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Objectives:

1) Derive shear flow dispersion equation using Taylor’ analysis (1953, 1954)
- laminar flow in pipe

- turbulent flow
— apply Fickian model to dispersion
— reasonably accurate estimate of the rate of longitudinal dispersion in rivers

and estuaries

2) Extend dispersion analysis to unsteady flow and two-dimensional flow
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4.1 Dispersion in Laminar Shear Flow

4.1.1 Introductory Remarks

 Taylor's analysis (1953) in laminar flow in pipe
Consider laminar flow in pipe with velocity profile shown below.

Assume two molecules are being carried in the flow; one in the center and one
near the wall.
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1) Rate of separation caused by the difference in advective velocity >
separation by molecular motion

2) Because of molecular diffusion, each molecule moves at random walk back

and forth across the cross section.

— motion of single molecule is the sum of a series of independent steps of

random length.

3) Fickian diffusion equation can describe the spread of particles along the axis

of the pipes, except that since the step length and time increment are much

different from those of molecular diffusion. We expect to find a different value

of diffusion coefficient.
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Now, find the rate of spreading for laminar shear flow in pipe

For turbulent flow, diffusion coefficient is given as

e=<U?>T,
where U = velocity deviation

T, = Lagrangian time scale

Mean square velocity deviation of
the molecule results from the
wandering of the molecule across
the cross section.

Molecule samples velocities
ranging from zero at the wall to the
peak velocity ug at the centerline.

For laminar flow in pipe; <U?>ocu,’ _ .
~ time required to sample
the whole field of velocities
2

a
T, oc—

D

~ time scale for cross-
sectional mixing

where u,= maximum velocity at the centerline of pipe

a = radius of pipe

D = molecular diffusion coefficient

Thus, longitudinal dispersion coefficient due to combined action of shear

advection and molecular diffusion is given as

2
K=<U?>T, cu2s
D

(4.1)

— Kis inversely proportional
to molecular diffusion.
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4.1.2 A Generalized Introduction
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(a) example velocity distribution (b) transformed coordinate system

moving at the mean velocity
Consider the 2-D laminar flow with velocity variation u(y) between walls

Define the cross-sectional mean velocity as

_ 1
u :F-[O udy (4.2)

Then, velocity deviation is

u=u(y)-u (4.3)

Let flow carry a solute with concentration C(x, y) and molecular diffusion
coefficient D.

Define the mean concentration at any cross section as

C:%jothy, C=f(x)=f(y) (4.4)

Then, concentration deviation is



Ch 4. Shear Flow Dispersion

C =C(y)-C, C'=C(xy) (4.43)

Now, use 2-D diffusion equation with only flow in x-direction (v =0)

o°C o°C

oC
D 1
2 + 8y2 ( )

oC 0
+U—+VvA4/—=D
ot ox /8y X

Substitute (4.2)~(4.4) into (1)

0 ,= ~ N0 = A o~ .. 0 :
5(C+C)+(u +u)&(CJFC):D{y(CJFCHﬁ%JrC)} (4.5)

Now, simplify (4.5) by a transformation of coordinate system whose origin

moves at the mean flow velocity

foxem 5% ¥
OX ot

or or
—> =

=1 —=0 —=1
OX ot
Chain rule
& 050 oro @ o)
OX OXOE OxOr OF
0 00 6rd 0 0
222,900 - g2l ©

ot otoE otor  oF or

Substitute Eqg. (b)-(c) into Eq. (4.5)
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- —§(C+C)+—(C+C)+5y/ )%(&C):DK; (C+C)+ azyc}

O = v 0 ,= 0° 82C
E(C+C)+u%(C+C)_D{ } (4.8)

0g’

— view the flow as an observer moving at the mean velocity

— u is only observable velocity

Now, neglect longitudinal diffusion because rate of spreading along the flow
direction due to velocity difference greatly exceed that due to molecular

diffusion. / /

6C/8 C 82/
?/ f +u a§+u/a§ Y (4.9)

— This equation is still intractable because u  varies with y.

— General solution cannot be found because a general procedure for dealing

with differential equations with variable coefficients is not available.

Now introduce Taylor's assumption

— discard three terms to leave the easily solvable equation for C (y)

.0C 0*C
u =D >
0¢ oy

(4.10)
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[Re] Derivation of Eq. (4.10) using order of magnitude analysis

Take average over the cross section of Eq. (4.9)

1 ¢eh
— apply the operator —j ()dy

oC ag/ Q€+u ~ ;é/'
ot /ér / ag_/éyz

Apply Reynolds rule of average

o<,

el =0 (4.11)

Subtract Eq.(4.11) from Eq.(4.9)

ocC .oC .oC  .oC 0°C’
+U u =

Assume C,C are well behaved, slowly varying functions and C >>C
«© &

o' o

Thus we can drop u'ﬁ, u s

oc ' o¢

Then u Z—C >>U

_pZC (d)

.0C :
-u @« source term of variable strength

— Net addition by source term is zero because the average of u'is zero.
4-7
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Assume that% remains constant for a long time, so that the source is constant.

Then, Eq. (a) can be assumed as steady state.
oC

— —=0

or

Then (a) becomes

transport transport

longitudinal u oC -D o’C cross sectional
advective ¥\ o0& oy’ / diffusive
A (B)

— same as Eq. (4.10)
— cross sectional concentration profileC (y) s established by a balance

between longitudinal advective transport and cross sectional diffusive transport.

N y

|, | _p8C gy + 2-(-p&
11,}/ Day dx+ay ( Dayldydx
ADVECTIVE TRANSPORT |

i

* il oC
| i DIFFUSIVE TRANSPORT -D 3y dx

L

—dx |

X

<Fig. 4.3> The balance of advective flux versus diffusive flux

In balance, net transport =0
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uCdy — {quy+i(uC)dxdy}+ —Dﬁd —{—ng 8[ Dﬁ]dydx} =
X oy oy oy oy

0 0 oC
——(uC)dxdy + D— |dydx =0
6x( ) - y[ ﬁy] g

2we)=L{pX
OX oy oy
Now, let’s find solution of Eq. (4.10)

o°C 16C . 10oC .
—=——U=——U e)
oy Do& D ox

Integrate (e) twice w.r.t. y

C(y )—iﬁj [ udydy+C'(0) (4.12)

Consider mass transport in the streamwise direction

M :joh q.dy —_[Oh[u'C' +(—D aax }dy )

Substitute (4.14) in (f)

M = J uCdy 18CI Jjudydydy (4.15)

since Johu' {C'(0)}dy=0

.

constant

4-9
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— EQ. (4.15) means that total mass transport in the streamwise direction is

proportional to the concentration gradient in that direction.

. oC

—This is exactly the same result that we found for molecular diffusion.

oC
—_D=
f OX

But this is diffusion due to whole field of flow.

Let g =rate of mass transport per unit area per unit time

Then, (g) becomes

M _ &
hx1 OX

g (h)

where h = depth = area per unit width of flow

K = longitudinal dispersion coefficient (= bulk transport coefficient)

— express as the diffusive property of the velocity distribution (shear flow)

Then, (h) becomes
M = —hk & (4.16)
OX

Comparing Eqg. (4.15) and Eq. (4.16) we see that

K :—%johu'joyjoyu'dydydy (4.17)

4-10
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K oc i
D
Now, we can express this transport process due to velocity distribution as a one-

dimensional Fickian-type diffusion equation in moving coordinate system.

L
oC _, C

5 KGE (4.18)

Return to fixed coordinate system

C g2 7C 119
X X

— 1-D advection-dispersion equation

C, U= cross-sectional average values

= Balance of advection and diffusion in Eq. (4.10)

Suppose that at some initial time t = 0 a line source of tracer is deposited in the
flow (Fig. 4.4a).

— Initially the line source is advected and distorted by the velocity profile.

At the same time the distorted source begins to diffuse across the cross section.

— Shortly we see a smeared cloud with trailing stringers along the boundaries

(Fig. 4.4b).

During this period, advection and diffusion are by no means in balance.
4-11
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— Taylor’s assumption does not apply.

— Cross-sectional average concentration is skewed distribution (Fig. 4.4c).

If we wait much longer time, the cloud of tracer extends over a long distance in

the x direction.

~ . oC . :
— C varies slowly along the channel, and M Is essentially constant over a
X

long period of time.

— C' becomes small because cross-sectional diffusion evens out cross-

sectional concentration gradient.

Chatwin (1970) suggested

2
1) Initial period: t< O.4hB

— advection > diffusion

2
i) Taylor period: | t> O.4hE

— advection = diffusion
— can use Eq. (4.19)
— The initial skew degenerates into the normal distribution.

o’ 3

ot

2K
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4.1.3 A Simple Example

Consider laminar flow between two plates — Couette flow

4

0.042
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Fig. 4.5 Velocity profile and the resulting concentration profile

_uy
u(y)=U h

I Y
u=—|2U=dy=0
hj-; b

s.u'=u

2
Suppose t > % — tracer is well distributed

— Taylor’s analysis can be applied

From Eq. (4.14)
C(y)=

1 8C J'kJ'y Uyd dy+C (__) (a)

L aCj j u'dydy +C'(0)
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1oCey[U LT ., h
=——| | == dy+C (——

D ox —2_2hy}h yre (=)

2

1 6C ¢v[Uy? Uh . h
=— — dy+C (——

DaxI—Z_Zh 8} y+e )

1aC[uy® un | . h
== 22y | +C)

Dox| 6h 8 ° | » 2

2

16C[Uy* Uh Uh? Uh*] . h
=— — Y+t +C (-7)
Dox| 6h 8 48 16

2
EL IR Y
Dox2h| 3 4 12 2

By symmetry C =0 @ y=0

~ 3
oziﬁi _h_ +C'(_Ej
D ox 2h| 12 2

c[-h)-Leeur
2 D ox 24

. 1oC Uy h?
cp=tlY iy h 4.21
) D ox 2h| 3 4'\/} (4.21)

h.o_1aC [ _h°
2 Dox | 24
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)

From (a):
Dispersion coefficient K DC'(y)
L (A==58
S A A ox
K :—ﬁj_zzu jz I,;u dydydy x
—_—

(A)

15 DJ. ( h
=—= I_zu a({c (y)-C (—Eﬂdy
OX

oC-—"h

Note that K oc i
D

— Larger lateral mixing coefficient makes C to be decreased.

4-15
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4.1.4 Taylor's Analysis of Laminar Flow in a Tube

Ly B )
L =

Consider axial symmetrical flow in a tube — Poiseuille flow

Tracer is well distributed over the cross section.

2

u(r)=u, (1-%} — paraboloid @)
a

Integrate u to obtain mean velocity

dr

&

dQ = u2zrdr

.Q :jazﬂr{uo (1—%}(#
0 a

4-16
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B 2 (Ll r? ry_ 2 (1 2
= 27u,a 0—(1——2jd(gj—27zu0a joz(l—z )dz

2 2 b
=277U,a° L = Z a2y,
2 4] 2

By the way, Q=0 -za’

o
o=
2

2-D advection-dispersion equation in cylindrical coordinate is

2 2 2
@+uo(l_r_Jac_D[ac+1ac+ac] )
ot

a?)ox  lor? ror oxt

: : . . u
Shift to a coordinate system moving at velocity ?O

o°C

o as before
X

Neglect o and
ot

r
Let z=—,&=x-Ut,r =t
a

Decompose C, then (b) becomes

ua®, 1 ,oC oC 14C

__22 — + =
D(2 )8§ o1* 1 02
Q:O at z=1
0z

Integrate twice w.r.t. z
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, _
c =2 (22 —124)§+ const (c)
8D 2 OX
K =— '\26 _ ('196 Jucda (d)
AT AT
OX OX

Substitute (a), (c) into (d), and then perform integration

_a’uy’
192D

[Example] Salt in water flowing in a tube

D =10"cm?/sec

U, =lcm/sec
a=2mm
0.01)(0.004
R, - ud _ (000 = ) _ 40<<2000 —> laminar flow
v 1x10
202 (0.2)° (1)
K =2 Y% :( NC) =21cm?/sec ~10°D
192D 192(10‘5)
= |nitia period
2 0.4(0.2) .
t, = 042 :(—5) =1600sec =27min
D (10- )

u
&zmzfg

—(0.5)(1600) = 800cm

= 800 =4000a
0.2

X>x, — 1-D dispersion model can be applied
4-18
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Homework Assignment No. 4-1

Due: Two weeks from today

100 mg/l 0.2m/sec —p
100 mg/l 0.4 m/sec  ——mp>
100 mg/l 0.2 m/sec —

2m 2m

A hypothetical river is 30 m wide and consists of three "lanes", each 10m

in width. The two outside lanes move at 0.2 m/sec and the middle lane at

0.4m/sec. Every t,, seconds complete mixing across the cross section of the river

(but not longitudinally) occurs. An instantaneous injection of a conservative

tracer results in a uniform of 100mg/ ¢ in the water 2 m upstream and

downstream of the injection point. The concentration is initially zero elsewhere.

As the tracer is carried downstream and is mixed across the cross-section of the

stream, it also becomes mixed longitudinally, due to the velocity difference

between lanes, even though there is no longitudinal diffusion within lanes. We

call this type of mixing "dispersion”.

1) Mathematically simulate the tracer concentration profile

(concentration vs. longitudinal distance) as a function of time for

several (at least four) values of t, including 10 sec.

4-19
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2) Compare the profiles and decide whether you think the effective

longitudinal mixing increases or decrease as t,, increases.

This "scenario” represents the one-dimensional unsteady-state advection
and longitudinal dispersion of an instantaneous impulse of tracer for which the
concentration profile follow the Gaussian plume equation

(x—Ut)Z}

C=———8exps—
47Kt { 4Kt

in which x = distance downstream of the injection point, M = mass injected
width of the stream, K = longitudinal dispersion coefficient, U = bulk velocity

of the stream (flowrate/cross-sectional area), t = elapsed time since injection.

3) Using your best guess of a value for U, find a best-fit value for K for
each and for which you calculated a concentration profile. Tabulate of
plot the effective K as a function t,, of and make a guess of what you

think the functional form is.

4-20
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@ Dispersion mechanism in a hypothetical river

sUm

1) 3 lanes of different velocities

2) Every t;, seconds complete mixing occurs across the cross section of the river

(but not longitudinally) occurs, after shear advection is completed.

— sequential mixing model

0 oC
—| &,— |—0
ax£ axj

W2

&y

t

m

I

3) Instantaneous injection

t =10s; u,=0.2m/s; Ax=2m

4-21
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t=0

100 100
100 100
100 100

00
00
00

~Ax Ax
0

(iii)t=2t,: After shear advection

0 0 67 100 33 O

0 0 0 67 100 33

0 0 67 100 33 O

longitudinal
/advection

i) t=t

01
00* 100 10
01

T | |

t=tn":  After lateral mixing
0 67 100 33 O

0 67 100 33 0

0 6/ 100 33 O

t=2ty,": After lateral mixing

0 0 45 89 55 11 O
0 0 45 89 55 11 O

0 0 45 89 55 11 O
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B Y o £

F ."g. 1 Cohcentratiog, rofiles, Tm=10sec

a0
L
(=]
£
c
2
©
&
(-4
o
o
c
3
o
Distance frem the injection point, m
o t50 + t100 ¢ t150 a t200

X 250 v _ 0o -
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[Re] Longitudinal Dispersion in 2-lane river

u+ Au
Fast

A 4

a = Area fraction of river

occupied by slow lane

u
SIOW >

0<a<l

Us =Uu

U =U+Au

u =cross-sectional mean velocity

=au+(1-a)(u+Au)

Consider deviations:

uj =Ug —U=U—au—(1-a)(u+Au)

=U-au-U-Au+au+aAu=—(1-a)Au

UL =Up —U=U+AUu-U=U+AUu—-au—(1-a)(u+Au)

= aAu

(i) Before any processes

F C, C, 1-a
S C, oF a

A Ax
AX=AuU-t_

4-24
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(i) Just before mixing (JBM) .... after advection only
A

F 0 C, C, 1—a

S Cu Cd 0 o
A 4

C;=C,-C=C,-aC, - (1-a)C,
=—a(C,-C,)

(iii) Just after mixing (JAM)

F C C.

uz 2

S C C,

Uz 2

4-25



Ch 4. Shear Flow Dispersion

—= 1=~ —=
uc'=> (UC)JBM+(U JAM}
a(uC'), +(L-a)(uc’), |

a[-(1-a)Au | (1-a)(C, -C,) |+ (1-a)[aau]| (-«)(C, -C, )]}

a? —oz)Au(Cd -C,)

A~ ~—- —

NP NP NP

oC C,-C,
oXx  Aut,

;(a —ocz)Au(Cd -C,)

_ uC'_
oc (Cy—C,)
OX Aut

= %(0[ - az)(Au)zt

m

<Example>

az%; Au=0.2; t =10sec

2
K=1 3—(3 (0.2)°t, =0.0044t,
213 (3

t =5 10 20 30
K =0.0222 0.0444 0.0889 0.1333
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4.1.5 Aris's Analysis

Aris (1956) proposed the concentration moment method in which he obtain
Taylor’s main results without stipulating the feature of the concentration

distribution.

Begin with 2-D advective-diffusion equation in the moving coordinate system

to analyze the flow between two plates (Fig. 4.5)

2 2
© 7 _p[2C,oC (429
ar 85 05" oy
L @ G @
Now, define the p,, moments of the concentration distribution
y)=[ &c(&y)de (4.30)

Define cross-sectional average of p, moment

— 1
M, =C, =], Cs(y)dA

Take the moment of Eq. (4.29) by applying the operator '[_w E()de

. oC
(1) = j gp—dg_—j EPCdE=—2L — Leibnitz rule
0T 7= or

[Re] Leibnitz formula

w of
Ioﬁa - fd
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u /”— v’
(2):_[005 u—d§— j ép < integral by parts
cl,., =0
—u [éﬁ - pép‘lcdé}
:—pu'I_w§p‘1Cd§:—pu'Cp_1
u /LY
@)= ¢ DZ; :Djigpa‘ig agjd/; < integral by parts

— _Pac o~ pl
—D{cf g_wj pé

=-Dp|_¢&” —édéf

—-op{[0]" - [ c(p-nemiee]

=Dp(p-1)[ &"°Cd&=Dp(p-1)C, ,

0°C,
EPCAE=D
> %
Therefore Eq. (4.29) becomes
oC, 0°C
—— uC , =D -1)C_,+—+ 4.33
8r p {p(p )C, 6y2} (4.33)
B.C. gives
oC, :
D =0at y=0,h < Impermeable boundary
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Take cross-sectional average of Eq. (4.33)

& o oy

oC,

/ 0°C, 9C, 0 (aép

oy

J-c

a—;— puC,, = D{ p(p-1C,, +

dM
dr

“—puC,,=p(p-1)DM (4.34)

Eq. (4.34) can be solved sequentially forp=0, 1, 2, ...

Equation Consequences as t — o

p=0 dM,/dz =0 Mass is conserved
Mo Co(y)dA=—[ [* Cdéda
OXJ‘A o(Y) _X-[A-[—oo S
2
(4.33) — o _ Da (320
or oy

p=1 dg{:l =uC, M, — consant

2
433) - L _yc,-pZ&
ot oy

- 2
p=2 M, _30C, + 2D, 49" ok +2D
dt dt

— molecular diffusion and shear flow dispersion are additive

Aris’ analysis is more general than Taylor’s analysis in that it applies for low

values of time.
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4.2 Dispersion in Turbulent Shear Flow
4.2.1 Extension of Taylor’s analysis to turbulent flow

Cross-sectional velocity profile in turbulent motion in the channel is different

than in a laminar flow.

Consider unidirectional turbulent flow between parallel plates

u(y)

RRRVVRR R R R

Bigin with 2-D turbulent diffusion equation

oc oC oC 0 oC) 0 oC
+U—+V—= +—| &,— @)

= | &g —
ot ox oy ox\ “ox) oyl Yoy

Here, the cross-sectional mixing coefficient £(y) is function of cross-sectional

position.

C,u,v = time mean values; C =5:%JOT cdt

Let v=0, turbulent fluctuation v =0

0 oC 0o oC
Assume —¢g, —<<—¢&,—
ox “ox oy 'oy
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Then (a) becomes

oC oC 0 oC
AT P (b)
ot ox oyl "’

Now, decompose C and u into cross-sectional mean and deviation
—E}(CJFC)+(U+u')i(C_Z+C')=igyi +C') (c)
ot OX oy oy

Transform coordinate system into moving coordinate according to U

ag‘/+ac/+u.ac§ o/ o o

+Uu =—c¢
/ér f/r & /é% oy Y oy
Now, introduce Taylor's assumptions (discard three terms)

.0C o0 oC
Uu—=—e, —
o oy oy

(4.35)

Solution of Eq. (4.35) can be derived by integrating twice w.r.t. y

. 0C v 1y . .
C =£jo g—yjoudydy+C(O)

Mass transport in streamwise direction is
. h o\ oC ¢h ey 1y .
M = jo uCdy :Ejo u jo 8—ij u dydydy

q:M:_Kg
h PE:

1eh eyl .
K :_F johu _[Oyg—yjoyu dydydy (4.36)
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4.2.2 Taylor's analysis of turbulent flow in pipe (1954)

cun

@R EENEY
0 B ) «

Set z:L agzl
a dr a

Then, velocity profile is

u(z)=u,-u f(z) (a)

in which u” =shear velocity =\/§
o,

f(z) = logarithmic function

[Re] velocity defect law [Eq. (1.27)]

3 .30 .
U=o+——+——-u | glo4
K K
in which x = von Karman's constant = 0.4

¢ = distance from the wall

u=0+3.75u" +5.75u" log,, <
a
U=U _375:25In%
u a
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The cross-sectional mixing coefficient can be obtained from Reynolds analogy.

— The mixing coefficients for momentum and mass transports are the same.

1) momentum flux through a surface

T = Daily & Harleman (p. 56)

P \Oor

1) mass flux - Fickian behavior

Kinematic eddy
viscosity

q——€§
or

... 9

"‘9‘_@‘_@ (b)
or or

For turbulent flow in pipe, shear stress is given

r
TzfogZZTo (©)

Differentiate (a) w.r.t. r

ou_ .df(z) dz_  .df 1 (d)
or dz dr dz a

Divide (c) by (d)
T It
TR ©
or dz a
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*\2
Substitute (e) into (b) (u)
LT 1, _arnlp) aw
ARNCTRRY: | SR N |
p@r p dz a dz dz
Now, it is possible to tabulate u'(r)=u(r)-u, &(r) (M

And, numerically integrate Eqg. (4.39) [Taylor’s equation in radial coordinates]

to obtain C'(r) using &(r) obtained in (f)

_ - ,
u'ﬁzg g C; 1 (4.39)
o0& or r or
Again, numerically integrate Eg. (4.36) to find K
K =10.1au” (4.40)

in which a = pipe radius
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4.2.3 Elder's application of Taylor's method (1959)

Consider turbulent flow down an infinitely wide inclined plane assuming von

Karman logarithmic velocity profile

‘ u .
u (y)=?(1+|ny) (a)
where u =u-0o — d_u:u_ii (b)
dy xyd
=vyl/d \
y=y dU_O
d = depth of channel W‘

For open channel flow, shear stress is gives

du '
r=pe=1(1-Y) ()
y

- TO 1_ I ' ' *
e(y) du U 1 ky'(l-y) (d)

Substitute Eqg. (a) and Eq. (d) into Eqg. (4.36) and integrate

aC d (Z > u) —0.648) (4.44)
n=1
o 0.494 i (4.45)
K
Input x=0.41
K =5.93du” (4.46)
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Ch 4. Shear Flow Dispersion

3. Shear Flow D,‘spersim

Figure 10.5

Variations in the velocity of flow in natural siream channels occer badh horfrontally and vertically.
Friction rethuces the velocin along the floor and sides of the chinnels. The masiawm velocin in a seaight
chanael is near the wp and center of the duannel.

Poll utant
Slows

=
| u
Tox

N
Shear advection +  Tramsverse

W t=at” ' ‘=
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Ch 4. Shear Flow Dispersion

m General form for the longitudinal dispersion coefficient

Introduce dimensionless quantities

y =%ay=hy', dy = hdy (a)

u"=—u_ —>u'=u"\/u:'2 (b)
|2

NG

£=2 5e=¢E (c)

where E = cross-sectional average of ¢

u = velocity deviation from cross-sectional mean velocity

1
— 1 ¢h 2 2
us= {FL (u) dy}
= intensity of the velocity deviation (different from turbulent intensity)

= measure of how much the turbulent averaged velocity deviates throughout the

cross section from its cross-sectional mean

Substitute (a) ~ (c) into Eq. (4.36)

- _%Ju:? éJu:Z h* [ u joy% [ udyayay

— u-Ithz (—Eu"J'Oyvéj‘oy'u"dy'dy'dy'j (d)
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Ch 4. Shear Flow Dispersion

Set |I= —jolu"J.Oy%'[oy'u"dy'dy'dy' (4.48)

Then (d) becomes

h2u®
K = I 4.47
= (4.47)
m Range of values of | for flows of practical interest
| =0.054~0.10 — 1=0.10
Charac.
Flow Velocity profile |length, | K
h
r2 azu 2
[(i)Laminar flow in a tube u=u,1-—) a ]0.0625 0
a 192D
[(if)Laminar flow at depth 2 2,2
(1)Laminar f P u:u{Z(lj—y—z} d 00952 B 9
down on inclined plane d 945 D
[(iii)Laminar flow with a
. . . y U 2h?
linear velocity profile u=U-= h 0.10
_ h 120D
across a spacing
[(iv) Turbulent flow in a o .
_ empirical a 0054 10.1au
p1pe
[(V)Turbulent flow at
depth down an inclined |u=0 +u—(1+ In%) d 0.067 | 5.93du”
K
plane
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Ch 4. Shear Flow Dispersion

4.3 Dispersion in Unsteady Shear Flow
Real environmental flows are often unsteady flow.

- reversing flow in a tidal estuary; wind driven flow in a lake caused by a

passing storm

unsteady flow = steady component + oscillatory component

Application of Taylor's analysis to an oscillatory shear flow

(i) Linear velocity profile with a sinusoidal oscillation

0=U %sm(?j (4.49)

where T = period of oscillation

\J
ub =

v
h U=
A
) < >

A

t

o [ =3

= ‘flip-flop' sort of flow
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Ch 4. Shear Flow Dispersion

- reversing instantaneously between u=U % and -u=U % after every time

) T
interval —

— after each reversal the concentration profile has to be reversed
— substitute —y for y in Eq. (4.21)
— but enough time bigger than mixing time (T, ~ h*/ D) is required before the

concentration profile is completely adopted to a new velocity profile.

(1) T>T,

- concentration profile will have sufficient time to adopt itself to the velocity
profile in each direction

- time required for to reach the profile given by Eq.(4.21) is short compared to
the time during which has that profile.

— dispersion coefficient will be the same as that in a steady flow

— dispersion as if flow were steady in either direction

(2) T <<T,

- period of reversal is very short compared to the cross-sectional mixing time

- concentration profile does not have time to respond to the velocity profile

- C will oscillate around the mean of the symmetric limiting profiles, which is
C =0.

— dispersion coefficient tends toward zero

— no dispersion due to the velocity profile
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%@:@ NAME Course Shaat 26 -/ i
%‘Q,LE&% SEQUL NATIONAL UNIVERSITY 8y Date
® bhear eflects im Ds&dlatng Flow i ) ¥
M TLL,. b’...L_.,,
(-P Z.u:r r =i = S S
7 / ‘
3 7
Z‘T_“i\
\
\‘
.
U= Uo Sim( E=E =1
' Lr,_ Lma' is | returfed
T eupgtly o ity
B posut'im-
=Uo St E.-t- ey .4 i o
Unllosin (5F) ol = 1 teg 1A
I | @l coueis @ then dyefis
= ] \ - strected out well  miged over-
TANE YT _____‘-’T,‘???"?E, E?"'_"“?* L
_due to Jateral diffusi
@ mired plame is @) then this g Dl L Joke
strected in Opnaslte 15 well mired
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Ch 4. Shear Flow Dispersion

= Fate of an instantaneous line source when T <<T.

yd £ L yd Ay A4
LINE
SOURCE (/.1)
i
—
t=0
Uo t=1/2 t=T
P VA e VeV ayard - vd
(a) {b) (c) (d)

Solution of Eq. (4.13) by Carslaw and Jaeger (1959)

. - _ | unsteady
oc _ D o°C = _u‘ﬁ source term
or 8y2 o0&
Taylor’s = ‘ y . 2xt,
equation for |[U=U =U-=sin— (.U =0)
unsteady flow h T
B.C. E:Oaty:_D
oy 2
I.C. C'(y,00=0
-u=U A AY
h
—— use —_—

Py

L&\\\\L\'\\\\\

\\\}\\‘\\‘\\\\\
P

A N S
e —— ~-0.05

C’'D/htU

-1
R N N M N N N Y T
©05 -

aCT

ax
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Ch 4. Shear Flow Dispersion

Replace unsteady source term u'%by a source of constant strength by setting

t=t,
* 2 * —
oC _Da(:2 :—Uiﬁsin(hto)
ot oy h ox T
on at y=J_rD
oy 2
C'(y,0)=0

where C”= distribution resulting from a suddenly imposed source distribution
of constant strength

As diagrammed in Fig. 2.8, the solution for a series of sources of variable
strength, can be obtained by

' ta *
0=, ~C't-tik)d}
For large t
: t 0 .«
C 0=, 5Cnt-tit)d

C can be expressed by the sum

C™(y,t) =u(y) +w(y,1)
w(y,t) can be solved by separation of variables and Fourier expansion.

Further integration of the result leads to

4-43



Ch 4. Shear Flow Dispersion

WM T e (1)
- 2D T, ox &5 (2n-1)

n

=sin(2n — 1)7z—

1

2
T T 2 (2rt
—(2n-1)| —+1| sin| —+&.
{(2( ) T, } (5t
1
1 T |2
where @, . =sin™ —{L (2n-1)° T} 1}

Average over the period of oscillation of K

- L7 5 o 0C
K_?JO (—jgquy/ha—jdt

Uzh? (1Y g 2| (TY
:?B(T_C) nZ_ll(Zn—l) {E(Zn—l) (T—Cj] +1

[Re] Case of T >>T,

For a linear steady velocity profile, u=U %sin a

1 Uh . ,«a
sin

7120 D D

212
- K :LU h Is an ensemble average of K_ over all values of «
° 240 D :
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Ch 4. Shear Flow Dispersion

Intermediate behavior — Fig.4.7

le.l—)K ~0.03K,
T
:I_r—:l—>K ~0.8K,
:I_r—=10—>K =K,

10[C

01 —
/( A j O [ | ] |

1
0,000 000! 001 0.1 1.0
— Uth"
v X/ 2300

Qol

Figure 4.7 The dependence of the dispersion coefficient on the period of oscillation, as given
by Eq. (4.55). y is the ratio of K in a flow oscillating with period T to K in the same flow as T — co.
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Ch 4. Shear Flow Dispersion

(if) Flow including oscillating and a steady component

— pulsating flow found in blood vessel

u(y)=u,(y)sin2zt/T +u,(y)
u,=u,=Uy/h

Assume that the results by separate velocity profile are additive.

. -
Let C' =C, +C, issolution to £+u( )aC 582
ot OX oy
Then C,' is solution to the equation
8C azcl‘
C, 'is solution to the equation
oC, oC o°C,
+U,—=6——
ot OX oy
cycle-averaged dispersion coefficient
27t . .
=—j -— (u sin— T UZJ(C1+C2)dydt
ax
1 t LN
=——¢F f .[ u,C, sm dydt+hu2C2dy
hi 2
ax/'/'
=K, +K,

where K, =result of oscillatory profile= f(T /T,) — Fig. 4.7

K, = result of steady profile
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Ch 4. Shear Flow Dispersion

= Application to tidal rivers and estuaries

Consider shear effects in estuaries and tidal rivers
Flow oscillation - flow goes back and forth.
Consider effect of oscillation on the longitudinal dispersion coeff.

K=K,f(T" (7.1)

where f(T") isplotted in Fig. 4. 7.

T'=T/T_ = dimensionless time scale for cross-sectional mixing

T = tidal period ~12 hrs
T. = cross-sectional mixing time = W?/¢,

K, = dispersion coefficient if T >Tc

* For wide and shallow cross section with no density effects

K, = 1U"T, (5.17)

where | = dimensionless triple integral ~0.1 (Table 4.1)

Combine Eq. (7.1) and Eq. (5.17)

K =0T [(U/T") f(T")] (7.2)
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Ch 4. Shear Flow Dispersion

Function [(1/T")f(T")] is plotted in Fig.7.4

Max = 0.8

(/T £(T")

FEr U S G L K P e L
10 10 [oX] 001

Figure 7.4 The quantity 7°~'/(T") used in Eq. (7.2).

i) T issmall (narrow estuary) T, =—

T’=l>>1 — K issmall
C

i) T. isvery large (very wide estuary)

T’:l<<1 — K is smallest
C

i) T :TT—Czl T@WT)f(T)]~08

-~ K, =0.08u"T

/ Ch.5

[Ex] T =12.5hrs, T=0.3m/s, u?=0.202

K. =0.08x0.2(0.3)? x (12.5x3600) ~ 60 m?/s
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Ch 4. Shear Flow Dispersion

4.4 Dispersion in Two Dimensions

In many environmental flows velocity vector rotates with depth

where u = component of velocity u in the x direction

v =component of velocity u in the y direction

¢ (2)
v /L x

v

u(@z)
y V@

d
al

N

Fig. 4.8 skewed shear flow in the surface layer of Lake Huron

 Taylor’s analysis applied to a skewed shear low with velocity profiles

The 2-D form of Eq. (4.10) for turbulent flow is

g ¢ 8C ac 0 gac‘
Gx ay 0 oz

(4.61)

%L =0 at z=0,h (water surface & bottom)
z
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Ch 4. Shear Flow Dispersion

Integrate (4.61) w.r.t. z twice

jo - | ( +V —_jdzdz

Bulk dispersion tensor can be defined by

M :j“u'(:'dz:—hK L g <
X 0 XX 8X

xya
M, =] VCdz=-hK,, € g, &
0 OX Y oy

Substitute (4.62) into (4.63)

(a): jjogj( v—jdzdzd —h( 2—§—K

K, = —%johu' joz %jozu'dzdzdz

Ky = —%Johu'joz %IOZV'dZdZdZ

5
Xy ay

and y velocity profiles

depend on the interaction of the x

(b): J .[ogj( V—jdzdzd —h( . %

K, = —%J-Ohv'jozéjozu'dzdzdz

K,, = —% _[Ohv' .[OZ %ij’dzdzdz
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Ch 4. Shear Flow Dispersion

The velocity gradient in the x direction can produce mass transport in the y

direction and vice versa.

K,, = x-dispersion coefficient due to velocity gradient in the y direction

K= y-dispersion coefficient due to velocity gradient in the x direction

= Mean flow on a continental shelf (Fischer, 1978)

y (offshore)
v=V,
% X (alongshare)
‘—
u
/
> z=d
v UO
v=-VY,
2(U,?/120 5U.V, /192
K =4[ o 0o (4.65)
£\ 585UV, /192 U /120

Distribution of

concentrated slug of

dye after 5 days 1.2km

y ‘r
t =5days
u=5cm/s
X=22km U,=5m/s

V,=5cm/s




Ch 4. Shear Flow Dispersion

[Re] Derivation of 2-D dispersion equation

v

dy X
d, ax
1 dy _> qx+%Ax
l OX
0
vy a, + B gy
oy

(i) Conservation of mass

oC ol oq
—— AXAY = — XAX [LA — —Y Ay | L AX
p y {qx (qx-l_ X j} Y+{qy qu+ oy YJ}

oC _ g, 2q, 1)
ot ox oy

(it) Apply Taylor’s Analysis on 2-D shear flow

G, =M, =(uC)h qudz—jjj( v—jdzdzdz

oC oC

= —KXX&— nya (2)

q, = ( ) J‘vcdz_jvf I( v—jdzdzdz

:_nyg_Kwﬁ (3)
OX oy

(iii}) Substitute (2) & (3) into (1)
@z_g(_K o€ aéj_g( « C_ aéj
ot ox oyl Tox ™oy
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Ch 4. Shear Flow Dispersion

(iv) Return to fixed coordinate system containing mean advective velocities

oC _66 8C 0 oC oC 0 oC oC
+U Ka——+Ky— |+ —| Kpi—+K,—
ot x ay o OX Yoy ) oyl "ox "oy

In general K, and K, are small compared with K, and K . Thus, those

two terms are often neglected. Then, 2-D depth-averaged transport equation
becomes

oc oC oC 0 ( 8Cj 0 oC
+U—+V Ky— [+—| K,,—
ot X oy ox ox ) oyl "oy

[Cf] 2-D depth-averaged models (ASCE, 1988; vol.114, No.9)

- Scalar transport equation for ®

6(HCT))+8(HUCT>) o(HV®) 15

+ ———(H\TX)+13(HJ_),)
ot OX oy L OX p oy
A9 vad +——jpvq>dz
p ox p oy
dispersion dispersion
where J,=[-pugdz  turbulent diffusion in x-dir

J, :J—pu¢dz turbulent diffusion in y-dir

u=u-U — time fluctuation
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U=U-U — depth deviation

If dispersion >> turbulent diffusion

— neglect turbulent diffusion or incorporate turbulent diffusion into dispersion.
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