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Chapter 4 Continuity Equation and Reynolds Transport Theorem  

 

4.1 Control Volume 

4.2 The Continuity Equation for One-Dimensional  

Steady Flow 

4.3 The Continuity Equation for Two-Dimensional  

Steady Flow 

4.4 The Reynolds Transport Theorem 

 

 

 

Objectives: 

• apply the concept of the control volume to derive equations for the conservation of mass for 

steady one- and two-dimensional flows 

• derive the Reynolds transport theorem for three-dimensional flow 

• show that continuity equation can recovered by simplification of the Reynolds transport 

theorem 
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4.1 Control Volume 

▪ Physical system  

~ is defined as a particular collection of matter or a region of space chosen for study 

~ is identified as being separated from everything external to the system by closed 

closed system (control mass) ~ consists of a fixed mass, no mass can cross its boundary 

boundary 

• The boundary of a system: fixed vs. movable boundary 

•Two types of system:   

open system (control volume) ~ mass and energy can cross the boundary

 

 of a control volume 

 

    

 

 

 

 

surroundings 
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→ A system-based analysis of fluid flow leads to the Lagrangian equations of motion in 

which particles of fluid are tracked. 

 

A fluid system is mobile and very deformable.  

A large number of engineering problems involve mass flow in and out of a system. 

→ This suggests the need to define a convenient object for analysis. → control volume 

 

• Control volume  

~ a volume which is fixed in space and through whose boundary matter, mass, momentum, 

energy can flow 

~ The boundary of control volume is a control surface.  

~ The control volume can be any size (finite or infinitesimal), any space. 

~ The control volume can be fixed in size and shape. 

→ This approach is consistent with the Eulerian view of fluid motion, in which attention 

is focused on particular points in the space filled by the fluid rather than on the fluid particles. 
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4.2 The Continuity Equation for One-Dimensional Steady Flow 

• Principle of conservation of mass 

The application of principle of conservation of mass to a steady flow in a streamtube results 

in the continuity equation. 

• Continuity equation 

~ describes the continuity of flow from section to section of the streamtube 

• One-dimensional steady flow 

 

 

 

 

 

Fig. 4.1  

Consider the element of a finite streamtube 

- no net velocity normal to a streamline 

- no fluid can leave or enter the stream tube 

 

except at the ends 

No flow 
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Now, define the control volume as marked by the control surface that bounds the region 

between sections 1 and 2. 

→ To be consistent with the assumption of one-dimensional steady flow, the velocities at 

sections 1 and 2 are assumed to be uniform. 

→ The control volume comprises volumes I and R. 

→ The control volume is fixed in space, but in dt  the system moves downstream

( ) ( )I R t R O t tm m m m +∆+ = +

.  

 

From the conservation of system mass 

    (1) 

 

For steady flow, the fluid properties at points in space are not functions of time, 0m
t

∂
=

∂
 

 → ( ) ( )R t R t tm m +∆=      (2) 

 

Substituting (2) into (1) yields 

( ) ( )I t O t tm m +∆=      (3) 

 

 

 

 

Inflow Outflow 
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Express inflow and outflow in terms of the mass of fluid moving across the control surfce in 

time dt     

  1 1 1( )I tm A dsρ=  

 2 2 2( )O t tm A dsρ+∆ =     (4) 

 

Substituting (4) into (3) yields 

 1 1 1 2 2 2A ds A dsρ ρ=  

 

Dividing by dt  gives 

 1 1 1 2 2 2m AV A Vρ ρ= =       (4.1) 

→ Continuity equation 

 

In steady flow, the mass flow rate, m  passing all sections of a stream tube is constant. 

m AVρ= = constant (kg/sec) 

 ( ) 0d AVρ =         (4.2.a) 

 → ( ) ( ) ( ) 0d AV dA V dV Aρ ρ ρ+ + =     (5) 

 

1
1

ds V
dt

=  
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Dividing (a) by AVρ results in 

 0d dA dV
A V

ρ
ρ

+ + =        (4.2.b)  

→ 1-D steady compressible fluid flow 

For incompressible

0d
t
ρρ ∂

= 0, =
∂

 fluid flow; constant density  

→  

From Eq. (4.2a)  

 ( ) 0d AVρ =  

  ( ) 0d AV =        (6) 

Set Q = volume flowrate

Then (6) becomes 

 

 (m3/s, cms) 

1 1 2 2const.Q AV AV A V= = = =      (4.5) 

 

For 2-D flow, flowrate is usually quoted per unit distance normal to the plane of the flow, b   

→ q = flowrate per unit distance normal to the plane of flow ( )3m s m⋅  
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Q AVq hV
b b

= = =  

   1 1 2 2hV h V=         (4.7) 

 

[Re] For unsteady flow 

 + inflow outflowt t tmass mass+∆ = −  

 ( ) ( ) ( ) ( )R t t R t I t O t tm m m m+∆ +∆− = −  

 

Divide by dt  

 
( ) ( ) ( ) ( )R t t R t

I t O t t
m m m m

dt
+∆

+∆
−

= −  

 

Define   

( ) ( ) ( )R t t R tm m m vol
t dt t

ρ+∆∂ − ∂
= =

∂ ∂
 

 

Then 

 
( ) ( ) ( )I t O t t

vol m m
t

ρ
+∆

∂
= −

∂
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• Non-uniform velocity

 

 distribution through flow cross section 

 

 

 

Eq. (4.5) can be applied. However, velocity in Eq. (4.5) should be the mean velocity.

 
QV
A

=  

 
A A

Q dQ vdA= =∫ ∫  

 
1

A
V vdA

A
∴ = ∫  

 

•The product AV remains constant along a streamline in a fluid of constant density. 

→ As the cross-sectional area of stream tube increases, the velocity must decrease. 

→ Streamlines widely spaced indicate regions of low velocity, streamlines closely spaced 

indicate regions of high velocity. 

 1 1 2 2 1 2 1 2:AV A V A A V V= > → <  
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[IP 4.3] p. 113 

The velocity in a cylindrical pipe of radius R  is represented by an axisymmetric parabolic 

distribution V. What is in terms of maximum velocity, cv ? 

[Sol] 

 

  

 

 

2

21c
rv v
R

 
= − 

 
 ← equation of parabola 

2

2 20

1 1 1 2
R

cA

Q rV v dA v r dr
A A R R

π
π

 
= = = − 

 
∫ ∫  

3 2 4 2 2

2 2 2 2 20
0

2 2 2
2 4 2 4 2

R
R

c c c cv v v vr r r R Rr dr
R R R R R

     
= − = − = − =     

     
∫ → Laminar flow 

 

[Cf] Turbulent flow   

→ logarithmic velocity distribution 

dA=2πrdr 

dr 

R 

cv  

r 
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4.3 The Continuity Equation for Two-Dimensional Steady Flow 

(1) Finite control volume 

 

Fig. 4.3 

Consider a general control volume, and apply conservation of mass 

 ( ) ( )I R t R O t tm m m m +∆+ = +      (a) 

 

For steady flow:  ( ) ( )R t R t tm m +∆+  

 

Then (a) becomes 

 ( ) ( )I t O t tm m +∆=       (b) 

 

i) Mass in O  moving out through

 

 control surface 

. .
( ) ( cos )O t t C S out
m ds dAρ θ+∆ = ∫  

 

 

mass area 1 cosvol ds dAρ ρ ρ θ= = × × =  

Area of 
parallelogram = 
( cos )ds dAθ  
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• Displacement along a streamline;  

ds vdt=        (c) 

 

Substituting (c) into (b) gives 

 
. .

( ) ( cos )O t t C S out
m v dAdtρ θ+∆ = ∫     (d) 

   

By the way, cosv θ  = normal velocity component dA normal to C.S. at  

Set n


 = outward unit normal vector at dA  ( )1n =


 

 cosnv v n v θ∴ = ⋅ =
 

 ← scalar or dot product   (e) 

 

Substitute (e) into (d) 

 
. . . .

( )O t t C S out C S out
m dt v ndA dt v dAρ ρ+∆ = ⋅ = ⋅∫ ∫

   

   

where dA ndA=
 

=directed area element 

 

[Cf] tangential component

ii) Mass flow into I 

 of velocity does not contribute to flow through the C.S.  

→ Circulation 

 

 
. .

( ) ( cos )I t C S in
m ds dAρ θ= ∫  

 
. . . .

( cos ) ( )
C S in C S in

v dAdt dt v n dAρ θ ρ= ⋅ −∫ ∫
 

 

90 cos 0θ θ> → <  
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 { } { }. . . .C S in C S in
dt v ndA dt v dAρ ρ= − ⋅ = − ⋅∫ ∫

   

    

 

 For steady flow, mass in = mass out 

 { }. . . .C S out C S in
dt v dA dt v dAρ ρ⋅ = − ⋅∫ ∫

   

 

 

 Divide by dt  

 
. . . .C S in C S out

v dA v dAρ ρ− ⋅ = ⋅∫ ∫
   

 

  
. . . .

0
C S out C S in

v dA v dAρ ρ⋅ + ⋅ =∫ ∫
   

    (f) 

 

 Combine C.S. in and C.S. out 

 
. . . .

0
C S C S

v dA v ndAρ ρ⋅ = ⋅ =∫ ∫
   

 

    (4.9) 

 where 
. .C S
=∫  integral around the control surface in the counterclockwise 

( . .)mass inside c v
t
∂
∂

direction 

→ Continuity equation for 2-D steady flow of compressible fluid 

 

[Cf] For unsteady flow 

 = mass flowrate in – mass flowrate out  

 

Integral form 
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(2) Infinitesimal control volume  

 

 

 

 

Apply (4.9) to control volume ABCD 

 0
AB BC CD DA

v ndA v ndA v ndA v ndAρ ρ ρ ρ⋅ + ⋅ + ⋅ + ⋅ =∫ ∫ ∫ ∫
       

  (f)  

By the way, to first-order accuracy  

 
2 2AB

dy v dyv ndA v dx
y y
ρρ ρ  ∂ ∂

⋅ ≅ − − −  ∂ ∂  
∫

 

 

    

 
2 2BC

dx u dxv ndA u dy
x x
ρρ ρ ∂ ∂  ⋅ ≅ + +  ∂ ∂  ∫

 

 

 
2 2CD

dy v dyv ndA v dx
y y
ρρ ρ

  ∂ ∂
⋅ ≅ + +  ∂ ∂  

∫
 

    (g) 

 
2 2DA

dx u dxv ndA u dy
x x
ρρ ρ ∂ ∂  ⋅ ≅ − − −  ∂ ∂  ∫

 

 

2
u dxu
x
∂

+
∂

 

2AB
dx

x
ρρ ρ ∂

≈ −
∂

 

2
v dyv n v
y

 ∂
⋅ = − − ∂ 

   

2
u dxu
x
∂

−
∂
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Substitute (g) to (f), and expand products, and then retain only terms of lowest order (largest 

order of magnitude) 

 
2( )

2 2 4
v dy dy v dyvdx dx v dx dx
y y y y

ρ ρρ ρ ∂ ∂ ∂ ∂
− + + −

∂ ∂ ∂ ∂
 

 
2( )

2 2 4
v dy dy v dyvdx dx v dx dx
y y y y

ρ ρρ ρ ∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂
 

 
2( )

2 2 4
u dx dx u dxudy dy u dy dy
x x x x

ρ ρρ ρ ∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂
 

 
2( ) 0

2 2 4
u dx dx v dxudy dy u dy dy
x x x x

ρ ρρ ρ ∂ ∂ ∂ ∂
− + + − =

∂ ∂ ∂ ∂
 

  

0v udxdy v dxdy dxdy u dxdy
y y x x

ρ ρρ ρ∂ ∂ ∂ ∂
∴ + + + =

∂ ∂ ∂ ∂
 

 0v uv u
y y x x

ρ ρρ ρ∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
 

 ( ) ( ) 0u v
x y
ρ ρ∂ ∂

+ =
∂ ∂

      (4.10) 

→ Continuity equation for 2-D steady flow of compressible fluid 

 

• Continuity equation of incompressible flow for both steady and unsteady flow (ρ = const.) 

 0u v
x y
∂ ∂

+ =
∂ ∂

        (4.11) 

 

 

Point form 
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[Cf] Continuity equation for unsteady 3-D flow of compressible fluid 

 ( ) ( ) ( ) 0u v w
t x y z
ρ ρ ρ ρ∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
     

 

For steady 3-D flow of incompressible fluid 

0u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

      

 

• Continuity equation for polar coordinates  

 

 

 

 

 

 

Apply (4.9) to control volume ABCD 

 0
AB BC CD DA

v ndA V ndA V ndA V ndAρ ρ ρ ρ⋅ + ⋅ + ⋅ + ⋅ =∫ ∫ ∫ ∫
       

 

 

 
2 2

t
tAB

d v dV ndA v drρ θ θρ ρ
θ θ
∂ ∂  ⋅ ≅ − − −  ∂ ∂  ∫

 

 

 ( )
2 2

r
rBC

dr v drV ndA v r dr d
r r
ρρ ρ θ∂ ∂  ⋅ ≅ + + +  ∂ ∂  ∫

 

 

 
2 2

t
tCD

d v dV ndA v drρ θ θρ ρ
θ θ
∂  ⋅ ≅ + +  ∂ ∂  ∫

 

 

B 

C D 

A 
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2 2

r
rDA

dr v drV ndA v rd
r r
ρρ ρ θ∂ ∂  ⋅ ≅ − − −  ∂ ∂  ∫

 

 

 

Substituting these terms yields
 

 
2( )

2 2 4
t t

t t
v d d v dv dr dr v dr drθ ρ θ ρ θρ ρ
θ θ θ θ
∂ ∂ ∂ ∂

− + + −
∂ ∂ ∂ ∂

 

 
2( )

2 2 4
t t

t t
v d d v dv dr dr v dr drθ ρ θ ρ θρ ρ
θ θ θ θ
∂ ∂ ∂ ∂

+ + + +
∂ ∂ ∂ ∂

 

 
2 2

r r
r r

v dr v drv rd v drd rd drd
r r

ρ θ ρ θ ρ θ ρ θ∂ ∂
+ + + +

∂ ∂
 

 
2 2

2 2 2 2
r r

r r
dr dr dr v dr vv rd v drd rd drd

r r r r r r
ρ ρ ρ ρθ θ θ θ∂ ∂ ∂ ∂ ∂ ∂   + + + +   ∂ ∂ ∂ ∂ ∂ ∂   

 

 
2

0
2 2 2

r r
r r

v dr dr v drv rd rd v rd rd
r r r r

ρ ρρ θ ρ θ θ θ∂ ∂ ∂ ∂  − + + − = ∂ ∂ ∂ ∂  
 

  

t r
t r

v vd dr v d dr rdrd v rdrd
r r

ρ ρρ θ θ ρ θ θ
θ θ
∂ ∂ ∂ ∂

+ + +
∂ ∂ ∂ ∂

 

 2 2 31 1 1( ) ( ) ( ) 0
2 2 2

r r
r r

v vv drd dr d v dr d dr d
r r r r

ρ ρρ θ ρ θ θ θ∂ ∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂
 

 

Divide by drdθ  

1 1 1 0
2 2 2

t r r r
t r r r

v v v vv v r v dr v dr dr
r r r r r r

ρ ρ ρ ρρ ρ ρ ρ
θ θ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + + + + + =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 0r t
r r t

v vr v r v v
r r

ρ ρρ ρ ρ
θ θ

∂ ∂ ∂ ∂
∴ + + + + =

∂ ∂ ∂ ∂
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Divide by r  

 0r r t
r t

v v vv v
r r r r r

ρ ρρ ρ ρ
θ θ

∂ ∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂
 

 
( )( ) 0tr r vv v

r r r
ρρ ρ
θ

∂∂
∴ + + =

∂ ∂
     (4.12) 

 

 For incompressible fluid 

 0tr r vv v
r r r θ

∂∂
+ + =
∂ ∂

       (4.13) 
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n
  

[IP 4.4] p. 117 

 A mixture of ethanol and gasoline, called "gasohol," is created by pumping the two liquids 

into the "wye" pipe junction. Find ethQ  and ethV  

 3691.1 kg mmixρ =  

 1.08 m smixV =  

 3 330 / 30 10 m /sgasQ l s −= = ×  

 3680.3 kg mgasρ =  

 3788.6 kg methρ =  

 

 [Sol]  

 2 2
1 (0.2) 0.031m

4
A π
= = ; 2

2 0.0079mA = ; 2
3 0.031mA =  

 3
1 30 10 / 0.031 0.97 m/sV −= × =      (4.4) 

 
1 2 3

0v n dA v n dA v n dAρ ρ ρ⋅ + ⋅ + ⋅ =∫ ∫ ∫
     

    (4.9) 

 
1

680.3 0.97 0.031 20.4 kg/sv n dAρ ⋅ = − × × = −∫
 

 

 2 22
788.6 0.0079 6.23v n dA V Vρ ⋅ = − × × = −∫

 

 

 
3

691.1 1.08 0.031 23.1 kg/sv n dAρ ⋅ = × × =∫
 

 

 2.
20.4 6.23 23.1 0

c s
v ndA Vρ∴ ⋅ = − − + =∫
 



    

 2 0.43 m/sV =   

3 3
2 2 (0.43)(0.0079) 3.4 10 m /s 3.4 /sethQ V A l−→ = = = × =   

No flow in 
and out 
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4.4 The Reynolds Transport Theorem 

• Reynolds Transport Theorem (RTT) 

→ a general relationship that converts the laws such as mass 

conservation and Newton’s 2nd law 

→ Most principles of fluid mechanics are adopted from 

solid mechanics, where the physical laws dealing with the 

time rates of change of extensive properties are expressed for 

systems.  

→ There is a need to relate the changes in a control volume to the changes in a system. 

 

• Two types of properties 

from the system to the 

control volume 

Extensive properties ( E ): total system mass, momentum, energy 

Intensive properties ( i ): mass, momentum, energy 

E

per unit mass 

 

 i  

system mass, m  1 

system momentum, mv


 v


 

system energy, ( )2m v  2( )v


 

 

 
system system

E i dm i dvolρ= =∫∫∫ ∫∫∫      (4.14) 

Osborne Reynolds (1842-1912); 
English engineer 
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▪ Derivation of RTT 

 

 

 

Consider time rate of change of a system property 

 0( ) ( )t dt t R t dt R I tE E E E E E+ +− = + − +    (a) 

 0 . .
( )t dt c s out
E dt i v dAρ+ = ⋅∫∫

 

     (b.1) 

 ( ). .
( )I t c s in
E dt i v dAρ= − ⋅∫∫

 

     (b.2) 

 ( )( )R t dt R t dt
E i dvolρ+

+
= ∫∫∫      (b.3) 

 ( )( )R t R t
E i dvolρ= ∫∫∫      (b.4) 

 

Substitute (b) into (a) and divide by dt  

 ( ) ( ){ }1t dt t
R Rt dt t

E E i dvol i dvol
dt dt

ρ ρ+

+

−
∴ = −∫∫∫ ∫∫∫  

 
. . . .c s out c s in

i v dA i v dAρ ρ+ ⋅ + ⋅∫∫ ∫∫
   
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 ( ). . . .c v c s

dE i dvol i v dA
dt t

ρ ρ∂
= + ⋅
∂ ∫∫∫ ∫ ∫

 

 

    (4.15) 

     

 

① 
dE
dt

= time rate of change of E  

( ). .c v
i dvol

t
ρ∂

∂ ∫∫∫

in the system 

② = time rate change within the control volume

. .c s
i v dAρ ⋅∫ ∫
 

 

 → unsteady term 

③ = fluxes of E  

in Eq. (4.15),

across the control surface 

 

 

▪ Application of RTT to conservation of mass 

For application of RTT to the conservation of mass,  

E m= , 1i =  and 0dm
dt

=  because mass is conserved. 

 

( ) ( ). . . . . . . .c v c s c s out c s in
dvol v dA v dA v dA

t
ρ ρ ρ ρ∂

∴ = − ⋅ = − ⋅ + ⋅
∂ ∫∫∫ ∫ ∫ ∫∫ ∫∫

     

 

    (4.16) 

  

 

 

For flow of uniform density or steady flow, (4.16) becomes 

 
. . . .

0
c s out c s in

v dA v dAρ ρ⋅ + ⋅ =∫∫ ∫∫
   

 ~ same as Eq. (4.9) 

 

Unsteady flow: mass within the control volume 
may change if the density changes 
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For one-dimensional flow 

 2 2 2. .c s out
v dA V Aρ ρ⋅ =∫∫
 

 

 1 1 1. .c s in
v dA V Aρ ρ⋅ = −∫∫
 

 

 1 1 1 2 2 2AV A Vρ ρ∴ =        (4.1) 

 

• In Ch. 5 & 6, RTT is used to derive the work-energy, impulse-momentum, and moment of 

momentum principles. 
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Homework Assignment # 4 

Due:  1 week from today 

 

Prob. 4.9 

Prob. 4.12 

Prob. 4.14 

Prob. 4.20 

Prob. 4.31 

 

 


