}
& =a_{i j} x_{1}+a_{i j} x_{2}+\ldots+a_{i n} x_{n} \\
& =\sum_{j=1}^{3} a_{1 j} C_{1 j}
\end{aligned}
$$

- $(A B)_{i j}=($ row i of A$) \cdot($ column j of B$)$

$$
=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

often $A B \neq B A$

$$
A(l \times m) B(m \times n)=M(l \times n)
$$

- $A(B C)=(A B) C$
- $C(A+B)=C A+C B$
- $(A+B) C=A C+B C$
- Identity matrix $I b=b$
- Elimination matrix $E_{i j}$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-l & 0 & 1
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{3} \\
b_{2} \\
b_{1}
\end{array}\right]
$$

identity marix with rows i j reversed
\Longrightarrow exchanges row i and j when multiplied.

- Augmented matrix
$[A \mid b] \quad$: elimination acts on whole rows of this matrix.
Q. How can we use the above ideas to solve linear equations ?

Ex.

$$
\left[\begin{array}{lll|l}
1 & 2 & 2 & 1 \\
4 & 8 & 9 & 3 \\
0 & 3 & 2 & 1
\end{array}\right]
$$

\Longrightarrow multiply E_{21}

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & 2 & 1 \\
4 & 8 & 9 & 3 \\
0 & 3 & 2 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 2 & 2 & 1 \\
0 & 0 & 1 & -1 \\
0 & 3 & 2 & 1
\end{array}\right]
$$

$\Longrightarrow \quad$ multiply $\quad P_{32}$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{cccc}
1 & 2 & 2 & 1 \\
0 & 0 & 1 & -1 \\
0 & 3 & 2 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 2 & 2 & 1 \\
0 & 3 & 2 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

\Longrightarrow back substitution

- dot product(inner product) of

$$
\begin{gathered}
\vec{v}=\left[\frac{v_{1}}{v_{2}}\right], \vec{w}=\left[\frac{w_{1}}{w_{2}}\right] \\
\vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}=\|v\|\|w\| \cos \gamma
\end{gathered}
$$

- length (norm) of \vec{v}

$$
\mathbf{v}=\|v\|=\sqrt{\vec{v} \cdot \mathbb{V}}
$$

- unit vector \vec{u}

$$
\vec{u} \quad: \quad \vec{u} \cdot \vec{u}=1
$$

$\frac{\vec{v}}{\|v\|}$ is a unit vector

- Schwarz inequality $\|\vec{v} \cdot \vec{w}\| \leq\|\vec{v}\|\|\vec{w}\|$
- Triangle inequality $\|\vec{v}+\vec{w}\| \leq\|\vec{v}\|+\|w\|$

1.2 Linear Equations

$$
\left(\begin{array}{c}
x-2 y=1 \tag{array}\\
3 x+2 y=11
\end{array}\right.
$$

$$
x\left[\begin{array}{l}
1 \\
3
\end{array}\right]+y\left[\begin{array}{c}
-2 \\
2
\end{array}\right]=\left[\begin{array}{c}
1 \\
11
\end{array}\right]
$$

- Elimination. (strang, p35)

$$
\begin{align*}
& \left(\begin{array}{cc}
x-2 y=1 & (1 \mathrm{a}) \\
3 x+2 y=11 & (1 \mathrm{~b}) \\
\Downarrow & (1 b)-3 *(1 a) \\
\left(\begin{array}{cc}
x-2 y=1 & (1 \mathrm{a}) \\
8 y=8 & (1 \mathrm{~b})
\end{array}\right. & {\left[\begin{array}{cc}
1 & -2 \\
0 & 8
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
1 & 8
\end{array}\right]}
\end{array}>. \begin{array}{l}
\\
\end{array} \begin{array}{c}
\\
3
\end{array}\right. \tag{1a}
\end{align*}
$$

\Longrightarrow upper triangular system
(Last equation : y $=1$
(substitute into the upper equation : $\mathrm{x}-2=1$
\Longrightarrow back substitution

$\left(\begin{array}{l}\text { pivot }: \text { first nonzero in the row that does the elimination } \\ \text { Multiplier }=\frac{\text { entry to eliminate }}{\text { pivot }}\end{array}\right.$
(' 1 ' the coefficient of x is the first pivot in the example above)

The pivots are on the diagonal of the triangle after the elimination.

$$
\begin{gathered}
\left(\begin{array}{c}
x-2 y=1 \\
3 x-6 y=11 \\
\Downarrow
\end{array}\right. \\
\left(\begin{array}{c}
x-2 y=1 \\
o y=8 \text { no solution }
\end{array}\right.
\end{gathered}
$$

$$
\left[\begin{array}{l}
-2 \\
-6
\end{array}\right]
$$

$$
\left(\begin{array}{c}
x-2 y=1 \\
3 x-6 y=3
\end{array}\right.
$$

$$
\Downarrow
$$

$$
\left(\begin{array}{ll}
& x-2 y=1 \\
o y=0 & \text { infinitely many solutions }
\end{array}\right.
$$

\Longrightarrow

$$
\left(\begin{array}{l}
0 x+2 y=4 \\
3 x-2 y=5
\end{array}\right.
$$

$$
\Downarrow \text { row exchange }
$$

$$
\left(\begin{array}{c}
3 x-2 y=5 \\
2 y=4
\end{array}\right.
$$

