Ch. 5 Flow of an Incompressible Ideal Fluid

Chapter 5 Flow of an Incompressible Ideal Fluid

5.1 Euler’s Equation

5.2 Bernoulli’s Equation

5.3 The One-Dimensional Assumption for Stream tube of Finite Cross Section
5.4 Application of Bernoulli’s Equation

5.5 The Work-Energy Equation

5.6 Euler’s Equation for Two-Dimensional Flow

5.7 Bernoulli’s Equation for Two-Dimensional Flow

5.8 Stream Function and Velocity Potential

Objectives:
« Apply Newton’s 2" law to derive equation of motion, Euler’s equation

« Introduce the important Bernoulli and work-energy equations, which permit us to

predict pressures and velocities in a flowfield

« Derive Bernoulli equation and more general work-energy equation based on a control

volume analysis
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Ch. 5 Flow of an Incompressible Ideal Fluid

= What is ideal fluid?

An ideal fluid is a fluid assumed to be inviscid.

- In such a fluid there are no frictional effects between moving fluid layers or between
these layers and boundary walls.

- There is no cause for eddy formation or energy dissipation due to friction.

- Thus, this motion is analogous to the motion of a solid body on a frictionless plane.

[Cf] The real fluid — viscous fluid

= Why we first deal with the flow of ideal fluid instead of real fluid?

- Under the assumption of frictionless motion, equations are considerably simplified
and more easily assimilated by the beginner in the field.

- These simplified equations allow solution of engineering problems to accuracy
entirely adequate for practical use in many cases.

- The frictionless assumption gives good results in real situations where the actual
effects of friction are small.

[EX] the lift on a wing

ap

= Incompressible fluid, ———=0
o(t, x,y,2)

~ constant density
~ negligibly small changes of pressure and temperature

~ thermodynamic effects are disregarded
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Ch. 5 Flow of an Incompressible Ideal Fluid

5.1 Euler's Equation

dWsin@

Horiz. datum plane ‘L

Fig. 5.1

Euler (1750) first applied Newton's 2nd law to the motion of fluid particles.

Consider a streamline and select a small cylindrical fluid system

Pressure force Gravitational
SE=ma / force

(i) dF = pdA—(p+dp)dA—dWsinéd

=—dpdA- pgdAds % g U2
S

sin@ =—
ds

=—-dpdA- pgdAdz

(i) dm= pdAds (density x volume)

(iii) a:d_V:d_VE:Vd_V
dt ds dt ds



Ch. 5 Flow of an Incompressible Ideal Fluid

.. —dpdA— pgdAdz = ( pdsdA)V ?j—v
S

Dividing by pdA gives the one-dimensional Euler's equation

d—p+VdV +9dz=0
Yo,

Divide by g

d—p+£VdV +dz=0

v - d(V2) =2V dv

2
d—p+d(V—J+dz=O

Y 29
For incompressible fluid flow,
2
d (E + Ve + z] =0
Y 29

— 1-D Euler's equation (Eg. of motion)
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Ch. 5 Flow of an Incompressible Ideal Fluid

5.2 Bernoulli's Equation

For incompressible fluid flow, integrating 1-D Euler's equation yields

p 2
—+—+2=const.=H (5.1)
y 29

where H = total head

— Bernoulli equation

Between two points on the streamline, (5.1) gives

2 2
PV R Ve Z,
y 29 y 29

kg - m/sz/kg .mis? _

B: pressure head 5 3 =
y m m

Z = potential head (elevation head), m ) )
Henri de Pitot

2 (m/s)? o (1695~1771)

—— = velocity head
2 d m/s

/— | Pitot tube
Bl /?/7

Energy line
(EL)

)
D

Hydraulic -~
grade line
(HGL) N P |
A ¥ '
manometer = D

Horiz. datum plane
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Ch. 5 Flow of an Incompressible Ideal Fluid
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Ch. 5 Flow of an Incompressible Ideal Fluid

5.3 The One-Dimensional Assumption for Streamtubes of Finite Cross Section

Bernoulli Eq. is valid for a single streamline or infinitesimal streamtube across which
variation of P, V and z is negligible.

This equation can also be applied to large stream tubes such as pipes, canals.

Flow cross -
section

Horiz. datum plane

Fig. 5.3

Consider a cross section of large flow through which all streamlines are precisely straight and

parallel.

1) Forces, normal to the streamlines, on the element of fluid are in equilibrium

— acceleration toward the boundary is zero.
>F=0
(p,— p,)ds —yhdscosa =0

¥

(p1 - pz)ds = 7(22 - 21)dS

cosa=(z,—-z)/h




Ch. 5 Flow of an Incompressible Ideal Fluid

Py zl:&+ Z, (2.6)

/4 /4

— the same result as that in Ch. 2

— (uantity [Z + Ej is constant over the flow cross section normal to the streamlines
v

when they are straight and parallel.

P

— This is often called a hydrostatic pressure distribution ( Z +—= const. for fluid at rest).
Y

ii) In ideal fluid flows, distribution of velocity over a cross section of a flow containing
straight and parallel streamlines is uniform because of the absence of friction.

— All fluid particles pass a given cross section at the same velocity, V (average velocity)

V, =V,

Combine (i) and (ii)

2 2
PV R Ve Z,
y 29 y 29

— Bernoulli equation can be extended from infinitesimal to the finite streamtube.

— Total head H is the same for every streamline in the streamtube.

— Bernoulli equation of single streamline may be extended to apply to 2- and 3-dimensional

flows.



Ch. 5 Flow of an Incompressible Ideal Fluid

[IP 5.1] p. 129

Water is flowing through a section of cylindrical pipe. p. =35kPa, ¥ = 9.8x10° N/m*®

Y Datum

[Sol]

L

/4 /4 /4

P, =Pc +7(zc —2,)=35x10° - (9.8x103)(%j c0s30° = 29.9 kPa

Ps = Pe +7(2c —25) =35%10° +(9.8><103)£%)cos30° = 40.1 kPa

p.  35x10°

= 982107 =3.57 m above point C.
y 8x

— The hydraulic grade line is
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Ch. 5 Flow of an Incompressible Ideal Fluid

5.4 Applications of Bernoulli's Equation

* Bernoulli's equation

p 2
—+—+2=H =const.
y 29

— where velocity is high, pressure is low.

* Torricelli's theorem (1643)

~ special case of the Bernoulli equation.

HGL for central

/streamline

reservoir

2
Datum
Apply Bernoulli equation to points 1 and 2
P +— +2 _P YV +—2+12,
y 29 y 29
V, =0 (for very large reservoir); P, = Pan =
VZ
2,=12, 12 P
29 7y
V2
21—22=h=&+—2 (a)
y 29
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Ch. 5 Flow of an Incompressible Ideal Fluid

Apply Newton's 2nd law in the vertical direction at section 2
>F=ma
dF =—(p+dp)dA+ pdA—ydAdz = —dpdA - ydAdz
dm=pdAdz
a=-g
.. —dAdp-ydAdz =—-(pdAdz)g
—dp—ydz =-ydz
~ dp=0
— no pressure gradient across the jet at section 2.
— Pa=Pg=Pc =P,

S Pa= Pam = 0 (gage) (b)

Thus, combining (a) and (b) gives

Ve
29

—V, =4/2gh

~ equal to solid body falling from rest through a height h.

h
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Ch. 5 Flow of an Incompressible Ideal Fluid

-1.58 m

[IP 5.2] p.131

Reservoir

Fig. Problem 5.2

Find: Py, Pys P3s Py and eleveation at point 6

Sol]

(i)Bernoulli's Eq. between (©&®

V2
040 47 —&+—+z

y 29 y 29
Po=Ps = patm_o V =0

2
— 90= 60+V—
29

V, =243 m/s

Calculate Q using Eq. (4.4)
Q=AV = 24.3><%(o.125)2 =0.3m%/s
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(ii) Apply Continuity equation, Eq. (4.5)

Ch. 5 Flow of an Incompressible Ideal Fluid

125
AV,=Q=AV, .. V,= (%j V, (4.5)
2 4y/2
(%125 gy
2g \300) 2g \300 —
Continuity
equation
V,=40.9(2x9.8) =4.2m/s=V, =V,
2 4\/2
V—zz(lz—f’j V. (125j (30)=4.58m,
290 \200) 2g 200
V, =4/4.58(2x9.8) =9.5 m/s
(iii)B.E.© & @
900=Pr Y1 170 of H,0 — head
4 29
< PL_18-09=17.1m of H,0 — head
Yw
=17.1(9.8x10°) =167.5 kPa (5.1)
(iv)B.E.© & @
00="2 1874458 ~P2-_158m
4 4
3
p, =—1.58(9.8x10%) =—-15.48 kPa = % =116 mmHg vacuum

—15.48 kPa below p,,,
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Ch. 5 Flow of an Incompressible Ideal Fluid

[Re] 1bar=1000 mb(millibar)=100 kPa=100 kN/m?=10° N/m?

P, = 760 mmHg =101.325 kPa(10°pascal) =1013 mb = 29.92 in. Hg

1 mmHg =133.3 Pa =133.3 N/m°

(VVB.E.© &®

90="P21009+78
y

o P12 09-11.1m
y

p, =108.8 kPa

(vij B.E©& @

Ps _31_09-30.1m
y

p, = 295.0 kPa

(vii) Velocity at the top of the trajectory

— V,=24.3c0s30" =21.0 m/s

ApplyB.E.© & ®

21.0°
29

El.=90- =67.5m
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Ch. 5 Flow of an Incompressible Ideal Fluid

M Il

167.5 -15.8 108.7 294.9
Velocity, m/s 0 4.22 4.61 4.22 4.22

= Cavitation

As velocity or potential head increase, the pressure within a flowing fluid drops.

~ Pressure does not drop below the absolute zero of pressure.
(Pam ~10°millibar =100 kPa .. p,, =0=> p,,, =—100 kPa)

~ Actually, in liquids the absolute pressure can drop only to the vapor pressure of the liquid.

For water, ,

P
1.23kPa @ 10°C
1.70kPa @ 15°C
2.34kPa @ 20°C
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Ch. 5 Flow of an Incompressible Ideal Fluid

[IP5.3] p.134
Pg = 96.5 kPa = barometric pressure.

What diameter of constriction can be expected to produce incipient cavitation at the throat of

the constriction?

Water at 40° C

y =9.73 kN/m®; p, =7.38 kPa

3 2
P, _7.38x10° Nim* _ o

y  9.73x10° N/m°

Py Puy  96.5x10° N/’

= =9.92m
y y  9.73x10° N/m®

(i) Bernoulli Eq. between @ and ©

VZ
Zl+&+L:ZC +&+_C

7y 29 y 29 Incipient
d cavitation
V=0, p,=pg P, =1,
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Ch. 5 Flow of an Incompressible Ideal Fluid

2

S 11+9.92+0:3+O.76+\2{—°
g

2
\2/—°:17.16 m —V,=18.35m/s
g

(ii) Bernoulli Eq. between @ and @

Z, +&+—_ Z, +&+

7y 29 y 29

Vi=0, p=p,=Ps

2
11+9.92+0=0+9.92+\2/—2
g

V, =14.69 m/s

(iii) Continuity between (2 and ©
Q=AV,=AV,
%(0.15)2(14.69) - %df(18.35)

-.d,=0.134 m=134 mm

[Cp] For incipient cavitation,

critical gage pressure at point C is

pC pam pv
gage :_E o — —]:—(992—076) =-0.16 m
v /4 /4
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Ch. 5 Flow of an Incompressible Ideal Fluid

=Bernoulli Equation in terms of pressure

1 1
P, +§,0V12 +y2,=p, +§,0V22 +rZ,

p, = static pressure

1
= pV,* = dynamic pressure

2

¥ Z = potential pressure

= Stagnation pressure, Pg

HGL for streamline 05 ﬂ EL
i
Pitot tube
] Stagnation
point

Apply Bernoulli equation between 0 and S
1 2 1 2
Po +Epv0 +y2, = Ps +E'0VS +yZ

Z,=12s; Vs =0

1
Po +EPV02 =ps +0

V0 _ 2(ps — po)
\} Yo,
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Ch. 5 Flow of an Incompressible Ideal Fluid

[IP 5.4] p.136

What is the velocity of the airstream, Vg?

Po
‘I Ps _—»
N /Pitot tube ‘ J | H{ i:;
f 150 mm 55:;
Pt Static tube T
1| ater A 2

p. =1.23kg/m*  », =9810N/m®

v, {i(ps - pO)T
Yo,

a

By the way,
P =0,
p, =ps +0.150,..9; p, =p,+0.15y,

5o Ps — P =0.15(y,, — p.;;9) =0.15(9,810-1.23x9.81) =1,469.7 pa

V, = \/i (1,469.7) =48.9 m/s
1.23

[CAI Y =YW=Y
Then, ps—Pp, =7h

sV, =4/2gh
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Ch. 5 Flow of an Incompressible Ideal Fluid

= Bernoulli principle for open flow
- Flow over the spillway weir: a moving fluid surface in contact with the atmosphere
and dominated by gravitational action
- At the upstream of the weir, the streamlines are straight and parallel and velocity
distribution is uniform.
- At the chute way, Section 2, the streamlines are assumed straight and parallel, the

pressures and velocities can be computed from the one-dimensional assumption.

[IP 5.6] p.139
At section 2, the water surface is at elevation 30.5 m and the 60° spillway face is at elevation

30.0 m. The velocity at the water surface at section 2 is 6.11 m/s.

El.29.0 m

[Sol]
Thickness of sheet flow = (30.5—30)/c0s60° =1m
Apply 1-D assumption across the streamline at section (2

7% St 7 = Py +2,
Y Y
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Ch. 5 Flow of an Incompressible Ideal Fluid

P, =7(z,. —2,)=9.8x10%(0.5) = 4.9 kPa

6.1°

Elevation of energy line H =30.5+ >
g

Apply B.E. between ® and ®©

P +—+z _&+—+ Z,

y 29 y 29

4.9 V2

324=""1221300 . V,=611m/s
98"

2g

=324 m

Velocity is the same at both
the surface and the bottom

q=h\V,=1x6.11=6.11 mz/s per meter of spillway length

Apply Bernoulli equation between O and

2
y,+29.04— [611j =32.4

291 Vs
y,=3.22m
v =98y g
h  3.22
¥

hi=y,
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Ch. 5 Flow of an Incompressible Ideal Fluid

5.5 The Work-Energy Equation
For pipelines containing pumps and turbines, the mechanical work-energy equation can be

derived via a control volume analysis.

-[ pump = add energy to the fluid system

turbine = extract energy from the fluid system

* Bernoulli equation = mechanical work-energy equation for ideal fluid flow

1 Horizontal datum

Apply mechanical work-energy principle to fluid flow
— work done on a fluid system is exactly balanced by the change in the sum of the kinetic

energy( KE ) and potential energy( PE) of the system.

dW = dE 0

where dW = the increment of work done; dE = resulting incremental change in energy

~ Heat transfer and internal energy are neglected.
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Ch. 5 Flow of an Incompressible Ideal Fluid

[Cf] The first law of Thermodynamics

~ Heat transfer and internal energy are included.

Dividing (1) by dt yields

W _dE
dt dt

@)

(i)Apply the Reynolds Transport Theorem to evaluate the rate of change of an extensive

property, in this case energy

— steady state form of the Reynolds Transport Theorem

dE

_—

E -[-[C.S.OUt ipv.ﬁ+jjcslnipg.dA (3)

where i = energy per unit mass

2

- I=gz+—- @
otential | — ~ Kinetic
energy
energy
Substituting (4) into (3) gives
E_[[ [+l |ovdaef] [g+L|pv-da
dt — Jesout g 2 P c.s.in g 2 P (5)

dE
where _t = the rate of energy increase for the fluid system

— Even in steady flow, the fluid system energy can change with time because the system

moves through the control volume where both velocity and elevation can change.

5-24



Ch. 5 Flow of an Incompressible Ideal Fluid

Since the velocity vector is normal to the cross sectional area and the velocity is uniform over

the two cross sections, integration of RHS of (5) yields

dE V.2 V.2
_:p[gzz +L)V2A2 _p[gzl +?JV1A1

dt 2
V' A (6)
=p9 Zz"'g VA, -pg 21"'5 ViA

Continuity equation is

Q=V,A =VA 7)

Substituting the Continuity equation into (6) gives
dE B V22 V12
oY Kzﬁg}‘(zﬁg (5.4)

(i)Now, evaluate the work done by the fluid system (dW )
1) Flow work done via fluid entering or leaving the control volume

— Pressure work = p x Area x Distance
2) Shaft work done by pump and turbine
3) Shear work done by shearing forces action across the boundary of the system

— W,

sear = 0 for inviscid fluid

* Pressure work

~ consider only pressure forces at the control surface, p;A; and p,A;

— Net pressure work rate = pressure force x distance / time = pressure force x velocity
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Ch. 5 Flow of an Incompressible Ideal Fluid

= pAV;. - PAY, (8)

» Shaft work

W, >0 (energy is extracted from the system)

W, <0 (energy is put in)

— Net shaft work rate = QyE, —QyE; (9)

where E, (E; ) =work done per unit weight of fluid flowing

Combining the two net-work-rate equations, Egs. (8) and (9), yields

Net work rate = Q)/( PPy +Ep - ETj (5.5)
” .

/4

Equating Egs. (5.4) and (5.5), we get

A WV PP
QyKZ”E]_( 2gﬂ Qy(y P Ej )

Head, m
Collecting terms with like subscripts gives
/
pl+—+E =1z, +p2+—+E 5 7
y 29 y 29 (5.7)

— Work-energy equation
~ used in real fluid flow situations

~ Work-energy W/O Ep and E; isidentical to the Bernoulli equation for ideal fluid.
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Ch. 5 Flow of an Incompressible Ideal Fluid

« Addition of mechanical energy (E;) or extraction (E;) cause abrupt rises of falls of

energy line.

* Power of machines

Sower _W _work _Forcexdistance _mgxE _ pvol.gxE :y(vol. jx E-Ey0
t  time time t t
E, or E
Kilowatts (kW) of machine = —F T 5.8a
(kW) 7Q 1000 (5.8a)
Horsepower (hp) of machine = ;/Q& (5.8b)

550

— 1hp=0.746 kW
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Ch. 5 Flow of an Incompressible Ideal Fluid

[IP5.7] p.145
The pump delivers a flowrate of 0.15 m®/s of water. How much power must the pump supply

to the water to maintain gage readings of 250 mm of mercury vacuum on the suction side of

the pump and 275 kPa of pressure on the discharge side?

116 m

Fig. Problem 5.7
[Sol]

p, =—250 mm of Hg <760 mmHg

 =—
=-250x133.3 N/m* = 33,325 N/m’

&:ﬂ:_&gg m

y 9800

p, =275 kPa > 100 kPa

3
P, _275x10° 0.

y 9800

Apply Continuity Equation
Q=AV,=AV,
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Ch. 5 Flow of an Incompressible Ideal Fluid

0.15

Vlzﬁ : =4.8m/s
*(0.2)
" (02)
2 2
" VL: 4.8 =1.16 m
29 2x9.8
szﬁoi=8.5 m/s
2
,(0.15)
2 2
" V—2= 8.5 =3.68 m
20 2x9.8

Apply Work-Energy equation between (D & ()

pl+—+z +E, _ P
y 29 Y

+—+z +E; 5.7
> (5.7)

-3.39+1.16+0+ Ep =28.1+3.68+3

Ep =37.0m

Pump power =

Qr(E,) 0.15(9800)(37.0)

1000 1000

—54.4 KW (5.8)

« The local velocity in the pump passage may be considerably larger than the average

velocity in the pipes.

— There is no assurance that the pump will run cavitation-free.
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Ch. 5 Flow of an Incompressible Ideal Fluid

5.6 Euler's Equations for Two-Dimensional Flow

» Two-Dimensional Flow
~ The solution of flowfield problems is much more complex than the solution of 1D flow.

~ Partial differential equations for the motion for real fluid are usually solved by computer-

based numerical methods.

~ present an introduction to certain essentials and practical problems

L opdx
oX 2

Fig. 5.9

 Euler’s equations for a vertical two-dimensional flowfield may be derived by applying

Newton's 2nd law of motion to differential system dxdz

>F=ma
Force:
dF, = —a—pdxdz
OX
dF, = P dxdz — pgdxdz

a
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Ch. 5 Flow of an Incompressible Ideal Fluid

Acceleration for steady flow:

/ +8_u for unsteady flow
ou_ ,ou ot

X - direction: —@dxdz = pdxdz ua—u+ Wa—u
OX OX oz

z - direction: —@dxdz — pgdxdz = pdxdz(u@+ W@j
0z OX 0z

Euler's equation for 2-D flow

10p ou ou
=U—+W—
L OX OX 0z

(5.9a)

_lop_ oW W g (5.9b)

*Equation of Continuity for 2-D flow of ideal fluid

ou ow

L0 4.11
oX 02 (.10

Unknowns: p, U, w
Equations: 3

— simultaneous solution for non-linear PDE
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5.7 Bernoulli's Equation for Two-Dimensional Flow

Bernoulli’s equation can be derived by integrating the Euler's equations for a uniform density

udu

Ch. 5 Flow of an Incompressible Ideal Fluid

flow.
dx x Lo :(ua—u+wa—ujxdx (@)
0 OX OX 0z
dz x _Lop :(u@+wﬂ+gjxdz (b)
p 0Z OX 0z
(a)+(b): —i(@dx+a—pdz]:ua—udx+W8—udx+u@dz+W%dz+gdz
P\ OX 0z OX 0z OX 0z
:(ua—udx+u8—udzj+(w%dx+w@dzj
OX 0z OX oz
ou ou oW T~ wdw
+U—0dz —u—dz +w—dx —w—adx + gdz
ox oz oz OX
ow adu
By the way, (udz — wdx) [& —Ej = (udz —wdx)¢&

dp =a—pdx+a—pdz

OX 0z
du :a—udx+a—udz
OX 0z
dW=@dX+@dZ
OX 0z
oW ou
v
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Ch. 5 Flow of an Incompressible Ideal Fluid

2
du )= 2udu =ua—udx+ua—udz
2 2 OX 0z

Incorporating these terms and dividing by g gives

_d_p:id(UZ+w2)+£(udz—wdx)§+dz ©)
y 29 g

Integrating (c) yields

£+i(u2+wz)+z:H —ijf(udz—wdx) (d)
y 29 g

where H =constant of integration

Substituting resultant velocity, V

VZ=u?+w

2
B+V—+z:H —ljg(udz—wdx) (5.10)
y 29 g

(i) For irrotational (potential) flow & =0

2
.'.£+—+z: H
y 29

— Constant H is the same to all streamlines of the 2-D flowfield.
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Ch. 5 Flow of an Incompressible Ideal Fluid

(i) For rotational flow (& #0): jf(udz —wdx) =0
However, along a streamline for steady flow,
w_ dz

— — udz-wdx=0 (e)
u dx

Substituting (e) into (5.10) gives

— H s different for each streamline.

[Re]
For ideal incompressible fluid, for larger flow through which all streamlines are straight and
parallel (irrotational flow)

— Bernoulli equation can be applied to any streamline.
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Ch. 5 Flow of an Incompressible Ideal Fluid

5.9 Stream Function and Velocity Potential

The concepts of the stream function and the velocity potential can be used for developing of

differential equations for two-dimensional flow.

59.1 Stream function
Definition of the stream function is based on the continuity principle and the concept of the

streamline.

— provides a mathematical means of solving for two-dimensional steady flowfields.

streamlines

el )

-0

0 x
Fig. 5.18 Definition of the stream function.

Consider streamline A: no flow crosses it

— the flowrate i across all lines OA is the same.
— is a constant of the streamline.

— If y can be found as a function of x and y, the streamline can be plotted.

The flowrate of the adjacent streamline B will be w + dy
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Ch. 5 Flow of an Incompressible Ideal Fluid

The flowrates into and out of the elemental triangle are equal from continuity concept.

dy =-vdx +udy (a)

Total derivative of w (X, Y)is

oy oy
dy =——dx+—d 5.14
V= oy y (5.14)
Compare (a) & (5.14)
u=v (5.15a)
oy
-l (5.15b)
OX

where y =stream function

— If w is known u, v can be calculated.

Integrate (5.14)
_(9%v oy
V= JadXﬂ‘J’Edyﬁ‘C

:I—vdx+judy+C (b)

— If u, vare known y can be calculated.
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= Property of stream function
1) The equation of continuity

ou ov
+ —=

e 0 :
Y (4.12)

Substitute (5.15) into (4.11)

[y _2(8_9”)_0
OX\ oy ) oy\ oOx

. Oy _ 0oy

" Oxdy  oyox

— Flow described by a stream function satisfies the continuity equation.

2) The equation of vorticity

NN (3.10)

X oy

Substitute (5.15) into (3.10)

5_2(_5_V/j_i Lov)_ Oy oy
oxl oox ) ooyl oy ) oxt oy?

For irrotational flow, ¢ =0

o’y N o’y

8X2 ay2 =

Viy =0 — Laplace Eq.

— The stream function of all irrotational flows must satisfy the Laplace equation.
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5.9.2 Velocity Potential

Suppose that another function @(X, ) is defined as

op— Op—
OX } @

By the way,

V =ue, +ve, (b)

Comparing (a) and (b) gives

0¢
__99 16
u===" (5.16)
yo_99

oy

where @ = velocity potential

= Property of stream function

1) The equation of continuity

Substitute Eqg. (5.16) into continuity Eq.

Q(_%j+£(_%j
ox\ ox/) oy\ oy

o’ 3%
"oy

= 0 — Laplace Eq. (5.18)
oy

— All practical flows which conform to the continuity Eq. must satisfy the Laplace

equation in terms of ¢@.
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2) Vorticity Eq.

Substitute Eq. (5.16) into vorticity eq.

522(_%j_2(_%):_ﬁ+8_2¢:0
ox\ oy ) oy\ ox OXoy  0yoX

— The vorticity must be zero for the existence of a velocity potential.

— irrotational flow = potential flow

— Only irrotational flowfields can be characterized by a velocity potential ¢ .
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[IP 5.14] p164
A flowfield is described by the equation =Yy — X2,
1) Sketch streamlines w =0, 1, 2.

2) Derive an expression for the velocity V at any point.

3) Calculate the vorticity.

[Sol]
1) y=0->0=y-Xx°
Sy = X2 — parabola

=1 y=x"+1

=2 > y=x"+2

oy 2 )
D u=-">—=—(y-x)=1
) Y ay(y )
oy 0 )
=———=——(y—-X")=2x
3 (y—x%)

sV = U2 v = (2%)2 12 =4XE +1

W00 0
3)9”—8)( 5 aX(ZX) ay(l) 2(s™)

o &#0 — The flowfield is rotational.

5-40



Ch. 5 Flow of an Incompressible Ideal Fluid

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

Prob.

5.6

5.11

5.24

5.30

5.46

5.48

5.59

5.89

5.98

5.104

5.119

5.123

5.149

5.157

Homework Assignment # 5

Due:

1 week from today
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