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5. Displacement Method

- Unit displacement
- Stiffness coefficients
- Degree of freedom
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Figure 5.1 Example of a coordinate system (b) employed for the analysis of a plane frame
(a) by the displacement method.



Step I A coordinate system is established to identify the locations and the
positive directions of the joint displacements (Fig. 5.1(b)). The number of
coordinates n is equal to the number of possible independent joint displace-
ments (degrees of freedom). There are generally two translations and a rota-
tion at a free (unsupported) joint of a plane frame. The number of unknown
displacements may be reduced by ignoring the axial deformations. For
example, by considering that the length of the members of the frame in Fig.
5.1(b) remains unchanged, the degrees of freedom are reduced to coordinates
1.3, 6and 9.

Step 2 Restraining forces | F} are introduced at the n coordinates to prevent
the joint displacements. The forces { F} are calculated by summing the fixed-
end forces for the members meeting at the joints. Also determine {4,}, values
of the actions with the joints in the restrained position.

Step 3 The structure is now assumed to be deformed such that the dis-
placement at coordinate j, [2;= 1, with the displacements prevented at all the
other coordinates. The forces 8. Sy, ..., 5, required to hold the frame in



this configuration are determined at the » coordinates. This process is
repeated for unit values of displacement at each of the coordinates, respect-
ively. Thus a set of n * n stiffness coetlicients is calculated, which forms the
stiffness matrix [S], . , of the structure; a general element §; is the force
required at coordinate / due to a unit displacement at coordinate j. The values
of the actions [4,] are also determined due to unit values of the displace-
ments; any column ;j of the matrix [4,] 1s composed of the values of the
actions at the desired locations due to D; = 1.

Step 4 The displacement {D} in the actual (unrestrained) structure is
obtained by solving the equilibrium equation:

[S] 1D} =— {F} (5.1)

The equilibrium Equation (5.1) indicates that the displacements { D)} must
be of such a magnitude that the artificial restraining forces {F} are
eliminated.

Step 5 Finally, the required values { 4} of the actions in the actual structure
are obtained by adding the values {4} in the restrained structure (calculated
in step 2) to the values caused by the joint displacements. This is expressed by
the superposition equation:

JLA}mKJ: {Ar}mxj'i_["du]mxn {D}J‘JKJ {52}
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Time-dependent change in fixed-end forces in a
homogeneous member
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Figure 5.2 Analysis of the time-dependent changes in the end forces of a member caused
by fixity introduced after loading: (a) totally fixed beam subjected at time t; o a
system of forces; (b), (c), (d) statically determinate beams loaded at time t,
statical system changed to totally fixed beam at time t,; (e}, (f), (g) coordinate

systems.



{AD*} = {D*(1) 12, 1) — oty 1)] (3.3)

where | D*(1;)} are the instantaneous displacement at 7, due to the external
loads on the statically determinate system; ¢(f, t;) is the coeflicient for creep at
I; when the age at loading is ¢,.

The age-adjusted flexibility matrix is

1= 110 + ool 1,)] (5.4)

where y = y(1., 1) is the aging coeflicient (see Section 1.7); [ f] is the flexibility
matrix of a statically determinate beam (Fig. 5.2(b), (¢) or (d) ). The modulus
of elasticity to be used in the calculation of the elements of [ /] 1s EL(7)).

The compatibility Equation (4.5) can now be applied, which is repeated
here:

[FHAF*} = {-AD*| (5.5)

Substitution of Equations (5.3) and (5.4) in Equation (5.5) and solution
gives the changes in the three end forces developed during the period 1, to f.:

Fr."?{rg\ ID} - I'.l'-:'{lf]-l FI:I}‘J {F*} (56:}

AF#! =
i [ L+ yep(ta 1))
where

{F*y = [T {=D*(ty)} (3.7)



Example 5.1

The cantilever in Fig. 5.3(a) is subjected at age r, to a uniformly distrib-
uted load g/unit length. At age ;. end B is made totally fixed. Find the
forces at the two ends at a later time 7,. Use the following creep and
aging coethcients: g(f,. ty) = 0.9: p(t,. ty) = 2.6 y(t,. 1)) = 0.8: p(t,. 1)) =

2.45.
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Figure 5.3 Analysis of time-dependent forces in a cantilever transformed into a
totally fixed beam after loading (Example 5.1): (a) forces acting at time ;
(b) changes in end forces between t, and t;; (c) total forces at t,.
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Forces developed at end B of the cantilever during the period 7, to t,
(Equation (5.6) ) are

(aF* =

26-09 } {—qi’fﬁ ] B {—B.EB?’E:}I]
A+ 0.8 % 2.45

gl*12)  10.0479412

These two forces and their equilibrants at end A are shown in Fig.
5.3(b). Superposition of the forces at the member ends in Fig. 5.3(a)
and (b) gives the end forces at time #,. shown in Fig. 5.3(c).



Time-dependent change in the fixed-end forces in a composite member
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A system of three coordinates is chosen on a statically determinate released

structure in Fig. 5.6(b). The analysis involves the solution of the following
equation (see Equation (4.5)):

[f] {AF} =— {AD} (5.8)



Solution of Equation (5.8) gives
(AF} =[fT" {-AD) (5.9)

where [f]! is the age-adjusted stiffness corresponding to the coordinate
system in Fig. 5.6(b). For a member with constant cross-section.’

(20 o
. E . ]
[f]—I:T 0 41 21 (5.10)
0 2] 4f_
£ _21 0 D_
(AF} = [“‘ 0 41 21| {-AD] (5.11)
0 27 4?_

The changes {AD} in the displacements of the released structure may be
determined by numerical integration or by virtual work using the equation
(see Section 3.8):

J(Aee) N, di
(AD) =X [(Aw) M, di (5.12)
Ay M, di



Aeq and Ay may be calculated by the method presented in Section 2.5
using Equation (2.40) which is rewritten here:

{Aao}_ 1 [ ! —ﬂ {—&N} (
Ay _EC(EI—FE] B All-AM

where {AN, AM} are a normal force at O and a bending moment required to
artificially prevent the change in strain in the section during the period 7, to 7.
B is the first moment of area of the age-adjusted transformed section about
an axis through the reference point O.

N
L




Artificial restraining forces
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Example 5.2 Steel bridge frame with concrete deck: effects of
shrinkage

The bridge frame in Fig. 5. S(cl has a composite section for part AD
(Fig. 5.8(b)) and ¢ . 'E It 1s
required to find the changes in the reactions and in the stress distribu-
tion in the cross-section at G due to uniform shrinkage of deck slab
occurring during a period 7, to #,.

The cross-section properties of members are: for columns BE and
CF, area = 20000mm? (31in*) and moment of inertia about an axis
through centroid = 0.012m* (29000in*); for part AD, the steel
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cross-section area = 39000 mm? (60in?) and moment of inertia about its
centroid = 0.015m* (36 000in?).
The material properties are:

E(t,) = 30GPa (4350ksi) E.=200GPa (29000 ksi)
o(t,, 1) =2.5 2t 1) =0.8 ety 1) =—270 x 107°
The following cross-section properties for part AD are needed in the
analysis:

Age-adjusted transformed section

E(t,. t) = 30 10° =10 GP: [l —@—?0
e o) = g% 2.5 a - alinfo) =7 =20

The age-adjusted transformed section is composed of 4, = 1.32m°
plus 24, = 20 x 0.039 = 0.780m". A reference point O is chosen at the
centroid of the age-adjusted transformed section at 1.361 m above bot-
tom fibre (Fig. 5.8(¢)). Using E .= E, = 10GPa, the properties of the

age-adjusted transformed section are:

A=2.10m? B=0 I=1.0232m"



Transformed section at t,

200
E(1,)=30GPa  a(ty) = e 6.667  E.=E(t)

Area and its first and second moment about an axis through the
reference point O:

A=1.58m> B=-0.3947m’ [1=0.5221m".

The centroid of this transformed section 1s 1.611 m above the bottom
fibre and moment of inertia about an axis through the centroid is
0.4234m*".

Concrete deck slab  Area, first and second moment of the concrete
deck slab alone about an axis though the reference point O:

A.=132m? B.=-0.5927m’ [.=0.2714m"

L



The resultant of stresses if shrinkage were restrained at all sections of
AD (Equation (2.43)):

AN o 1.32 3.564 x 10°N
J\ }=—10>< 10°(=270 XIO*]Jl }le }

AM —0.5927 —1.600 x 10° N-m
AEI AN n (_[A B][es
=— -SE
k I {AM }shrinkage ;{ C|:BC IC:|{O}}
(3
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Figure 5.10 Analysis of stresses at section G due to shrinkage in a composite
continuous frame of Example 5.2; (a) stress distribution due to N =
—3.469MN at O and M =—-0.056 MN-m applied on age-adjusted
transformed section; (b) total stress due to shrinkage (superposition

of Figs 5.9(b) and 5.10(a)).



Example 5.3 Composite frame: effects of creep

The frame in Fig. 5.11(a) has a composite cross-section for part BC and
a steel section for the columns BE and CF. The dimensions of the cross-
sections and the properties of the materials are the same as for member
BC in Example 5.2: see Fig. 5.8. The properties of the cross-sections of
the columns BE and CF are given in Fig. 5.11(a). At time 7,, a uniformly
distributed downward load of intensity ¢ = 40kN/m is applied on BC
and sustained to a later time #,. It is required to find the change in the
bending moment due to creep during the period 7, to 7,. Use the same
creep and aging coethcients as in Example 5.2. Also find the stress
distribution and the deflection at section G at time 7,.

The properties of the cross-section for member BC are the same as
for part AD of the frame of Example 5.2, and thus this part of the
calculation is not discussed here.
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Table 5.1 Instantaneous axial strain and curvature at t;,immediately after application of the load q (Example 5.3,Fig. 5.11)

Properties of Deflection
transformed' section at Axial strain and atG
age tg Internal forces curvature at t, Properties of (Equation
(E.ei= E(t;) = 30GPa) introduced at t, (Equation (2.32)) concrete area (C.8))
Member  Section A B l N M &ty Wity A, B. I Ditg)
B 1.58 -03947 05221 -02431 -1.82I —-42.1 -148.1 132 -0.5927 02714
BC G 1.58 -03947 05221 -0.243] 3.624 649 280.5 132 -0.5927 02714 2846
C 1.58 -03947 05221 -02431 -1.821 —-42.1 -148.1 .32 -0.5927 02714
Multiplier m’ m’ m* 10° N 10°N-m 107 10 m'  m? m’ m?* 10~ m

'The reference point O Is at the centrold of age-adjusted transformed section (Fig. 5.8(c))



Table 5.2 Changes in axial strain and in curvature and corresponding elongation and end rotations of the released structure in Fig. 5.11(c)

Changes in Change in
Changes in axial displacements at the deflection
Internal forces to Properties of age-adjusted  strain and in coordinates in Fig. atG
restrain creep transformed section curvature 5.11(c) (Equations (Equation
(Equation (2.42)) (E. = E.(t;,t)= 10GPa)  (Equation (2.40)) (C.5-7)) (C.8))
Member  Section AN AM A B I Ag, Ay AD, AD, AD, AD
B —-0.8052 0.3810 2.10 0 1.0232 383 -372
BC G 2.015 -0.9415 2.10 0 1.0232 -96.0 92.0 —1691 —-807 807 9.59
C —-0.8052 0.3810 2.10 0 1.0232 383 -372
Multipliers 10°N 10° N-m m? m’  m 10-* 10~ m! 10 m 10-* 10-* 107 m
radian  radian
2.10 0 0 1691 L
10 x 10° | | y
v § Ao . DL
{ T 0 4(1.0232) 2(1.0232) { 807}10
4(1.0232)| (807

0 2(1.0232)

1.0761 MN
0.5004 MN-m

0.5004 MN-m
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