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Transformation Reactions 

√  Transformation reactions in environment 



 Chemical potential 

i : chemical potential of a compound, i 

    = (G/ni)P,T,n(others) 

    = i
o + RTln{i} 

G : Gibbs free energy (= H – TS) 

i
o : Standard chemical potential  

= Gf,i
o : standard Gibbs free energy of formation 

*Standard Gibbs free energy of formation (Gf,i
o) 

: the Gibbs free energy of the standard reaction for the formation 

of a compound (i) from its elements in their reference state 

e.g., Gf,
o of O2(g), N2(g), Fe(s), Cu(s), … = 0 

Thermodynamics 



Thermodynamics 

Total potential of reactants: aA + bB + …. 

Total potential of products: pP + qQ + …. 

Potential difference: (pP + qQ + ….)  (aA + bB + ….)   

= Gr (Gibbs free energy of reaction) 

= Gr > 0 (endergonic) 

= Gr < 0 (exergonic)  : thermodynamically favored, spontaneous 

The reaction proceeds in the direction of decreasing the potential! 

 Gibbs free energy of reaction 



Thermodynamics 

Gr = (pP + qQ)  (aA + bB) 

 = p(P
o + RTln{P})  + q(Q

o + RTln{Q})   a(A
o + RTln{A})  + b(B

o + RTln{B})  

using i = i
o + RTln{i} 

 = pP
o + qQ

o  (aA
o + bB

o) + RT ln 
{P}p{Q}q 

 

{A}a{B}b 

 

Gr
o  (standard Gibbs free energy of reaction) 

 

pGf,P
o + qGf,Q

o  (aGf,A
o + bGf,B

o)  Because i
o = Gf,i

o 

Activity of i :  {i} = i [i] 

i  : Activity coefficient  ( 1 for dilute solution) 

[i]: molar concentration 

Gr = Gr
o + RT ln 

[P]p[Q]q 

 

[A]a[B]b 

 
Qr  

Reaction quotient 



Thermodynamics 

In equilibrium, 

Gr = Gr
o + RT ln                   =  0 

[P]p[Q]q 

 

[A]a[B]b 

 

Gr = 0 

Gr
o  = RT ln     

[P]p[Q]q 

 

[A]a[B]b 

 
Kr  

Equilibrium constant 

Gr
o  = RT lnKr     

lnKr =  Gr
o /RT      

Kr = exp(Gr
o /RT)      

High Gr
o     

The forward reaction is unfavored 

  Low Kr  



Kinetics 

 First-order kinetics 

A    P 

k : first-order rate constant (s1) 



Kinetics 

How to determine the first-order rate constant in the lab? 

A    P 

k : first-order rate constant (s1) 

Slope = k 

Plot ln([A]t/[A]0) vs. t     the slope is k  



Kinetics 

 Second-order kinetics 

A + B    P + Q 

k : second-order rate constant (M1 s1) 

d[A] 

dt 
=  k[A][B] 

d[B] 

dt 
=            =            =     

d[P] 

dt 

d[Q] 

dt 

* Let’s determine [A]  =  f(t) 

d[A] 

dt 
=  k[A][B] 

Assume [B] =  [A] + C 

C : constant 

C = 0  ([A]0 = [B]0) 

C > 0  ([A]0 < [B]0) 

C < 0  ([A]0 > [B]0) 



Kinetics 

i) If C = 0 ([A]0 = [B]0), 

d[A] 

dt 
=  k[A][B] =  k[A]2 

d[A] 

[A]2 
=  k dt 

1 

[A] 
            =  k t 

[A] 

[A]0 

t 

0 

1 

[A] 
           +            =  k t 

1 

[A]0 

[A]  = 
[A]0 

1 + kt[A]0 

[B]  = 
[B]0 

1 + kt[B]0 

t1/2 =  ? Put [A]  =  1/2[A]0 

               = k t 
1 

[A]0 

 t1/2 = 
1 

k[A]0 



Kinetics 

i) If C = 0 ([B] = [A] + C), 

d[A] 

dt 
=  k[A][B] =  k[A]([A] + C) 

d[A] 

[A]([A]+C) 
=  k dt 

1 

  C 
d[A]  =   k dt 

1 

  [A] 

1 

  [A]+C 
  

            =  k t 

[A] 

[A]0 

t 

0 

            ln 
1 

C 

[A] 

[A]+C 
[A]  = 

C[A]0exp(kCt) 

C + [A]0(1exp(kCt)) 

 

[B] = ?,   t1/2 =  ? 



Kinetics 

How to determine the second-order rate constant in the lab? 

A + B    P + Q 

k : second-order rate constant (M1 s1) 

1 

[A] 
                          =  k t 

1 

[A]0 

Use of same concentrations of A and B 

Plot 1/[A] vs. t     the slope is k  

1
/[

A
] 

 

t 

Use of excess B compared to A 

d[A] 

dt 
=  k[A][B] 

=  k[A][B]0 

=  k [A] 

([B]    [B]0) 

(k  =  k[B]0) 

ln
([

A
]/

[A
] 0

) 
 

t 

Slope = k  



Kinetics 

 First-order reaction including back reaction 

* Let’s determine [A]  =  f(t) 

[A]0  =  [A] + [D] 

[A]  =  [A]0 

k2 + k1exp((k1+k2)t) 

k2 + k1 

k1 

k2 
A        D 

 

k1 & k2 : first-order rate constants 



Kinetics 

Equilibrium constant (Kr) 

[A]  =  [A]0 

k2 + k1exp((k1+k2)t) 

k2 + k1 

t      

[D] = [A]0  [A] = [A]0 

k1  k1exp((k1+k2)t) 

k2 + k1 

[A]eq  =  [A]0 

k2  

k2 + k1 

[D]eq  =  [A]0 

k1  

k2 + k1 

Kr = [D]eq/[A]eq = k1/k2   

Or, (easier way) 
=  0 

 k1[A]eq + k2[D]eq = 0   

[D]eq/[A]eq = k1/k2   



Kinetics 

 Catalyzed reactions 

What is “Catalyst”? 

“Catalyst” does not participate in the reaction, but accelerates the reaction rate? 

“Catalyst” does participate in the reaction, accelerating the reaction rate, but, 

 it just does not appear in the overall reaction! 

“Catalyst” lowers the activation barrier (energy) of the reaction. 

e.g., Michaelis-Menten enzyme kinetics 

A    P  (slow) 

But, in the presence of enzyme, E 

A + E      AE  (ultra-fast)   

AE    P + E  (fast) 

Overall reaction: A    P  (fast) 



Kinetics 

A + E      AE   

AE    P + E 

kf 

kb 
kE 

* Let’s determine [A]  =  f(t) 

d[A] 

dt 
=  kf[A][E] + kb[AE]        (1)  

d[AE] 

dt 
=  kf[A][E]  kb[AE]  kE[AE]              (2)  =  0 

(steady-state approximation) 

d[A] 

dt 
=  kE[AE] (1) + (2)   



Kinetics 

d[A] 

dt 
=  kE[AE] [E]0 = [E] + [AE] 

= [AE](1 + [E]/[AE]) 

= [AE](1 + 1/KE[A]) 

[AE] = [E]0/(1 + 1/KE[A]) 

d[A] 

dt 
=  kE[E]0/(1 + 1/KE[A]) 

=  kE[E]0[A]/([A] + 1/KE) 

If [A]  >> 1/KE 

d[A] 

dt 
=  kE[E]0 (zero-order kinetics) 

[A] = [A]0kE[E]0t  

If [A]  << 1/KE 

d[A] 

dt 
=  kEKE[E]0[A] (first-order kinetics) 

[A] = [A]0exp(kEKE[E]0t ) 


