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7. Stress and Strain of Cracked
Section
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Figure 7.1 Stress (c) and strain (b) distributions in a fully cracked reinforced concrete
section (a) (state 2) subjected to M and N. Convention for positive M, N,y,y,
and y..
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The strain at any fibre (Fig. 7.1(b)) is
E=&o+ VY
The y-coordinate of the neutral axis is:
v, =—&oly
The stress in concrete at any fibre is

To= Ec( | — "—)z:o <y,

0 ..1', = ..1',11

(7.2)

(7.3)

(7.4)
(7.5)



It may be noted that in Fig. 7.1(b), &5 1s a negative quantity since O 1s
chosen in the compression zone. The stress in any steel layer at coordinate

*

P, 18:
g, = ES(T | - E)z-;o (7.6)

Integrating the stresses over the area and taking moment about an axis
through O gives:

;,-0{ E[( - li) dA+E.S [AS( - :—)]} _N (7.7)
;;0{ Ell( - li) dA+EY [Al( - :—)” — M (7.8)



When the section is subjected to bending moment only, V can be set equal
to zero in Equation (7.7), giving the following equation which can be solved
for the coordinate y,, defining the position of the neutral axis:

[ .1II]

(v,—vdA+aXZ[Ay,—v)]=0 (7.9)

< W

where o = E/E_.

When N # 0. the neutral axis does not coincide with the centroid of the
transformed area. The equation to be solved for y, is obtained by division of
Equation (7.8) by (7.7):

.
I ..1"(..1'*11 o l)dA +a X [As..l"s(..l"n o ..VSJ]
J W

- —¢=0 (7.10)
I I. (..vn o 1}d/4 +d Z [As(..l"n o ..1'?5}]
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Figure 7.2 Definition of symbols employed in Section 7.4.2.



Consider the case when the section in Fig. 7.2 is subjected to a positive
bending moment without an axial force. Application of Equation (7.9) gives
the following quadratic equation from which the depth ¢ of the compression
zone can be determined:

%b“’('z T [hf(b o f)w) + lr"'11'5/‘4115 + U‘psAps + (s — l) Arns]('
-
+ {”*ns - l} A’ﬂstx’ng] =0 whenc= f?f {?l 5)

b=

(b—b )i+ a, A, d  + (s A psls

Solution of the quadratic Equation (7.13) gives the depth of the compres-
sion zone 1n a T section subjected to bending moment:

. —t, + (a3 — 4a,as) (7.16)

2.(1‘.'1

where

a, = b, /2 (7.17)



The T section shown in Fig. 7.7(a) is subjected to a bending moment of
1000k N-m (8850 kip-in). It is required to find the stress and strain dis-
tributions ignoring the concrete in tension. Effects of creep and shrink-
age are not considered in this example. The cross-section dimensions

are indicated in Fig. 7.7(a). E. = 30 GPa (4350 ksi); E, = 200 GPa
(29 000 ksi).
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_E_200_ ¢ 667,
E.” 30

L

In the absence of prestress steel, 4, = 0 and the symbols 4, and 4",
have the same meaning as 4, and 4',.
Substitution in Equations (7.17-19) gives:

a=015m  a,=174.07 x 107 m’ a;=—40.812 x 107 m’ c=

Equation (7.16) gives the depth of the compression zone where

a,=bh,/2

fl_—m.n? % 1070 +[(174.07 % 107°) + 4(0.15)(40.812 % 107
- 2%0.15

=0200m (7.9 in).

The moment of inertia of the transformed section about the centroi-
dal axis (which is the same as the neutral axis):

0.200° 0.12°
+(1.5- 0.3)0.]2(

[=03—3 | 12

+ U.]42)

+ 6.667(0.004)1.000° + 5.667(0.0006)0.15
=30.54 x 10" m* (3.53ft%).

Alternatively, if A', is ignored, Tables 7.1 and 7.4 can be used giving ¢
=7=0.202m and /= 30.46 x 10—*m* The curvature

_ 1000 x 107
30 % 10° x 30.54 x 107

Stress at the top fibre =30 x 10° x 1091 x 10-%(—0.200)
=655 MPa (=0.950ksi),
Stress in steel = 200 x 107 x 1091 x 107%(1.000)

iy = 1091 x 10 m~" (28 x 10~°in7").

=218.2 MPa (31.65ksi).

Strain and stress distributions are shown in Fig. 7.7(b).

—a, +V(a; — da,a;)

2a,

(7.16)

(7.17)



Solve Example 7.1, assuming that the section is subjected to a bending
moment of 1000kN-m (8850kip-in) and a normal force of —800kN
(—180kip) at a point 1.0m (40 in) below the top edge of the section. The
cross-section dimensions and moduli of elasticity of steel and concrete
are the same as in Example 7.1 (Fig. 7.7(a)).
The resultant force on the section is a normal force of —800kN at a
distance 0.25m above the top edge. Thus, e,=—(0.25 + 1.20) =—1.45m.
Substituting in Equation (7.20) and solving for ¢, the height of the b eA)d,, - 1)

COMPIression Zone, gives: + (b = by)hfe(d,. — %hf) _ %’rlt(dns _ %kr)]

c= ()444 m (’] 'I',l" 5 ]n) + [U'ns -1 ]A,ns[ c— d’ns](dns - d’ns] - (‘:psAl.\s(dps - C](dus - dps)
+ ‘?s[bw(%(;] + [b - bw)hi(c - %hf) + (uns - l)A’ns[C - d,ns]
The effective area is shown in Fig. 7.7(c). The transformed section is —ap A (d, - €)= a A (dy— )] =0 whenc =Ry (7.20)

composed of the area of concrete in compression plus u(A4, + A",) with a
= 200/30 = 6.667. The distance between point O, the centroid of the
transformed section. and the top edge is calculated to be ¥ = 0.229m
(Fig. 7.7(c)). The area and moment of inertia of the transformed
section about an axis through its centroid

A=03073m? I=31.73 x 107 m*.
If A, is ignored. Tables 7.1, 7.3 and 7.4 may be used, giving:
c=046m ¥=024m [I=30x 107m".
Transform the given bending moment and normal force into an

equivalent system of a normal force N at the centroid of the trans-
formed section combined with a bending moment M.

N=-800kN
M = 1000 x 10* = 800 x 10*(1.000 — 0.229)
=383.2kNm (3400kip in).



The strain at O and the curvature (Equation (2.16))

1 —800 x 10°

£ = =—87 = 10°°
T30 x10° 0.3073

1 383.2 x 10°
30 % 107 31.73 x 1077

=403 x 10°m™"  (10.2 x 107 in™").

b

Stress at the top fibre = 30 % 10787 + 403(=0.229)]10-° = —-5.38 MPa.
Stress in bottom steel = 200 % 10°[-87 + 403 x 0.971]107" = 60.8 MPa.
The strain and stress distributions are shown in Fig. 7.7(c).
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7.5 RC Section w/o prestress
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Figure 7.8 Curvature reduction K for a fully cracked rectangular section.



A reference point O is chosen at the centroid of the age-adjusted trans-
formed section, composed of the area of the compression zone plus (7, t,)
times the area of steel (Figs. 7.8 and 7.9(a) ); where da(z. t,) = EJE(1. t,). with
E1. t,) the age-adjusted modulus of elasticity of concrete (see Equation
(1.31)). Creep and shrinkage produce the following changes in axial strain at
O, in curvature and in stresses:

Aeq =nlp(t, 1)(eq + wy,) + &1, 1,)] (7.26)



Ay = K[rp(f. ) ( W+ f—:o%) + e(l. 1) }T] (7.27)
Aa.= E(1, t)][-o(1. t,)(e0 + wy) — ex(l. 1,) + Aeg + Awy] (7.28)
Ag,= E(Aeq + Ay y,) (7.29)

where

£o» W = the axial strain at O and the curvature at time 7, immediately after
application of M and N (Fig. 7.9(b))
@(1, t,) = coethicient for creep at time 7 for age at loading ¢,
e.(1, t,) = the shrinkage that would occur in concrete if it were free, during
the period (7 —t,)
y. = the y-coordinate of the centroid of the concrete area in compres-
sion (based on the stress distribution at age f,). y. is measured
downwards from O

re=1/A4, (7.30)



n=AJA (7.31)
=11 (7.32)



Example 7.3 Cracked T section: creep and shrinkage effects

Find the changes in strain and stress distributions due to creep and
shrinkage 1 the cross-section of Example 7.2 (Fig. 7.7(a)). Consider
that the result of Example 7.2 represents the stress and strain at age f,
and use the following data:

(. 1,)=2.5 7(t.1,)=0.75 ¢ (1. 1,)=-300 x 107°.

The effective area of the section is considered unchangeable with
time. Thus, using the result of Example 7.2, the depth of the effective
part of the section ¢ = 0.444 and the stress distribution at time 7, is as
shown in Fig. 7.7(c).

The area of the effective part of concrete, 4. = 0.2766m>. The
distance of the centroid of A, from top, y.=0.138m (Fig. 7.9(a)).




The age-adjusted modulus of elasticity of concrete (Equation

(1 o 3 l ) J Azo= il ol so + Wi + st fa)] (7.26)
0 A =] it ) [+ 62 4 et 1) 2% (7.27)
— 30 x 1 . ) | \ r/ F
Ec(?.‘. fo) = 1 0.75 % 2.5 =10.43GPa ( 1500 kSl) A= E (1 8)[—lt, follea+ w) — egll. f) + Aeg + Awd] (7.28)
o
+U. /DX 2.2 Ac,= E(Acg +Awy,) (7.29)

_ 200 . re=1J4, (7.30)
alt, ty) :m: 19.17.

The area of a transformed section composed of A_ plus a(A, + 4°)) 1s
A=0.3648m" (560in?).

For use of Equations (7.26-31). a reference point O must be chosen
at the centroid of the transformed effective area. This centroid is
calculated and is found to be at ¥ = 0.358 m below the top edge.

The moment of inertia of 4, about an axis through O is

I[.=17.56 X 10~ m* I: =1/4.= 0.0635m>.
The moment of inertia of the transformed section is

[=73.01 x 10 m*,
n=Al4d (7.31)
k=T (7.32)



The axial strain and curvature reduction factors (Equations (7.30)
and (7.31)) are

0.2766 17.56
— = _0.7582 Kk=—=0.2404.
0.3648 73.01

i

[f the area A; 1s ignored, Tables 7.3 to 7.5 can be used to calculate p,
[ and x.
The y-coordinate of the centroid of A4, (see Fig. 7.9(a) ) 1s

Ve=—(0.358 —0.138) =—-0.220m.

The strain and stress distributions at time 7, are shown 1n Fig. 7.9(b)
(copied from the result of Example 7.2, Fig. 7.7(c) ):

to=-35%x10"° w =403 x 10°°m™.



(Note that the reference point O is lower in Fig. 7.9(b) compared to
Fig. 7.7(c).)

Changes in strain at O and in curvature due to creep and shrinkage
(Equations (7.26) and (7.27) ) are

Acg=10.7582{2.5[-35 + 403(=0.22)]10° =300 x 107} =—462 x 10°°

iy _(-022)\ (=022
Ay =0.2404(2.5(403 - 35 J107¢ =300 x 10
. 0.0635. 0.0635

=565 % 10m™

Changes in concrete stresses due to creep and shrinkage (Equation
(7.28)) are at the top edge;
(AG)yp = 1043 x 10° {=2.5[-35 + 403(<0.358)]
+ 300 — 462 + 565(- 0.358)} 107¢
=0.876 MPa (0.127 ksi)

at the lower edge of the eflective area:

(AGL)at 0.44m betow top edge = 10.43 % 10°(300 — 462 + 565 x 0.086)10°
=—1.182MPa (=0.171 ksi).
Changes in stress in steel due to creep and shrinkage (Equation (7.29))
are:
(Ao = 200 x 10° (=462 + 565 x 0.842)107° = 2.8 MPa (0.41 ksi)
(AG)op = 200 x 10° (—462 — 565 x 0.308)107
=—127.2MPa (-18.45ksi).



7.6 Partial prestressed sections
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(1) M, and N, applied on uncracked section:
(2) M, and N, applied on a fully cracked section.

The strain changes in the two stages are given by Fig. 7.10(d) and (f):

(Ae), = (Aey), + (Aw),y (7.35)
(Ag), = (Aegy), + (Aw), y (7.36)

The total instantaneous change in strain due to M and N is

Ac = (Ae), + (Ae), (7.37)



The stress produced in stage 1 1s simply equal to the stress in Fig. 7.10(b)
reversed in sign, as shown in Fig. 7.10(d). The corresponding strain in stage 1
1s obtained by division of stress values by E (7); the strain distribution in stage
| is also shown in Fig. 7.10(d). Thus, the stress in concrete is zero after
application of M, and N,. The final stress in concrete is given by the analysis
of the effects of M, and N, only (Fig. 7.10(f)). It should, however, be noted
that M, and N, bring to zero the stress in concrete but not in steel.

The values of M, and N, are equal and opposite to the resultants of
stresses g (f) on the concrete and a times this stress on steel, with o (7) being
the stress existing before application of M and N (Fig. 7.10(b)). M, and N,
are sometimes referred’ to as.decompression forces, because o () is generally
compressive. (In all the stress and strain diagrams in Fig. 7.10, the variables
Eo. W, 0o and v are plotted as positive quantities.) The decompression forces
are given by:

N,=—| ad4 (7.38)

M, = —[ oydA (7.39)

o



7.6 Partial prestressed sections
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When the stress varies over the full height of the section as one straight line,
the integrals in Equations (7.38) and (7.39) may be eliminated (see Equations
(2.2-8)):

M,=—(Bo,+Iy) (7.41)

where A4 1s the area of a transformed section composed of the full con-
crete area plus a times the area of steel, prestressed and non-prestressed:



If O is chosen at the centroid of the above-mentioned transformed area.
B =0 and Equations (7.40) and (7.41) become:

N,=-Aa, (7.43)
M, =-1Iy (7.44)
The changes in axial strain and curvature due to M, and N, simply are:

| -
(Aeg), =—Er;D (7.45)

C

!

l
(Atj;"h:—ft‘ (7.46)

C



Example 7.4 Pre-tensioned tie before and after cracking

Fig. 7.11 shows a square cross-section of a precast pretensioned tie.
Immediately before transfer, the force in the tendon is 1100kN
(247 kip). the age of concrete f; and no dead load is simultaneously
applied with the prestress. At a much older age t, a normal tensile force
1200k N (270 kip) is applied at the centre of the section. It is required to
find the axial strain and stress in the concrete and steel immediately
after prestressing, and just before and after application of the 1200 kN
force. The following data are given: the moduli of elasticity of concrete
and steel. E/(1;) = 24GPa (3480ksi); E(7) = 35GPa (5076ksi); E, =
200GPa (29000ksi) (for prestressed and non-prestressed reinforce-
ments); creep coeflicient ¢(r, 1) = 2.4; aging coeflicient y(t. ;) = 0.80:
during the period (¢ — f). the reduced relaxation Az, = -90MPa
(—13ksi) and the free shrinkage &.(1. t) = —270 x 107°,

(a) Strain and stress immediately ri;ﬁif transfer

The area of the transformed section is composed of A, + a(A,, + A4,,).
where a = EJE(1,).

A, = 930 mm? !
(laaint)~] * | °N _T
. N BN _
1000 mm? 0.30m (12 in)

o {3.10 in?) |
0.30m (12 in)

Figure 7.1 1 Cross-section of a partially prestressed tie analysed for strain and stress
in Example 7.4.




A.=0.30 x 0.30 = (930 + 1000)107¢ = 0.088 1 m*
a=200/24 =8.33
A =0.0881 + 8.33(930 + 1000)107° = 0.1042m*.

The axial strain at transfer (Equation (2.33)) is

1100 x 10° P
&(ty) =— = =440 > 107"
24 x 10° x 0.1042

The stress in concrete (Equation (2.35) ) is
a(ty) = 24 x 10°(—440 x 10°%)=-10.559 MPa  (-1.532ksi).
The stress in non-prestressed and in prestressed steel is

Tps = 200 % 10%(=440 x 107%) ==88.0 MPa (—12.8ksi)

1100 % 10°
d-s: —
P930 < 107

=1094.8 MPa (158.8ksi).

+200 x 10%(=440 x 107%)

(b) Changes in strain and in stress due to creep, shrinkage and
relaxation
The transformed section to be used here is composed of A, + (A4, +

A,.). where = E/E1. t,)
Using Equation (1.31)

24 x 10°
© 1+24x0.8

200
8.215

=8.215GPa (1192ksi)

=24.33.

i~ |
Il



The transformed area
A=0.0881 + 24.33(930 + ]'[fll[]'(]')]'[]"6 =0.1351m>~

The artificial force that would be necessary to prevent strain due to
creep, shrinkage and relaxation (Equations (2.41-44)) is
AN=-8.215 % 10° x 2.4 x 0.0881 (—440 x 107)
—8.215 x 10%(=270 x 107%)0.0881 + 930 x 1074(=90 x 10°)
=0.8759 x 10N (196.9kip).

The change in axial strain in concrete when the restraint is removed
(Equation (2.40)) is

0.8758 x 10 y
Ap=——— — =789 x 107,
8.215 x 10° x 0.1351

The change in concrete stress (Equations (2.45) and (2.46) ) is

Ag =—8.215 x 10°[2.4(—440 x 107%) =270 x 1079
+8.215 x 10°%(=789 x 107%)
=4.407MPa (0.6392ksi).
Changes in stress in non-prestressed and prestressed steels (Equations
(2.47)and (2.48)) are
A, =200 % 10°(-=789 x 107%) = —-157.9MPa  (-22.90ksi)
Ag=-90 x 10+ 200 x 10%(=789 x 107¢)
=-247.9MPa (-35.95ksi).



The stress in concrete after creep. shrinkage and relaxation is
a(t) =—10.559 + 4,407 =—-6.152 MPa (—0.8923 ksi).

(¢) Changes in strain and stress in the decompression stage

The transformed area to be used here is composed of A4, + a(A, +
A,.): where a= EJ/E (1)

a=200/35=5.71.
The transformed area is

A=0.0881+5.71(930 4+ 1000)107° = 0.0991 m?.
The decompression force (Equation (7.43)) 1s

N, =-0.0991(=6.152 x 10°) = 609.8 kN (137.1kip).
The change in strain due to N, (Equation (7.45)) is

As) 6152 10° 176 X 10
N=35 %100 '

The change in stress in the two types of reinforcement is

(Aay) = (Aay) =200 X 107 x 176 x 107°=35.2MPa  (5.11ksi).



(d) Changes in strain and stress in the cracking stage
All the concrete area will be in tension: thus. the transformed area is
composed of a(A, + A4,,). with a the same as in (c) above.

Transformed area is

A=5.71(930+ 1000)107°=0.0110m>.

Force producing cracking (Equation (7.34) ) is
N,=1200-609.8=590.2kN (113 kip).

The change in strain due to N, (Equation (2.16)) is

590.2 x 107 i p
(Ae), = 3 = 1530 x 107"
35 x 107 x 0.0110

The change in stress in any of the two types of reinforcement is

(A0 = (Ac,)y = 200 x 10° x 1530 x 107,
=306.0MPa  (44.4ksi).



B 590.2 x 10?
200 % 10° x 1930 % 107

(Ae),

The stress in non-prestressed steel is

= 1530 x 107°.

—88.0-157.9+35.2+306.0=953MPa (13.8ksi

The stress in prestressed steel is

1094.8 — 247.9 + 35.2 + 306.0 = 1188.1 MPa

The strain in the non-prestressed steel immediately before cracking
the sum of strain values calculated in steps (a). (b) and (¢) = (—440 -7

(172.3k:

7. =200 x 10°(=440 x 10°) = —88.0MPa  (~12.8ksi)

1100 % 10°
g ="
930 x 10°¢

=1094.8 MPa (158.8 ksi).

+200 X 10°(—440 x 107

Ac,, =200 % 10°(=789 x 107 =—157.9MPa  (=22.90ksi)
A, ==90 % 106+ 200 X 10°(=789 x 1079)
=-247.9MPa  (-35.95ksi).
(AGpo) = (Acy), = 200 X 10° x 176 x 10°=352MPa  (5.11ksi).
(Ac.), = (Ag.), =200 X 10° x 1530 x 107,
=306.0MPa (44.4ksi).

+ 176)107 = —=1053x107%. At cracking. the change in strain in the pre-
stressed or non-prestressed steel is (A¢), = 1530 x 1075, Thus, the strain
in the non-prestressed steel after cracking is 477 x 1075, At this stage the
concrete is not participating in resisting any force. The strains in
concrete and steel are no more compatible and slip must occur in the
vicinity of cracks. This will be discussed further in Chapter 8.
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14 % 1078 | g 40, = 2.8 MPg 6.(1)
(0.4 ksi) 63.6 MPa
(9.22 ksi)
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Example 7.5 Pre-tensioned section in flexure:live-load cracking

Fig. 7.12(a) shows the cross-section of a pre-tensioned partially pre-
stressed beam. A 700kN-m (6200Kip-in) bending moment due to a
dead load is introduced at age 7, at the same time as the prestress trans-
fer. This bending moment includes the effect of the superimposed dead
load introduced shortly after transfer, but is considered here as if it were
applied simultaneously with the prestress transfer. At time 7. long after
fo. a live load is applied. producing a bending moment of 400 kN-m
(3540 kip-in). Find the strain and stress distributions immediately after
application of the live load bending moment. given the following data.

Tension in prestressed tendon before transfer = 1250kN (281 kip):
moduli of elasticity of concrete at ages f, and 7. EJf;) = 24GPa
(3480 ksi) and E(r)= 30GPa (4350 ksi); E,=200GPa (29 000 ksi) for all
reinforcements: o(f, 1;) = 2.0: y(f. 1) = 0.8; reduced relaxation for the
period (7 — #;) = —90 MPa (—13 ksi); shrinkage during the same period,
e(t. 1o) =—300 x 107,

As in Example 7.4, the analysis may be done in five parts:
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0.90m
{35 in)

A, = 1600 mm? {2.48 in®) 0.05 mT
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AG = B87 x 108 m 1
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Y

-0.044 MPao
-1 (=0.0064 ksi)

0 868 MPo

—_ -6
AEy =-569x 10 (0.126 ksi)

2.666 MPa
{0.387 ksi)




(a) Strain and stress immediately after transfer

The calculations in this part follow the procedure presented in Section
2.3 and applied in Example 2.2. Thus. here only the results of the calcu-
lations are presented (Fig. 7.12(b)). The stress in the bottom non-
prestressed reinforcement, o, = —5.6 MPa and in the prestressed steel.
7ps = 1030.5 MPa.

(b) Changes in strain and in stress due to creep, shrinkage
and relaxation
The analysis for this part follows the method discussed in Section 2.5

and applied in Example 2.2. The results are shown in Fig. 7.12(c). The
changes in stress in the bottom non-prestressed steel, Ag, =—-16.8 MPa
and in the prestress steel. Ag,,=—-124.5MPa.

After occurrence of the time-dependent changes, the distribution of
stress a(f) becomes as shown in Fig. 7.13(b).



(c) Changes in strain and stress in the decompression stage

The transformed area to be used here is composed of A_ plus a times the
area of all reinforcements; where a = EJE(f); A, = area of concrete
section = 0.2768 m*:

a=200/30=6.667.

Choose reference point O at the centroid of A4_. at 0.303m below the
top edge (Fig. 7.13(a)). The moment of inertia of 4, about an axis
through O=21.78 x 107 m* A4_=0.2768 m?.

The area of the transformed section. its hirst and second moments
about an axis through O are:

A=10.2768 + 6.667(1600 + 1200 + 400)107° = 0.2981 m?
B = 6.667(1600 x 0.547 + 1200 x 0.447 — 400 > 0.253)107
=8.734 x 107 m?
I =21.78 x 107 + 6.667(1600 x 0.547°
+ 1200 % 0.447% + 400 x 0.253H)107¢
=26.74 x 107 m*.

The stress distribution in Fig. 7.13(b) may be defined by the value of
stress at O and the slope of diagram:
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(0.5062 ksi)
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(-0.9340 ksi)
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{-0.5062 ksi)

[

2.323 MPa (0.3369 ksi)

6440 MPg
{09340 ksi)

| A
—1-2.323 MPa

(=0.337 ksi)



ogolf) ==3.490MPa 3(1)=9.737MPa/m.
The decompression forces (Equations (7.40) and (7.41)) are

N, =—[0.2981(=3.490 x 10¢) + 8.734 x 1073 x 9.737 x 10°]
=0.955 x 10°N

M, =—[8.734 x 1073(=3.490 x 10°) +26.74 x 107 x 9.737 x 109]
=-229.9 x 10°N-m.

The changes in strain at O and in curvature (Equations (7.45) and
(7.46)) are

3.490 x 10°

Aeo), = ~ 116 % 107
(Aeoh =07 709
9.737 x 108 o
(Aw), =— =325 10" m™.
30 x 10°

The changes in stress in the bottom reinforcement and in the
prestressed steel are:

(Ac,), =200 x 10°(116 — 325 x 0.547)10°¢ =-12.3 MPa
(Aay) =200 x 10°(116 — 325 % 0.447)107 = -5.8 MPa.

The changes in strain and in stress distributions in the decompression
stage are shown in Fig. 7.13(c).



=13.543 MPa (~1.9643 ksi)
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Fisure 7.13 Chanees in strain and stress in the cross-section of Fie. 7.12 due to a



(d) Changes in strain and stress in the cracking stage
Internal forces producing cracking (Equations (7.33) and (7.34)) are

M, =400 x 10* - (=229.9 x 10°) = 629.9 x 10° N-m
N,=0-0.955 x 10°=-0.955 x 10° N.

Eccentricity of the resultant of M, and N, measured from the bottom
reinforcement

~629.9 x 10°

e, = :— 0.547=-1.206 m,
—0.955 > 10




Substitution in Equation (7.20) and solution by trial or use of Table
7.1 gives the depth of the compression zone (Fig. 7.13(d) ):

c=10.263m.

The transformed section to be used here is composed of the area of
concrete in compression plus a times the area of all reinforcements;
where a = EJE_(1) = 200/30 = 6.667.

The transtormed area, its first and second moments about an axis
through the reference point O are (Tables 7.3 and 4 may be used for this
purpose):

A=0.1736m? =-25484 x 107 m* I=13.270 x 107 m*.

Changes in axial strain and in curvature produced by M, and N,
(Equation (2.15) with E,_,= 30 GPa) are

(Acg), =68 X 10 (Aw),= 1714 x 10 m™.

The distributions of strain and stress changes are shown in Fig.
7.13(e).

The changes in stress in the bottom reinforcement and in the
prestress steel are:

(AG,),=200 x 10°(68 + 1714 x 0.547)107°=201.1 MPa  (29.17 ksi)
(Ads)y= 200 X 10°(68 + 1714 < 0.447)107° = 166.8 MPa  (24.19ksi)



(e) Strain and stress immediately after cracking

The stress diagram in Fig. 7.13(e). obtained by multiplyving the strain
diagram in the same figure by the value E(7) = 30GPa, represents the
final stress in concrete after cracking. The final stress in the reinforce-
ment may be obtained by summing up the stress values calculated above
in steps (a) to (d). Thus, the stress in the bottom non-prestressed steel is

—5.6-16.8-12.3+201.1=166.4MPa (24.13 ksi).
The stress in the prestressed steel is

1030.5-124.5- 5.8+ 166.8 = 1067.0MPa  (155ksi).

Similarly, summing up the strains (Fig. 7.12(b) and (c¢) and Figs
7.13(c) and (e) ) gives the strain at the reference point O:

(—181 =569+ 116 + 68)107°=—-566 x 107°
and curvature

(280 + 887 — 325+ 1714)107° = 2556 x 107 m™" (64.92 x 107®in!).



8.1 Introduction

. Reduction in stiffness due to cracking
. Elongation and curvature

. Stiffness varies from minimum to
maximum (crack to midway between

cracks)
. Two extreme states
. Interpolation :extent of cracking



> w i

8.2 Basic assumptions

Free from crack: state 1
Fully crack : state 2

Bernoulli's hypothesis

Contribution of concrete in the tension
zone : tension stiffening



8.3 Strain due to axial tension

1. Free from crack

N, =ful A, + ad) = fud, (8.1)

2. Section In state 2

7] ar — 1"\"?]./ A g (8

D)
Z



(a)

(b)

(c)

[ ! o, < f,
MM_F

(d)
Figure 8.1 Stresses in a reinforced concrete member cracked due to axial force; (a)
cracking of a tie; (b) stress in reinforcement; (c) bond stress; (d) stress in

concrete (0, = ).



A reinforced concrete member subjected to axial tension N (Fig. 8.1(a)) will
be free from cracks when the value of N is lower than

N, =f(A. +ad)=[.A, (8.1)

where f_, is the strength of concrete in tension: N, is the value of the axial
force that produces hrst cracking: A, and A, are the cross-section areas of
concrete and steel and « = E/E,.. with E, being the modulus of elasticity of
steel and E_ the secant modulus of elasticity of concrete for a loading of short

Just before cracking, the section is in state 1: the stress in concrete is f,, and

the stress in steel 1s af,,. Immediately after cracking, the section at a crack isin
state 2. the stress in steel

6, = NJA, (8.2)



At a crack. the section is 1n state 2. the concrete stress is zero and the steel
stress and strain when N > N,

o= NIA, (8.3)
to=NIE_A, (8.4)
Midway between consecutive cracks. the tensile stress in concrete has some
unknown value smaller than f, and the steel stress has value smaller than «,.

Thus, the strain in the reinforcement varies along the length of the member; a
mean value of the steel strain is

ey = T (8.5)

where / is the original length of the member and A/ is the member extension.
The symbol ¢, represents an overall mean strain value for the cracked mem-
ber. Obviously. £, is smaller than ¢, which is the steel strain at the cracked
section. Let

Een = 53 — A&, (8.6)

where A, is a reduction in steel strain caused by the participation of concrete
in carrying the tensile stress between the cracks. Fig. 8.2 shows the variation



Thus. the strain in the reinforcement varies along the length of the member; a
mean value of the steel strain 1s

&n = Al (8.3)

where / is the original length of the member and A/ is the member extension.
The symbol ¢, represents an overall mean strain value for the cracked mem-
ber. Obviously, &, is smaller than ¢, which is the steel strain at the cracked
section. Let

En = £o — A&, (8.6)



value, Ag; .. at the start of cracking, when N = N,. Based on experimental
evidence, it 1s assumed that Ae, has hyperbolic variation with 7, as follows:

Oy
Ae, = Ae (8.8)

s max
"752

Substitution of Equations (8.8) and (8.9) into Equation (8.6) gives for a
cracked member an overall strain value, which 1s also the mean strain in steel:

Esm = ( l o '::J'Hsl + "r:'gsﬂ (8 l”)

where { is a dimensionless coefhicient, between 0 and 1. representing the
extent of cracking. { =0 for an uncracked section (N < N,).,and 0 <( <1 fora
cracked section. The value of ( 1s given by:

(FSI' ’ .
c=1- (—) (with o, > a,) (8.11)

T 5

54



The second term in Equation (8.10) (Ce,,) represents the supplementary
. . . - 7 .
strain of steel compared with the strain of concrete.” Thus, the average width
of a crack 1s

W = Spmbéon (8.14)

m



1) N before cracking lower than the following
value

N, = fct(A: +nAs): fctAl

E

Nr
Og =
A

Stress in steel



: Stress in N 1
: Axial steel in Ca =&
2) After cracking  [force || iate 2 A E N 1
. g, ==
N >N,
Stress in steel at a crack
N
Oy =—— N
A N,
N 1
g —
S2
A E
Strain in steel
N N
gsl gcl o



AE, =&, — &,

S
Fully cracked Mean steel strain

Assume strain difference has hyperbolic variation with stress in steel

O
— Sr
Ag, = Agsm A o )G
gsmax T (832 831
Gsz
Esm = Egp —AE
=&, — A&,
O
— sr
= &5 _(‘952 —831) j
032
2 B 2]
O
_ sr sr
GSZ Gsz




Esm = (1_ g)gsl T §532

4=1—m["“j

032

S, bond effect
B, loading characteristics



Example 8.1 Mean axial strain in a tie

Find the mean strain. excluding the effect of creep in a reinforced con-
crete member (Fig. 8.1(a)) having a square cross-section 0.20 X 0.20m”
(621in”) subjected to an axial tensile force N = 200kN (45kip), given the
following data: A, = 804mm* (1.25in%); E, = 200GPa (29000ksi); E. =
30GPa (4350ksi): f, = 2.0MPa (290 psi); f,= 1 and £, =0.5. What is the
width of a crack assuming 5., = 200mm (81n)?

Equation (8.1) gives N, = 89.1 kN (20.0kip). The stresses in steel,
assuming state 2 prevails (Equations (8.2) and (8.3)):

LY,

G':AT: [11 MPa g, =249 MPa.

51
3

Substitution in Equation (8.13) gives  =0.90. The strains in steel due to
N, calculated with the assumption that the section 1s in states 1 and 2,

are (Equations (8.7) and (8.4) ):



e, =150 x 107 e, = 1244 X 107°,
The mean strain for the member (Equation (8.10)) is
£ =150 107°(1 = 0.90) + 1244 X 107 x 0.90= 1134 x 10°°,
The width of a crack (Equation (8.14)) 1s

p.o=200 % 0.90 x 1244 x 107 =0.22mm(8.8 X 107 in).



8.4 Curvature due to bending

A
M (_ _) M Curvatur
% ﬁs J ¢




For a bending moment M > M _. cracking occurs and the steel stress along
the reinforcement varies from a maximum value at the crack location to a
minimum value at the middle of the spacing between the cracks. Assuming
that the concrete between the cracks has the same effect on the mean strain in
steel as in the case of axial force, Equation (8.10) can be adopted. Thus,

Esm = (l o Q)Hsl + "r:'gsﬁ (8 16)
where
Oy ’ M r ’
== (2] =1 -l ) (8.17)
'I'Tﬂ;! 1/[



a.— &
y=— o (8.20)
d

where w 1s the curvature; E is the modulus of elasticity; I is the moment of
inertia of the section; & is the strain in steel reinforcement and (&,),,, 1s the
strain at the extreme fibre of the compression zone and d is the distance
between steel in tension and the extreme compression fibre (Fig. 8.4). Assume
that cracking has an effect on curvature similar to its effect on the strain in

axial tension. Thus, the mean curvature is expressed in this form:

W, =1 —Ow, + Cyy (8.21)



Example 8.2 Rectangular section subjected to bending moment

Calculate the mean curvature in a reinforced concrete member of a
rectangular cross-section (Fig. §8.4) due to a bending moment M =
250 kN-m (221 kip-ft). excluding creep effect and employing the follow-
ing data: b =400mm (16in); 2= 800mm (32in); d=750mm (30in); d =
S0mm (2in); 4. = 2120mm* (3.29in"): 4", = 760mm* (1.18in%); E, =
200GPa (29000ks1); £, = 30GPa (4350ks1); f, = 2.5MPa (360 psi);
p,=1and f,=0.5.

Assuming the spacing between cracks s, = 300mm (121in), find the
width of a crack.

The moment of inertia and the section modulus of transformed
uncracked section are (graphs of Fig. 3.5 may be employed):

[,=0.0191m* W, =0.0488m".



Equation (8.15) gives M, = 122kN-m (90.0kip-ft). Substitution in
Equation (8.17) gives { = (1.88.

Depth of compression zone in state 2 (by Equation (7.16) or the
graphs of Fig. §.4):

c=0.191m (7.521n).
The centroid of the transformed tully cracked section coincides with
the neutral axis. The moment of inertia (calculated from first principles
or by use of graphs of Fig. 7.6) is

L,=0.00543m*

The curvatures due to M = 250kN-m. assuming the section to be in
states 1 and 2 (Equations (8.23) and (8.24)) are:

wy =437 < 107 m™ o, = 1530 x 107 m™.
The mean curvature (Equation (8.21) ) is

W= [(1 —0.88)437 + 0.88 x 1530]107° = 1400 x 107 m™".



The strain in steel in state 2 is
Eo = Wy Vo= 1530 x 1075(0.75 = 0.191) = 856 x 1075,
The width of a crack (Equation (8.14)) is

Wy, = 300 x 0.88 x 856 x 107 = 0.23mm (0.0091 in).



8.5 Curvature due to bending and
axial force

The eccentricity of the axial force 1s:
€ = ;1’[)'(4\? (82:;}

Our sign convention is as follows: NV is positive when tensile and M is
positive when it produces tension at the bottom fibre. It thus follows that e
is positive when the resultant of M and N 1s situated below the centroid of
the transformed uncracked section (Fig. 8.6).

Without change in eccentricity, we can find the values of N, and the corre-
sponding M _ that produce at the bottom fibre a tensile stress f,,. the strength
of concrete in tension:

N e \!
\ r :.f ct [g + H; )

bot /1

M. =N, (8.27)
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When N > N, and M > M, cracking occurs and the mean strain in the
reinforcement can be calculated by:

Em = ( | - {:)Esl + {:852

(8.28)
where
..-”_31‘. 2
(= 1= pup =] (8.29)
\T o/
or
Lw 2
(= 1=l =) (8.30)

T2

c=1- B (8.31)



[t is to be noted that in a fully cracked section, the position of the neutral
axis depends on the eccentricity e = M/N, not on the separate values of M and
N. Because e 1s assumed to be unchanged. (M/N)=(MJ/N,) and

Ogp

M. N,
— (8.32)
rJ- - _1'11‘/1 iE\‘IT

5.2

Assuming that the cracks are spaced at a distance s,,,, the width of a crack
W= .B'r[]1£:893 (833]
The mean curvature in the cracked member

v, =(1=Ow, + (v, (8.34)

m -



Example 8.3 Rectangular section subjected to M and N

Calculate the mean curvature for the reinforced concrete section of
Example 8.2 subjected to M = 250kN-m (184 kip-ft) combined with an
axial force N =-200kN (-45kip) at mid-height. All other data are the
same as in Example 8.2. Assuming spacing between cracks, s, =
300 mm, find the width of a crack.

The area of the transformed section in state 1

A,=0.336m"

The centroid of A, 1s very close to mid-height; the eccentricity is
considered to be measured from mid-height:



250)
200

e

=—1.25m.

Substitution in Equations (8.26) and (8.27) (with f, = 2.5MPa, W, =
0.0488 m’; see Example 8.2) gives:

M. =138 kN-m.
Substitution in Equation (8.30) gives
{=0.85.

The presence of N does not change the curvature in state 1 from what is
calculated in Example 8.2. Thus,

w, =437 x 10°m™.

Solution of Equation (7.20) or use of graphs in Fig. 7.4 gives the depth
of the compression zone:

c=0.241m (9.491n).



Distance from the top fibre to the centroid of the transformed section in
state 2 (Fig. 7.5) 1s

¥ =0.195m (7.681in).

The area and the moment of inertia of the transformed section 1n state
2 about an axis through its centroid (Fig. 7.6) are
A,=0.115m", [, =0.00544m".
The applied forces N = —=200kN at mid-height combined with M =
250 kN-m may be replaced by an equivalent system of N' =-200kN at
the centroid of the transformed section in state 2 combined with M’ =
209 kN-m.
The curvature in state 2 1s

209 x 10°

= ——— 1280 X 107°m™.
30 x 107 x 0.00544

W



The mean curvature (Equation (8.34)) 1s
W =[(1—0.85)437 + 0.85 x 1280]10°°
=1150 x 10°m™ (29.2 x 10%in™").
The axial strain at the centroid of the fully cracked section 1s

200 % 10° )
EDE - — - = —38+[} X l[::'_6+
30 x 107 x0.115

The strain in the bottom steel in state 2 1s
&y = l[]“ﬁ[—SS,D + 1280(0.75 - 0.195)] = 652 X 107°,
Crack width (Equation (8.33)) 1s

w_ =300 % 0.85 x 652 X 107°=0.17mm (0.0067in).



Axial tension ( Fig. 8.1)
The mean axial strain

gom = (I = O)éor + Ceon

where

CART L 2

==l

The mean curvature

W= (1 —Ow, + Cw,

m -
where

c=1-

Summary

(8.36)

(8.37)

(8.40)

(8.41)



Bending moment combined with axial force ( Fig. §.6)
The mean axial strain and curvature

Eom = (1 = Oegy + Leps (8.43)
W, = (1 = Ow, + Cw, (8.44)
where

/ . AT L2

C=1- /j(%) — - /jlﬁg(%#) (8.45)
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Example 8.4 Non-prestressed simple beam: variation of curvature

over span

The reinforced concrete simple beam of the constant cross-section
shown in Fig. 8.8(a) has bottom and top steel area ratios, p = 0.6 per
cent and p’ = 0.15 per cent. At time #,, uniform load ¢ = 17.0kN/m
(1.17kip/ft) is applied. It is required to find the curvatures at 7, and at a
later time 7 and to draw sketches of the variations of the curvature over
the span. The following data are given:

E, = 200GPa (29000ksi); E(t,) = 30.0GPa (4350ksi); f, = 2.5MPa
(0.36ksi); p, = 1.0; 5, = 1.0 for calculation of instantaneous curvature
and 0.5 for long-term curvature; creep coethcient ¢(z, 7)) = 2.5; aging
coeflicient, y(1, t,) = 0.8: free shrinkage, (1, ;) = =250 x 107°.

What is the deflection at mid-span at time #?
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(a) Curvature at time t,
The following sections” properties will be used in the analysis of
curvatures at #;:

Transformed uncracked section (state 1) Area, A, = 0.2027 m?; centroid
O, 1s at 0.331m below top edge; moment of inertia about an axis
through O,. I, = 7.436 x 10~ m*; section modulus W, =23.33 x 10~ m’.

Transformed cracked section (state 2) Depth of compression zone
(Equation (7.16)), ¢ = 0.145m: centroid O, lies on neutral axis; moment
of inertia about an axis through O,, I, =1.809 x 10~ m".

The bending moment at mid-span = 17 X 8%/8 = 136kN-m. The
bending moment which produces cracking (Equation (8.15))

M, =23.33x 107 x 2.5 x 10°=58.3kN-m.

The interpolation coefficient for instantaneous curvature (Equation
(8.41)) 1s

58.3\’
C=1-10% L0 (5] =082,
\ Rle

e

The interpolation coefficient for long-term curvature (Equation (8.41)) is



- )

- *

(=1-1.0%0.5(>=) =091.

136

The curvature at 7,, assuming states 1 and 2 (Equations (8.23) and
(8.24)):

State 1
(1) = 136 X 107 — 610 x 10 m!
Vil = 30100 x 7436 x 107 © -
State 2
136 X 10° o —
wH(t,) = 5 —=2506 X 107" m"~
30 x 107 x 1.809 x 107
Interpolation

Mean curvature at time 7, (Equation (8.40))

w(ty)=(1—-0.82)610 x 107°+0.82 x 2506 X 10°=2157 x 107 m™".



With parabolic variation of the bending moment over the span. the
value M, = 58.3kN-m is reached at distance 0.98 m from the support.
Thus, cracking occurs over the central 6.05m (19.8ft) of the span.

Fig. 8.8(b) shows the variation of the curvatures at time 7,, with the
assumptions of states 1 and 2: the mean curvature is also shown with
the broken curve.

(b) Curvatures at time t
The age-adjusted modulus of elasticity of concrete (Equation (1.31))

_ 30 x 107

E(t, 1) = - =10 GPa.
1 +0.8x%x 2.5

B E, 200

( = 20.

B E(1, rﬂ): 10

The following sections’ properties are required for the age-adjusted
transformed sections in states | and 2.



Age-adjusted transformed section in state I A, =0.2207 m*; centroid O,
is at 0.344m below top edge. Moment of inertia about an axis through
0,. I, =8.724 x 107 m* y = coordinate of the centroid of the concrete
area (measured downwards from 0,); y. = —0.020m; area of concrete,
A.=0.1937m’; moment of inertia of 4, about an axis through O,, I, =
6.937 x 107 m* ri=1/4,=35.34 x 10~ m*.

The curvature reduction factor (Equation (3.18)) 1s

6.937 x 107 n=AJA

Ky, = = (]795
R.724 x 107 o = _{Jj

Age-adjusted transformed section in state 2 A, = 70.1 x 107 m? cen-
troid O, is at 0.233m below top edge; moment of inertia about an axis
through 0,, I, = 4.277 x 107 m* y-coordinate of centroid of concrete
area in compression (measu 1*ed downwards from 0O,): y, = —0.161 m:
area of the compression zone; 4. = 0.0431 m*: moment of inertia of A4,
about an axis through O,, I, = 1.190 x 107m® ri = [JA. = 27.62 X
107 m?.
The curvature reduction factor (Equation (7.31)) 1s

1.190 =47
~0.278. = AJA

4.277 I = IJJT

oy —



Changes in curvature due to creep and shrinkage
State 1
The curvature at £,=610 x 107° m™": the corresponding axial strain at O,

=610 x 107°(0.344 - 0.331)=8 x 107,
The change in curvature during the period 7, to 7 (Equation (3.16) ),

1./ ~0.020
Ay =0.7952.5(610 x 107+ 8 x 107 — —
\ 35.34 x 1073
) 20020
+ (=250 X 107°) — —
35.34 X 107

=1299 x 10°° m™".
The curvature at time ¢ (state 1)

(1) = (610 +1299)107° = 1909 x 107 m™".



State 2
The curvature at 7, = 2506 x 107° m™'; the corresponding axial strain at
0,=2506 x 107°(0.233 - 0.145) =222 x 10",

The change in curvature during the period 7, to # (Equation (7.27))

—0.161
27.62 X 107,

Ay = 0.27"8[15(2506 X 1074222 x 107°

+ (=250 x 107

—-0.161 ]
27.62 x 107

= 1248 x 10°m™.
The curvature at time 7 (state 2)
wo(1) = (2506 + 1248)107°= 3754 x 10° m™".

Interpolation
Mean curvature at time 7 (Equation (8.40))

w(t)=(1-0.91)1909 x 10°+0.91 x 3754 x 107°
= 3584 x 107° m™

=01.13x 10%in7".



The curvature at the end section is caused only by shrinkage and may
be calculated by Equation (3.16). However, if we ignore this value and
calculate the deflection by assuming parabolic variation of curvature,
with zero at ends and maximum at the centre, we obtain (Equation
(C.8)):

-

8
Deflection at centre = 3584 x 107¢ e
A

=0.0239m
=23.9mm (0.9481n).
By numerical integration, a more accurate value of the deflection at

the centre 1s 23.5mm (0.9251n).
[t can be seen in Fig. 8.8(b) and (¢)® that once M, is exceeded, the line



Example 8.5 Pre-tensioned simple beam: variation of curvature
over span

Find the mean curvature at a section at mid-span of a partially
prestressed beam shown in Fig. 8.9(a). after application of a live

0.50 m ——|o m (32,8 f1)4—-| 0.50m
{20 in) (20 in) ‘

0.75 m 5 "";";i. e 0.90 m
ﬁ&\ (30 m} pesie trands {36 in}

20 () m {65 6 II] — e = oo nmmEocc oo

-500 402 Cracked zone 402
i T B 48m{485f) ¢
A 1 | / D
500 N ., | --945 945— ' _
1000 n
1500 — [ Multiplier:
B . F Mean cuwuture IO—G =
2000 — e
ool 2010 2 (0.0254 x 1078%in "
2500
3000 - Stote 2

(b)



Fig. 7.12(a) shows the cross-section at mid-span. The section is con-
stant over the span, with the exception of the location of the prestressed
steel. The beam is pretensioned with a tendon depressed at points B and
C. resulting in the profile shown in Fig. 8.9(a). The beam carries uni-
form dead and live loads of intensities 14.0 and 8.0 kN/m, respectively
(0.96 and 0.55 kip/ft). resulting in bending moments at mid-span of 700
and 400 kN-m (6200 and 3540kip-in). Assume a high-bond quality of
reinforcement and tensile strength of concrete f_, = 2.5 MPa. Other data
are the same as in Example 7.5.

The stress and strain in the section at mid-span have been analysed in
Example 7.5. The curvature in state 2 1s obtained by summing up the
values of curvatures shown in Fig. 7.12(b) and (c) and 7.13(c) and (e).
This gives the following value of curvature in state 2:

W, =2556 < 107° m™".



Cracking is produced at time 7 only after application of a live load.
Immediately before application of the live load, after occurrence of
prestress loss, the curvature at mid-span is 1167 X 107° m™ (sum of
curvature values indicated in Fig. 7.12(b) and (c)). Assuming no crack-
ing (state 1), the live load would produce additional curvature of 499 X
10°m™". This is calculated by dividing the live-load moment by
[E(1)] ()], where E(7) = 30GPa i1s the modulus of elasticity of concrete
at time 7 and 7,(7) = 26.74 x 107 m* is the centroidal moment of inertia
of transformed uncracked section at time #. Thus, after live-load
application, the total curvature in state [ 1s

w, = (1167 +499)10°=1670 x 10°m™.

The stress at the bottom fibre due to the live-load moment on the
uncracked section is 8.580 MPa. Addition of this value to the stress of
2.323MPa existing before application of the live load (Fig. 7.13(b))
gives the stress at the bottom fibre after the live-load application with
the assumptions of state 1

7y o= 2.323 + 8.580 = 10.903 MPa.



The interpolation coethicient between states 1 and 2 (Equation (8.49)) is

r=1- /flﬁg(f{_‘f : )
U max!
—1-1.0x1.0 (xn;:;m.) = 0.95

B, = 1.0 because of the high-bond quality of the reinforcement and f,
= 1.0, assuming that the deflection is calculated for non-repetitive
loading.

The mean curvature at mid-span (Equation (8.44)) 1s

w=(1—=0.95)1670 x 107+ 0.95 x 2556 x 107

m =

=2510 x 10° m™(63.8 x 10°in™).

The curvature variation over the span is shown in Fig. 8.9(b).” The
length of the zone where cracking occurs 1s 14.8 m. Over this zone, three
lines are plotted for curvatures in states 1 and 2 and mean curvature.



[f we assume parabolic variation and use the values of the mean
curvature at the ends and the centre, we obtain by Equation (C.8):

20
Deflection at the centre = E [2(—=402) + 10 X 2510]107°
i

= 101.2mm (3.991n).

Using five sections instead of three and employing Equation (C.16)
gives a more accurate value for the central deflection after application
of live load of 86.2mm (3.391in). The dead-load deflection, including
effects of creep, shrinkage and relaxation is 38.4mm (1.511in).

In the design of a partially prestressed cross-section, the amount of
non-prestressed steel may be decreased and the prestressed steel
increased such that the ultimate strength in flexure is unchanged. The
amount of deflection is one criterion for the decision on the amounts of
prestressed steel and non-prestressed reinforcement. The calculated
deflection in this example may be considered excessive. Assuming that
the yield stresses of the non-prestressed reinforcement and the pre-
stressed steel are 400 and 1600 MPa (58 and 230ksi). the area of the



bottom non-prestressed reinforcement may be reduced from 1600 to
400 mm’, with the addition of prestressed steel of area 300 mm~ at the
same level without substantial change in the flexural strength of the
section. If the stress before transfer 1s the same in all prestressed steel as
in the original design, the tension in the added prestressed steel before
transfer is 312.5kN.

With the second design, the curvatures in states 1 and 2 at mid-span,
after application of the live load, will respectively be 1109 x 107 and
1976 x 107° m™" and the corresponding mean curvature will be 1897 x
10° m™. The deflection just before and after the application of the live
load will respectively be 6.0 and 43.1mm (0.24 and 1.701n) and the
length of the cracked zone after the live-load application will be 12.5m
(40.811).



Torsional deformation
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According to the theory of elasticity, the angle of twist per unit length is

g =L (8.50)
' GJ o

[y |

where T'is the twisting moment, G, is the shear modulus of concrete and J, is
the torsion constant. For a rectangular section,

J=a| i o021 2 (1220 8.51

where ¢ and b are the two sides of the rectangle with » = ¢. The maximum
shear stress is at the middle of the longer side ¢ and its value

T )
= (8.52)

Tmax - .
whe”

where x is a dimensionless coefhicient which varies with the aspect ratio ¢/b as
follows:’

c/b |.0 |.5 .75 20 25 30 40 60 80 10.0 co

M 0.208 0.231 0.239 0.246 0.258 0.267 0.282 0.299 0307 0313 0.333




For a closed hollow section
J, =443 (ds/t)] (8.53)

where 7 is the wall thickness; A, is the area enclosed by a line through
the centre of the thickness and the integral is carried out over the
circumference.

The shear flow (the shearing force per unit length of the circumference) is
given bv:

it = TI2A, (8.54)

where 7 1s the shear stress.
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Fj=F,=— F=F=—: (8.56)

forces in the longitudinal bars

X
Fi=F=F=F="—" 8.57
s=Fe=tr=F=" (8.57)

forces in the diagonal members

1 1
o 2b sin a, T 2h sin a,

(8.58)
where «, and a, are angles defined in Fig. 8.11(a). It is suggested that the
distance x in Fig. 8.11(b) be selected such that the angles «, and «, are close to
45 degrees.

The angle of twist per unit length of the cracked member is considered the
same as the relative rotation of the two cross-sections of the panel in Fig.
8.11(b) divided by the distance x between them. Considering virtual work, the
angle of twist per unit length is:

i nt 3 R
1==% (Ej (8.59)



