Ch. 3 Kinematics of Fluid Motion

Chapter 3 Kinematics of Fluid Motion

3.1 Steady and Unsteady Flow, Streamlines, and Streamtubes
3.2 One-, Two-, and Three-Dimensional Flows
3.3 Velocity and Acceleration

3.4 Circulation, Vorticity, and Rotation

Objectives:
» treat kinematics of idealized fluid motion along streamlines and flowfields
* learn how to describe motion in terms of displacement, velocities, and accelerations without

regard to the forces that cause the motion

» distinguish between rotational and irrotational regions of flow based on the flow property

vorticity
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Ch. 3 Kinematics of Fluid Motion

3.1 Steady and Unsteady Flow, Streamlines, and Streamtubes

 Two basic means of describing fluid motion

Joseph Louis Lagrange (1736-1813),
_— Italian mathematician

1) Lagrangian views

Srme——— s it Xp

FIGURE 4-1 FIGURE 4-2

With a small number of objects, such In the Lagrangian description, one
as billiard balls on a pool table, must keep track of the position and
individual objects can be tracked. velocity of individual particles.

~ Each fluid particle is labeled by its spatial coordinates at some initial time.

~ Then fluid variables (path, density, velocity, and others) of each individual particle are

traced as time passes.

~ used in the dynamic analyses of solid particles

= Difficulties of Lagrangian description for fluid motion

- We cannot easily define and identify particles of fluid as they move around.
- Afluid is a continuum, so interactions between parcels of fluid are not easy to describe
as are interactions between distinct objects in solid mechanics.

- The fluid parcels continually deform as they move in the flow.
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=Path line

~ the position is plotted as a function of time = trajectory of the particle — path line

~ since path line is tangent to the instantaneous velocity at each point along the path,

changes in the particle location over an infinitesimally small time are given by

dx =udt; dy =vdt; dz =wdt

This means that

dt dt dt
dx. dy dz dt
ax _dy Gz &t (3.1b)
u v w 1
The acceleration components are
du dv_ dw
a=—— a=-—-,8 ="+ (3.1c)
dt dt dt
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Leonhard Euler (1707-1783),
2) Eulerian view Swiss mathematician

Control volume

FIGURE 4-3

In the Eulerian description, one
defines field variables, such as the
pressure field and the velocity field, at
any location and instant in time.

~ attention is focused on particular points in the space filled by the fluid

~ motion of individual particles is no longer traced

— A finite volume called a control volume (flow domain) is defined, through which fluid

flows in and out.

~The values and variations of the velocity, density, and other fluid variables are

determined as a function of space and time within the control volume. — flow field

Define velocity field as a vector field variable in Cartesian coordinates
v=V(X, Y, z,t) (E1)
Acceleration field

a=a(x, v, z1t) (E2)
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Define the pressure field as a scalar field variable

p=p(x Y, z1t) (E3)

where

V=Ue, +Ve, +We, -

€, ey, €, = unit vectors

Substitute (E4) into (E1) to expand the velocity field

v=(uv,w)=u(x, v, z,t)e, +V(x, y, 2, t) &, +W(X, ¥, z, t) e, (E5)

=Difference between two descriptions

Imagine a person standing beside a river, measuring its properties.
[ Lagrangian approach: he throws in a prove that moves downstream with the river flow
Eulerian approach: he anchors the probe at a fixed location in the river

~ Eulerian approach is practical for most fluid engineering problems (experiments).
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* Two types of flow
— In Eulerian view, two types of flow can be identified.
1) Steady flow
~ The fluid variables at any point do not vary (change) with time.
~ The fluid variables may be a function of a position in the space. — non-uniform flow

— In Eulerian view, steady flow still can have accelerations (advective acceleration).

2) Unsteady flow
~ The fluid variables will vary with time at the spatial points in the flow.
* Fig. 3.1

[ when valve is being opened or closed — unsteady flow

when valve opening is fixed — steady flow

v

v
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[Re] Mathematical expressions
Let fluid variables (pressure, velocity, density, discharge, depth) = F

F=1(xyY,z1)

A
z, vertical

X, longitudinal

>

y, lateral

oF
— =0 — steady flow
ot

oF

— # 0 — unsteady flow

aF = al: = aF = 0—) uniform ﬂOW

oXx oy oz

Z—F # 0 — non-uniform (varied) flow
X
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* Flow lines

1) Streamline

~ The curves drawn at an instant of time in such a way that the tangent at any point is in

the direction of the velocity vector at that point are called instantaneous streamlines, and

they continually evolve in time in an unsteady flow.

Path line for
particle a in an
unsteady flow

Steady flow past an airfoil in a smoke tunnel (streamlines
ol up

are created by introducing small jets of smoke at a number ¢

stream points in the flow).

Individual fluid particles must travel on paths whose tangent is always in the direction of the

fluid velocity at any point.

— In an unsteady (turbulent) flow, path lines are not coincident with the instantaneous

streamlines.
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2) Path line

~ trajectory of the particle

3) Streak line
~ current location of all particles which have passed through a fixed point in space

~ The streak lines can be used to trace the travel of a pollutant downstream from a smoke

stack or other discharge.

~ In steady flow, Lagrangian path lines are the same as the Eulerian streamlines, and both
are the same as the streak lines, because the streamlines are then fixed in space and path

lines, streak lines and streamlines are tangent to the steady velocities.

— In a steady flow, all the particles on a streamlines that passes through a point in space

also passed through or will pass through that point as well.

~ In an unsteady flow, the path lines, the streak lines, and the instantaneous streamlines are

not coincident.
* In a steady flow, streamlines can be defined integrating Eq. (3.1) in space.

[Ex] A fluid flow has the following velocity components; u = 1 m/s, v = 2x m/s. Find an

equation for the streamlines of this flow.

Sol.: ﬂzlzﬁ (a)
dx u 1
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Integrating (a) gives

y=Xx>+C

« Stream tube

~ aggregation of streamlines drawn through a closed curve in a steady flow forming a
boundary across which fluid particles cannot pass because the velocity is always tangent to

the boundary
~ may be treated as if isolated from the adjacent fluid

~ many of the equations developed for a small streamtube will apply equally well to a

streamline.

No flow
in and out

[Re] How to shoot flow lines?

1) streamline:  shoot bunch of reflectors instantly (at — 0)

2) path line:  shoot only one reflector with long time exposure

3) streak line: shoot dye injecting from on slot with instant exposure
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Streamlined object

_T2_
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Circular cylinder

=

3-14



Ch. 3 Kinematics of Fluid Motion

2,9, 8 5,¢ Wi tiek

_22_
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[Re] Substantial (total) derivative

dF aF 6F dx oF dy oF dz
dt ot 8xdt aydt oz dt

total I

derivative
local advective (convective)

derivative derivative

» steady flow: o+ =0
ot

) oF oF oF
e uniform flow: U +V +W =0

OX oy 0z
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3.2 One-, Two-, and Three-Dimensional Flows

* One-dimensional flow

~ All fluid particles are assumed uniform over any cross section.

~ The change of fluid variables perpendicular to (across) a streamline is negligible

compared to the change along the streamline.

~ powerful, simple

~ pipe flow, flow in a stream tube - average fluid properties are used at each section

F=1(x) Actual

velocity

Average
velocity

* Two-dimensional flow

~ flow fields defined by streamlines in a single plane (unit width)

~ flows over weir and about wing - Fig. 3.4

~ assume end effects on weir and wing is negligible
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v=1f(x,2)
flow over
the weir
/T ;’(‘;

* Three-dimensional flow

~ The flow fields defined by streamlines in space.

~ axisymmetric three-dim. flow - Fig. 3.5

— streamlines = stream surfaces

v=1(X,Y,2)

3-18



Ch. 3 Kinematics of Fluid Motion

3.3 Velocity and Acceleration

—

velocity, V

acceleration, a
~ vector: magnitude

direction - known or assumed

Fig. 3.6

4 One-dimensional flow along a streamline

Select a fixed point 0 as a reference point and define the displacement s of a fluid particle

along the streamline in the direction of motion.

— In time dt the particle will cover a differential distance ds along the streamline.
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1) Velocity
: : ds
- magnitude of velocity V = E

where s = displacement

- direction of velocity = tangent to the streamline

2) Acceleration

- acceleration along (tangent to) the streamline = a,

- acceleration (normal to) the streamline = a,

dv dvds dv
a=—=—"—=V— (3.2)
dt dsdt ds
V2
a, = _T « particle mechanics (3.3)

where I =radius of curvature of the streamline at S
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[Re] Uniform circular motion

— Particle moves in a circle with a constant speed.

- direction of AV: pointing inward, approximately toward the center of circle

Apply similar triangles OPP’ and P'QQ’

—_—

Now, approximate E (chord length) as PP (arc length) when @is small.

v _wat
Vo

w_v
At 1
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. AV Vv
a=Ilim—=—
At—)OAt r

2
\"
a =—a=—— (along a radius inward toward the center of the circle)
r

a, =radial (centripetal) acceleration= constant in magnitude directed radially inward

» Angular velocity, @
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[IP 3.1] p. 96

Along a straight streamline, V= 3/X* + y* m/s

Calculate velocity and acceleration at the point (8.6)

P (8, 6)

v
X

We observe that

1) The streamline is straight. —» a, =0

2) The displacement s is give as

— S=AX° 4y’

Therefore, V=38

At (8.6) - s=10 — v=3(10)=30 m/s

a = v% =3s(3s)' =95 =9 Om/s’

S
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[IP 3.2]

The fluid at the wall of the tank moves along the circular streamline with a constant

tangential velocity component, v, =1.04 m/s

Calculate the tangential and radial components of acceleration at any point on the streamline.

A
Vs =1.04 m/s

apy
k .

1) a
S QZO
/ ds

dv
— Because tangential velocity is constant, a, = Vd— =0
S
2) a
2 2
' 1.04
a=——= _{ > ) _ 0541 m/sec?
r

— directed toward the center of circle
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<& Flowfield

) / 7
Cartesian

The velocities are everywhere different in magnitude and direction at different points in the

flowfield and at different times. — three-dimensional flow

At each point, each velocity has components u, v, w which are parallel to the x-, y-, and z-

axes.

In Eulerian view,

u=u(x, vy, zt),v=v(xy,zt), w=w(xy, zt)

In Lagrangian view, velocities can be described in terms of displacement and time as

_dx dv dz

U=—, V=—, W=— (3.4)
dt dt dt
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where X, y, and z are the actual coordinates of a fluid particle that is being tracked

— The velocity at a point is the same in both the Eulerian and the Lagrangian view.

The acceleration components are

du dv dw
a=—a=—a-=-—
dt 7 dt dt

* Total (substantial, material) derivatives (App. 6)

du :8—udt +a—udx+a—udy+a—udz
OX oy oz

dv :@dt +@dx+@dy+@dz

ot OX oy 0z

dW:@dt +@dx+@dy+@dz
ot OX oy 0z

* Substituting these relationships in Eq. (3.5) yields

du ou ou ou ou
a,=—=—+U—+V—+W—
dt ot ox oy 0z

dv ov ov oV oV
== U—+V—+W—

a,=—=—-+
Y dt ot ox oy oz
3-26
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T convective acceleration

local acceleration

6u@

For steady flow, —=—=
ot 0

E = 0 , however convective acceleration is not zero.

* 2-D steady flow

(i) Cartesian coordinate; P(x, y)

r=ix+ jy

-

V=iu+ jv r

v

u=u(x,y) -horizontal

v=V(X,Yy) - vertical

dt dt
5—@—Ta+]a
d * 7
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du ou ou
L =—=U—+V—
dt ox oy
dv oN OV
a =—=U—+V—
Yoodt ox oy

(i) Polar coordinate P(r, &)

S
@ = radian =—

r

where S = arc length, r =radius

ds=rd@

dr
V, =—
dt
ds
Vt = —=
dt

[Re] Conversion

X=rcosé, y=rsind

déo
f— =
dt

- radial

>

deo
dt

ro

r=x*+y*, @=arctan

- tangential

3-28
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* Total derivative in polar coordinates

ov oV,
dv, =

or 00
dv, = Ydr + Mg

or 00
%_%ngavrde_avr +avr£§_avrv avl
gt ordi o6 dt or " aorot o oo
dv, ov,dr ov,do ov, ov, 1
—t=—t_— L Ly Ly,
dt ordt 00 dt or oo r

* Acceleration in polar coordinates — Hydrodynamics (Lamb, 1959)

a, =a, +ay

where a,, = acceleration due to variation of V_in I —direction;

a,, = acceleration due to variation of Vv, in I —direction

d, V. OV, 1o0v
a, = — oV, =V, ——+V,—

d or r 00

v ¥

a a

N

3-29
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dv

dt
Vo
& S
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[IP 3.3] p. 99

For circular streamline along whichv, =1.04 m/s, r =2 m (radius of curvatures)

u, V, v, V,

Calculate ( j at P(2 m,60%)

ax’ ay’ a‘t’ r

[Sol]

Determine P(x, y)

X=2c0s60" =1
y=25sin60" =+/3
1) Velocity

* Polar coordinate

v, =1.04 m/s
V, = ar =0
dt
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Cartesian coordinate

Apply similar triangles

. . 2 2
ViiU=TIY, F=4X"+y° =2

u=""Y _ _y sin60° = —(1.04)sin 60" = —0.90 m/s
r

v=JIX v, c0s60° = (1.04)cos60" =0.52 m/s
r

2) Accelerations

» Cartesian coordinate

ou ou 1.04y 0 ( 1.94{} 1.04x 0 ( 1.04y
a,=U—+V—=— —| - + — -
OX oy r ox /T r oy r

—(1.04)>  1.082

r? 4

Y oox oy roox\ r

a :ugﬂl@:_l.myi(l.ow}r1.04x3£;94<j
r oy r
v

3-32




Ch. 3 Kinematics of Fluid Motion

At, P(1L+/3), a, :—%(1)——0.27 m/s’

= lc)82f——047 m/s’

Y

Polar coordinate

2 2
a = r%+vtav B ) MY m/s’
or 00 r 2

— direction toward the center of circle

at/évrt rae/r 104—(104) 0 m/s?

a’ +a2 = —(0.27)? + (0.47)* =0.073+0.22 = 0.29

[Re]

a? = (-0.54)=0.29

. A2 2 A2 2
La +a=a, +a)
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3.4 Circulation, Vorticity, and Rotation

Eddy, whirl,
3.4.1 Circulation vortex

As shown in IP 3.3, tangential components of the velocity cause the fluid in a flow a swirl.

— A measure of swirl can be defined as circulation.

_»~—Closed curve in
B flowfield plane

Streamlines

e Circulation, T

= line integral of the tangential component of velocity around a closed curve fixed in the flow

(circle and squares)

dI' = (V cosa)dl
cmﬁcdr:cﬁ(\/ cosa)dl :95\7& (3.9)

where dI = elemental vector of size dl and direction tangent to the control surface at

each point
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[Re] vector dot product

a-b=abcosa

[Cf] Integral of normal component of velocity — Continuity equation

qSC'S.pV-ndA:O ~.Ch. 4

N = unit normal vector

* Point value of the circulation in a flow for square of differential size

— proceed from A counterclockwise around the boundary of the element

7

=

mean velocit mean velocit
dl“;{ y}dxcosO"{ y}dy cosO’

along AB along BC
mean velocit mean velocit
+ N dx cos180° + VEOETY dy cos180°
along CD along DA
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locit
mean velocity dx oSO’ — u_6_ud_y dx
along AB oy 2

locit
e VR dx c0s180° =| u+ udy (—dx)
along CD 8y

dI'z u—a—Ud—y dx+[v+avd }dy— u+8u dy dx — [v—@%}dy
oy 2 oX 2 oy 2 oX 2

Expanding the products and retaining only the terms of lowest order (largest magnitude)

gives

ou dxdy

dl“:udx—a— ov dxdy a_udxdy_vder@dxdy
y

+vdy + —— —udx —
ox 2 oy 2 ox 2

dr = &M ey
oXx oy

where dx dy is the area inside the control surface
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3.4.2 Vorticity, &

~ measure of the rotational movement

~ differential circulation per unit area enclosed

£ dar _@_8_u

dxdy ox oy
ou ov

Cf] continuity; —+—=0
[Cf] inuity x oy

For polar coordinates

%4_&_ 8\/"

“or Tt Tree

3-37
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3.4.3 Angular rotation

da,, A u+a_Ud_y
] Z oy 2

\\({_ 5 A
\ )\v s
N,
\\ /// \/—f dan,,
P s
//// \\u dy
£ - L oudy
\ v, ay 2
B

If the fluid element tends to rotate, two lines will tend to rotate also.
— For the instant their average angular velocity can be calculated.

Consider counterclockwise rotation for vertical line AB

a@:E:dUdt—d dt

=du—
dy dy dy

) +8_ud_v]_ _a_ud_yﬂﬁ:_a_udt

oy 2 oy 2 )jdy oy
dg, éu
Y,

where @ =rate of rotation

For horizontal line

oX 2 ox 2 )|dx OX
3-38
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d6, ov

T T ox

Consider average rotation

1

w=%«w+wm=§ﬂ———q (3.24)

oV ou
ox oy

rotational flow ~ flow possesses vorticity — & # 0

irrotational flow ~ flow possesses no vorticity, no net rotation - & =0

= potential flow (velocity potential exists) «— Ch. 5

* Actually flow fields can possess zones of both irrotational and rotational flows.

free vortex flow — irrotational flow, bath tub, hurricane, morning glory spillway

forced vortex flow — rotational flow, rotating cylinder
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. \_) Figure 53 Irrotational vortex in a liquid.

Figure 5.2 Constant pressure surfaces in a solid-body rotation generated in a rotating tank containing
liquid

Flow A Ug

Rotational

/— Irrotational
Flow B Ug

FIGURE 4-28

Streamlines and velocity profiles for
(a) flow A, solid-body rotation and
(b) flow B, a line vortex. Flow A is
rotational, but flow B is irrotational

everywhere except at the origin.
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70 APPLIED HYDRAULICS [N ENGINEERING [Ch. 6

. 6-23. Mornis n H Horse Montana. (US.
& Fig. o) orning-glory spillway, Hungry Dam, tana, (U.S. Bureau of

(a) (b)

FIGURE 4-29

A simple analogy: (@) rotational circular flow is analogous to a roundabout,
while (b) irrotational circular flow is analogous to a Ferris wheel.

© Robb Gregg/PhotoEdit
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HECsD R

ATAHIE S8 ANAES NRAR &8

Figure. 1 Forced Vortex

Figure. 2 Free Vortex
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[IP 3.4] Calculate the vorticity of two-dimensional flowfield described by the equations

V,=or and Vv, =0
— Forced vortex

— A cylindrical container is rotating at an angular velocity @.

AR
N

[Sol]

%4_& 8Vr

=% T a0

0 or 0
=—(wN+———0)=w+0-0=20%0
& 8r(a)) ; r(%’() 0+ o W

— rotational flow (forced vortex) possessing a constant vorticity over the whole flow field

— streamlines are concentric circles
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[IP 3.5] When a viscous, incompressible fluid flow between two plates and the flow is

y

2
laminar and two-dimensional, the velocity profile is parabolic,U = UC( - —j :

b2

Calculate 7 and  (rotation)

s

No slip
condition for D

real fluid W
}, :

2b
i s
[Sol]
/ Yoo Moy,
OX oy b
1) a)—i( +® )—1 N_u
TS X oy
1 2y U
——ly 2Lz =
2( °b2j (szy
du
2) T=pu—0
) T ﬂdy
_du (2,
T_ydy_( b® )y
T==2u0=—us

— rotation and vorticity are large where shear stress is large.
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Prob. 3.3

Prob. 3.5

Prob. 3.6

Prob. 3.10

Prob. 3.12

Prob. 3.15

Homework Assignment # 3

Due:

1 week from today
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