2018 Fall

"Phase Transformation in Materials"

09.20.2018

Eun Soo Park

Office: 33-313

Telephone: 880-7221

Email: espark@snu.ac.kr

Office hours: by an appointment

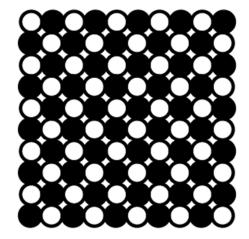
- Binary System mixture/solution/compound

Ideal solution ($\Delta H_{mix} = 0$) Random distribution

$$\Delta H_{mix} = P_{AB} \epsilon$$

Regular solution
$$\Delta H_{\text{mix}} = P_{AB} \epsilon$$
 where $\epsilon = \epsilon_{AB} - \frac{1}{2} (\epsilon_{AA} + \epsilon_{BB})$ $\epsilon \approx 0$

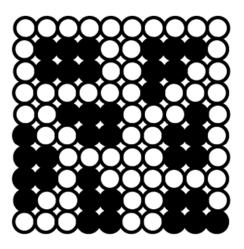
Real solution



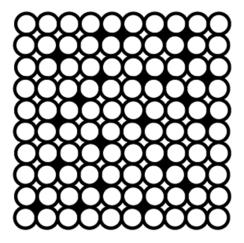
(a) $\varepsilon < 0$, $\Delta H_{mix} < 0$ Ordered alloys

$$P_{AB} \uparrow \longrightarrow Internal E \downarrow \qquad P_{AA}, P_{BB} \uparrow$$

Ordered structure



(b) $\varepsilon > 0$, $\Delta H_{mix} > 0$ **Clustering**



(c) when the size difference is large

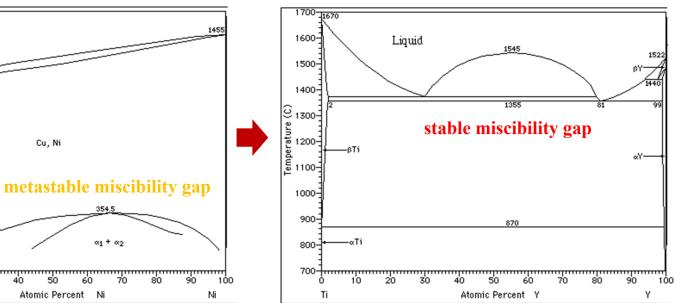
strain effect

Interstitial solution

 $\Delta H_{mix}^{S} > 0$ Solid solution \rightarrow solid state phase separation (two solid solutions) Liquid 1400-Temperature (C) Cu, Ni

 $\Delta H_{mix}^{S} >> 0$: liquid state phase separation (up to two liquid solutions)

Atomic Percent Zr

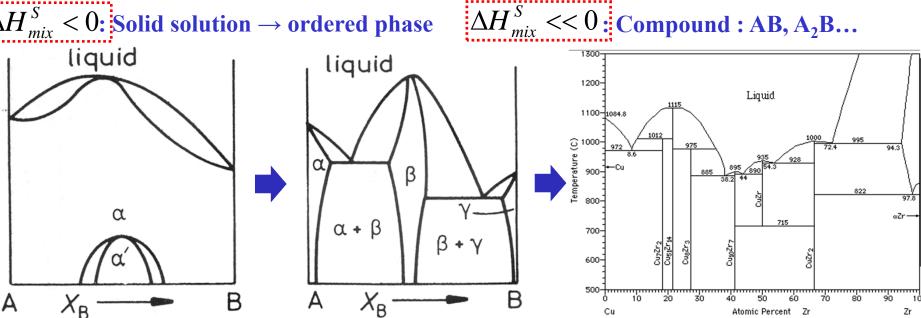


 $\Delta H_{mix}^S < 0$: Solid solution \rightarrow ordered phase

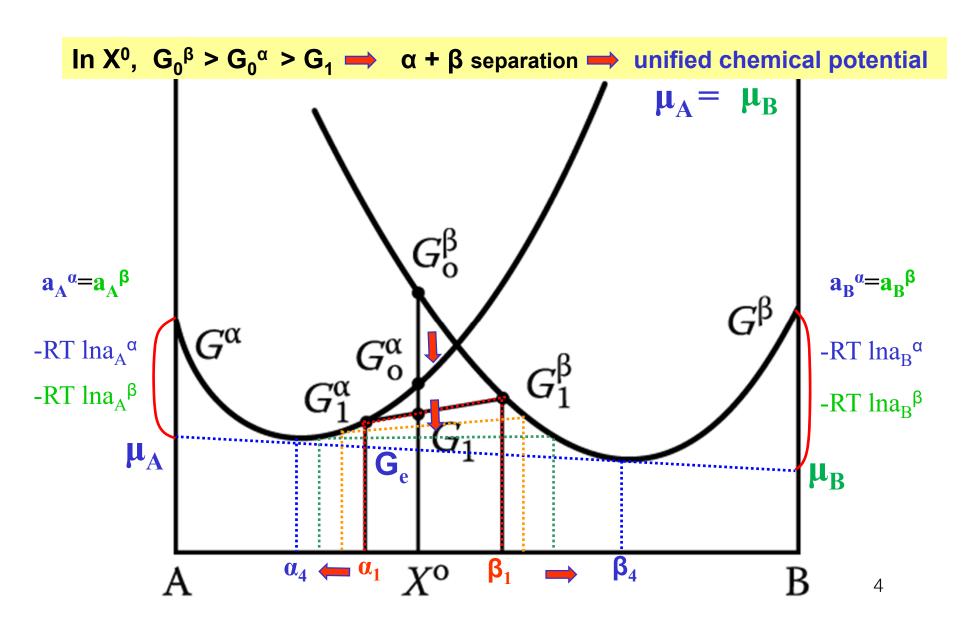
Atomic Percent Ni

400-

200-



Equilibrium in Heterogeneous Systems



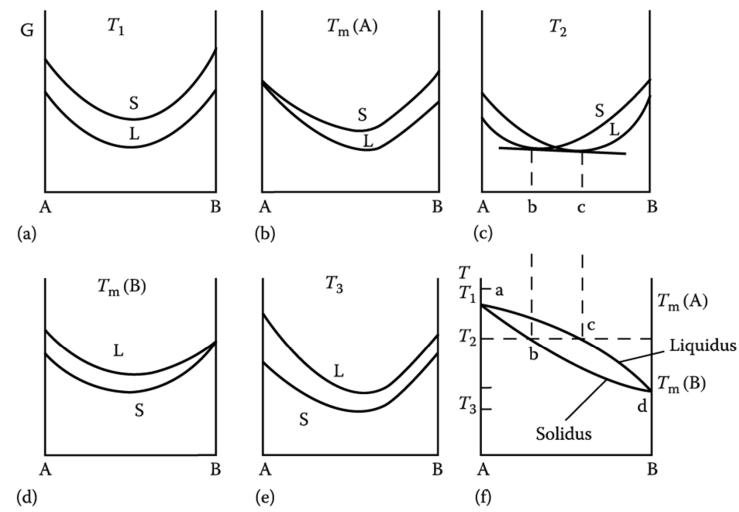
1) Simple Phase Diagrams

- 1) Variation of temp.: G^L > G^s
- 2) Decrease of curvature of G curve

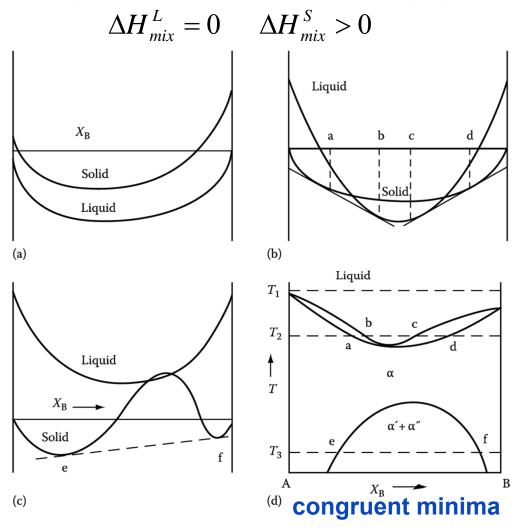
(∵ decrease of -T ΔS_{mix} effect)

Assumption:

- (1) completely miscible in solid and liquid.
- (2) Both are ideal soln.
- (3) $T_m(A) > T_m(B)$
- (4) $T_1 > T_m(A) > T_2 > T_m(B) > T_3$



2) Systems with miscibility gab



How to characterize G^s mathematically in the region of miscibility gap between e and f?

2) Variant of the simple phase diagram

$$\Delta H_{mix} < 0$$

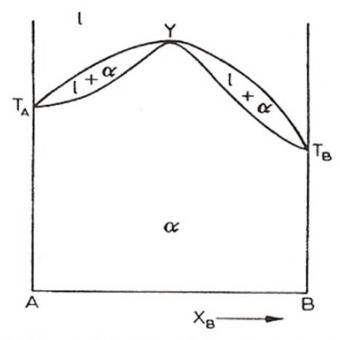


Fig. 32. Phase diagram with a maximum in the liquidus.

$$\Delta H_{mix}^{\alpha} < \Delta H_{mix}^{l} < 0$$

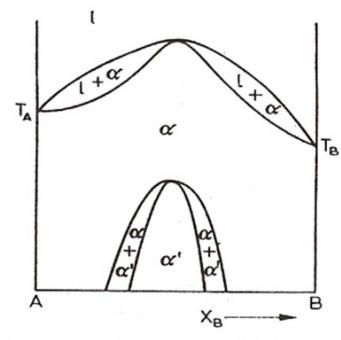


Fig. 33. Appearance of an ordered α' phase at low temperatures.

congruent maxima

- 4) Simple Eutectic Systems $\Delta H_{mix}^{L} = 0$ $\Delta H_{mix}^{S} >> 0$
- ΔH_m>>0 and the miscibility gap extends to the melting temperature.
 (when both solids have the same structure.)

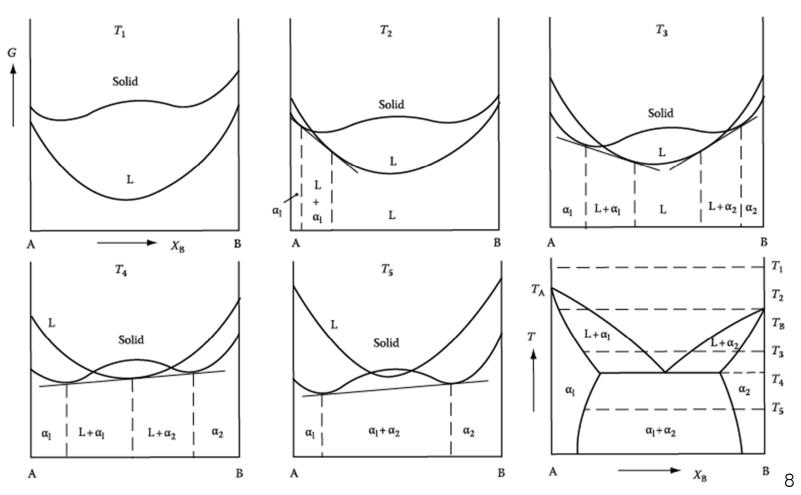


Fig. 1.32 The derivation of a eutectic phase diagram where both solid phases have the same crystal structure.

(when each solid has the different crystal structure.)

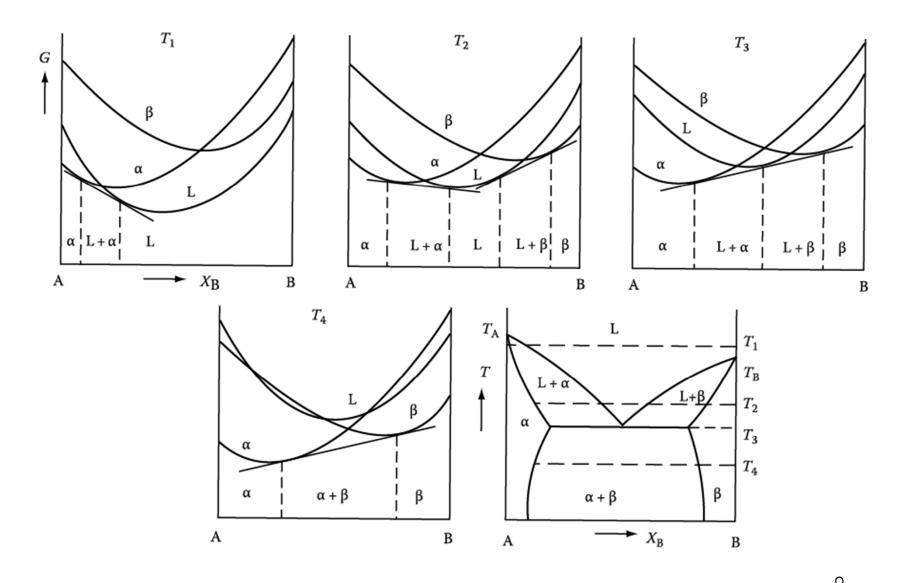
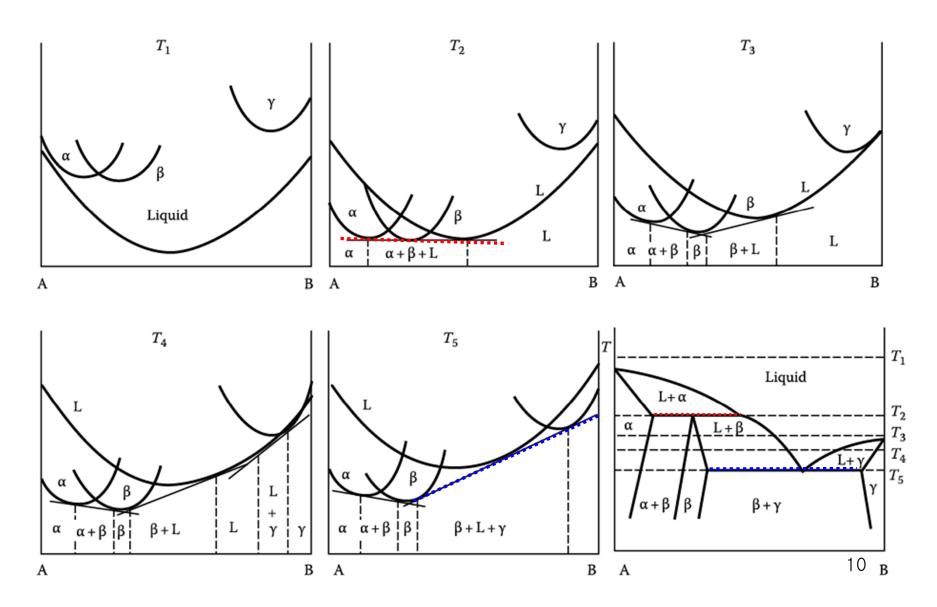
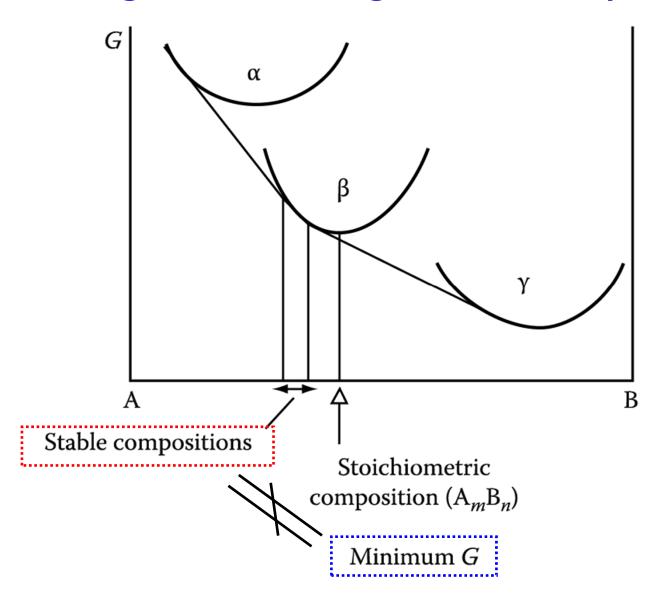


Fig. 1.32 The derivation of a eutectic phase diagram where each solid phases has a different crystal structure.

5) Phase diagrams containing intermediate phases

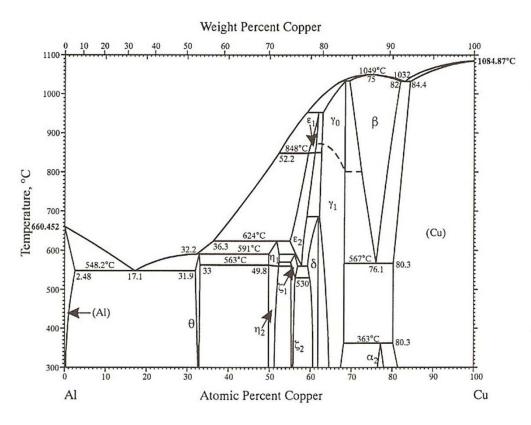


5) Phase diagrams containing intermediate phases



θ phase in the Cu-Al system is usually denoted as CuAl₂ although the composition $X_{Cu}=1/3$, $X_{Al}=2/3$ is not covered by the θ field on the phase diagram.

Al-Cu



Al-Cu

Phase	Composition, at.% Cu	Pearson symbol	Space group	Struktur- bericht designation	Prototype
(Al)	0 to 2.48	cF4	$Fm\overline{3}m$	A1	Cu
θ	31.9 to 33.0	<i>tI</i> 12	I4/mcm	C16	Al ₂ Cu
η_1	49.8 to 52.4	oP16 or $oC16$	Phan or Cmmm		
η_2	49.8 to 52.3	mC20	Cm/2.		
ζ_1	55.2 to 56.8	hP42	P6/mmm		
ζ_2	55.2 to 56.3	m^{**}	•••		
ϵ_1	59.4 to 62.1	C**			
ε2	55.0 to 61.1	hP4	$P6_3/mmc$	$B8_1$	NiAs
δ	59.3 to 61.9	hR^*	$R\overline{3}m$		
Yo	63 to 68.5	c152	$I\overline{4}3m$	$D8_2$	Cu_5Zn_8
Υ1	62.5 to 68.5	cP52	$P\overline{4}3m$	$D8_{3}$	Al ₄ Cu ₉
β	69.5 to 82	cI2	$Im \overline{3}m$	A2	W
α_2	76.5 to 78			•••	
(Cu)	80.3 to 100	cF4	$Fm \overline{3}m$	A1	Cu

J.L. Murray, *Phase Diagrams of Binary Copper Alloys*, P.R. Subramanian, D.J. Chakrabarti, and D.E. Laughlin, ed., ASM International, Materials Park, OH, 18-42 (1994)

X.L. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, *J. Alloys Compds*, 264, 201-208 (1998)

Summary I: Binary phase diagrams

1) Simple Phase Diagrams

Both are ideal soln. \rightarrow 1) Variation of temp.: $G^L > G^s$ 2) Decrease of curvature of G curve (∵ decrease of -T∆S_{mix} effect)

2) Systems with miscibility gap $\Delta H_{mix}^{L} = 0$ $\Delta H_{mix}^{S} > 0$

$$\Delta H_{mix}^{L} = 0 \qquad \Delta H_{mix}^{S} > 0$$

1) Variation of temp.: $G^L > G^s$ 2) Decrease of curvature of G curve + Shape change of G curve by H

4) Simple Eutectic Systems $\Delta H_{mix}^{L} = 0 \quad \Delta H_{mix}^{S} >> 0$

$$\Delta H_{mix}^{L} = 0$$
 $\Delta H_{mix}^{S} >> 0$

→ miscibility gap extends to the melting temperature.

3) Ordered Alloys

$$\Delta H_{mix}^L = 0$$
 $\Delta H_{mix}^S < 0$

 $\Delta H_{mix} < 0 \rightarrow A$ atoms and B atoms like each other. \rightarrow Ordered alloy at low T $\Delta H_{mix} << 0 \rightarrow$ The ordered state can extend to the melting temperature.

5) Phase diagrams containing intermediate phases

Stable composition † Minimum G with stoichiometric composition

The Gibbs Phase Rule

Degree of freedom (number of variables that can be varied independently)

= the number of variables – the number of constraints

- Number of phases : p, number of components : c,
- # of controllable variable : composition (c-1)p, temperature : p, pressure : p
- # of restrictions :

(p-1)c from chemical equilibrium
$$\mu_i^a = \mu_i^\beta = \mu_i^\gamma = \dots = \mu_i^p$$

$$T^a = T^\beta = T^\gamma = \dots = T^p$$

p-1 from thermal equilibrium
$$T'' = T'' = T' = \cdots = T''$$

p-1 from mechanical equilibrium
$$P^a=P^{\mathscr{B}}=P^{\mathscr{F}}=\cdots=P^p$$

Number of variable can be controlled with maintaining equilibrium

$$f = (c-1)p + p + p + (p-1)c - (p-1) - (p-1) = c - p + 2$$
$$f = c - p + 2$$

- If pressure is constant: f = (c-1)p + p - (p-1)c - (p-1) = c - p + 1

The Gibbs Phase Rule

In chemistry, Gibbs' phase rule describes the <u>possible number of</u> <u>degrees of freedom (F) in a closed system at equilibrium</u>, in terms of the number of separate phases (P) and the number of chemical components (C) in the system. It was deduced from thermodynamic principles by Josiah Willard Gibbs in the 1870s.

Gibbs phase rule F = C+N-P

F: degree of freedom

C: number of chemical variables

N: number of non-chemical variables

P: number of phases

In general, Gibbs' rule then follows, as:

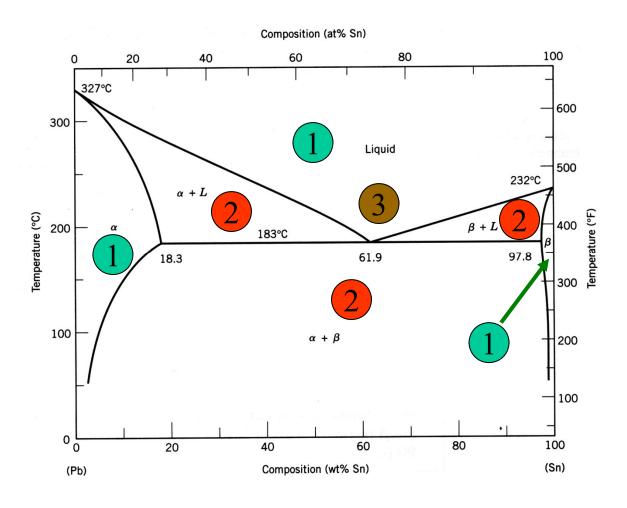
$$F = C - P + 2$$
 (from T, P).

From Wikipedia, the free encyclopedia

The Gibbs Phase Rule

For Constant Pressure,

$$P+F=C+1$$



- single phase
 F = C P + 1
 = 2 1 + 1
 = 2
 can vary T and composition independently
- two phase F = C P + 1 = 2 2 + 1 = 1can vary T or
 composition
- eutectic point

 F = C P + 1

 = 2 3 + 1

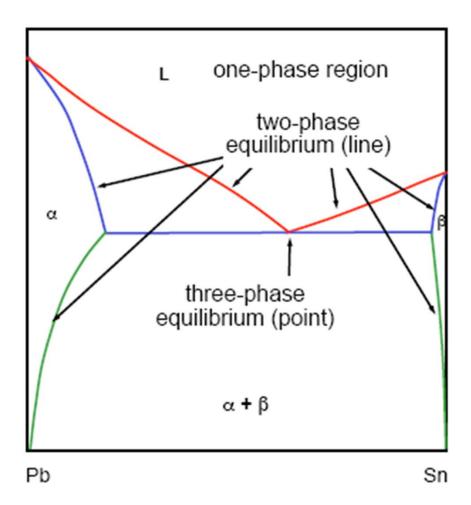
 = 0

 can't vary T or

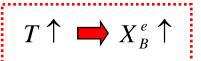
 composition

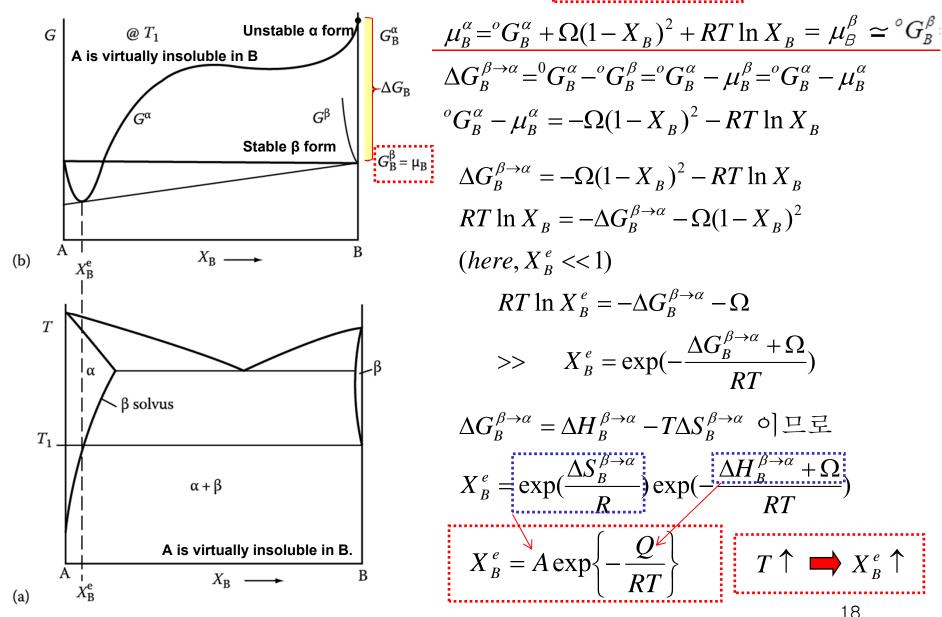
The Gibbs Phase Rule

Application of Gibbs phase rule:
For a binary system at ambient pressure:
C=2 (2 elements)
N=1 (temperature, no pressure)
For single phase: F=2: % and T
(a region)
For a 2-phase equilibrium: F=1:
% or T (a line)
For a 3-phase equilibrium: F=0, (invariant point)



1.5.7 Effect of T on solid solubility $T \uparrow \implies X_B^e \uparrow$





Q: heat absorbed (enthalpy) when 1 mole of β dissolves in A rich α as a dilute solution.

* Limiting forms of eutectic phase diagram

The solubility of one metal in another may be so low.

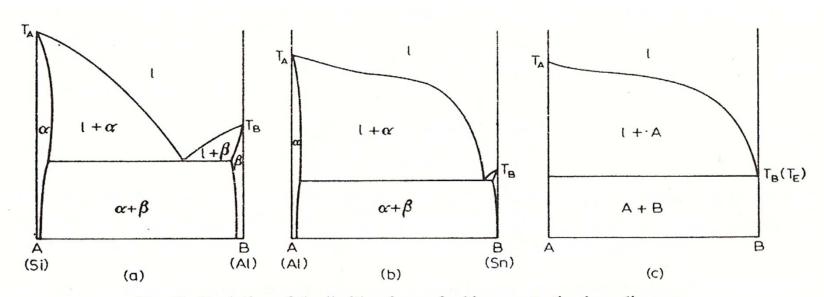


Fig. 53. Evolution of the limiting form of a binary eutectic phase diagram.

$$X_B^e = A \exp\left\{-\frac{Q}{RT}\right\}$$
 a) $T \uparrow \implies X_B^e \uparrow$

b) It is interesting to note that, except at absolute zero, X_B^e can never be equal to zero, that is, no two compo-nents are ever completely insoluble in each other.

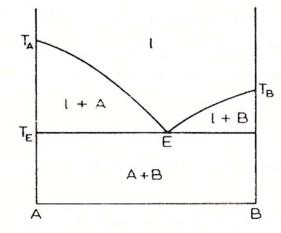
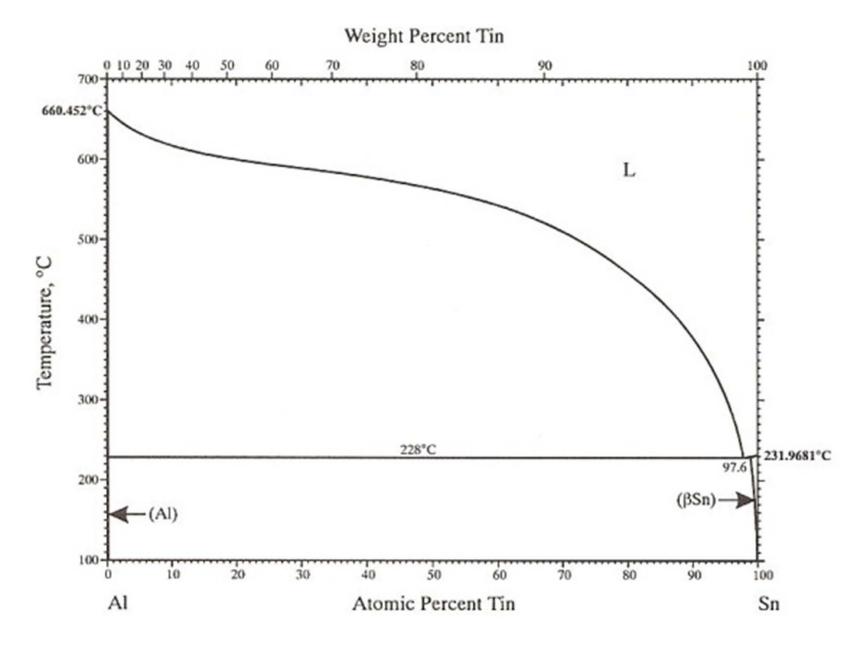


Fig. 54. Impossible form of a binary eutectic phase diagram.



1.5.8. Equilibrium Vacancy Concentration $\Delta G = \Delta H - T\Delta S$

G of the alloy will depend on the concentration of vacancies and X_{V}^{e} will be that which gives the minimum free energy.

1) <u>Vacancies increase the internal energy of crystalline metal</u> due to broken bonds formation. (Here, vacancy-vacancy interactions are ignored.)

$$\Delta H \cong \Delta H_V X_V$$

- 2) Vacancies increase entropy because they change the thermal vibration frequency and also the configurational entropy.

 Small change due to changes in the vibrational frequencies "Largest contribution"
- Total entropy change is thus

$$\Delta S = \Delta S_{\vee} X_{\vee} - R\{X_{\vee} \ln X_{\vee} + (1 - X_{\vee}) \ln(1 - X_{\vee})\}$$

The molar free energy of the crystal containing X_v mol of vacancies

$$G = G_{A} + \Delta G = G_{A} + \Delta H_{V} X_{V} - T\Delta S_{V} X_{V} + RT\{X_{V} \ln X_{V} + (1 - X_{V}) \ln(1 - X_{V})\}$$

With this information, estimate the equilibrium vacancy concentration.

Equilibrium concentration X_{V}^{e} will be that which gives the minimum free energy.

at equilibrium
$$\left(\frac{dG}{dX_V}\right)_{X_V = X_V^e} = 0$$

$$\Delta H_V - T\Delta S_V + RT In X_V^e = 0$$

A constant ~3, independent of T

$$X_{V}^{e} = exp \frac{\Delta S_{V}}{R} exp \frac{-\Delta H_{V}}{RT}$$

putting
$$\Delta G_V = \Delta H_V - T\Delta S_V$$

$$X_{V}^{e} = exp \frac{-\Delta G_{V}}{RT}$$

In practice, △H_V is of the order of 1 eV per atom and X_V^e reaches a value of about 10⁻⁴~10⁻³ at the melting point of the solid

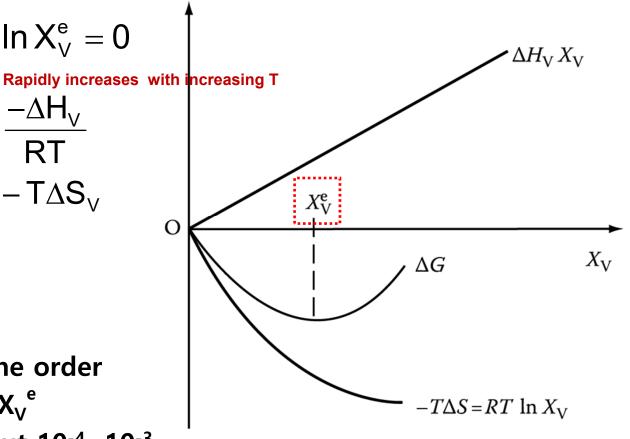


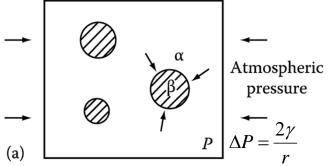
Fig. 1.37 Equilibrium vacancy concentration.

: adjust so as to reduce G to a minimum

The G curves so far have been based on the molar Gs of infinitely large amounts of material of a perfect single crystal. Surfaces, GBs and interphase interfaces have been ignored.

1.6 Influence of Interfaces on Equilibrium - b) 평형에 미치는 계면의 영향

$$\Delta G = \Delta P \cdot V \implies \Delta G = \frac{2\gamma V_m}{r}$$



Extra pressure ΔP due to curvature of the α/β The concept of a pressure difference is very useful for spherical liquid particles, but it is less convenient in solids (often nonspherical shape).

$$\mathrm{dG} = \Delta G_{\gamma} dn = \gamma dA \qquad \Delta G_{\gamma} = \gamma dA/dn$$
 Since n=4\pi r^3/3V_m and A = 4\pi r^2 \quad \Delta G = \frac{2\gamma V_m}{r}

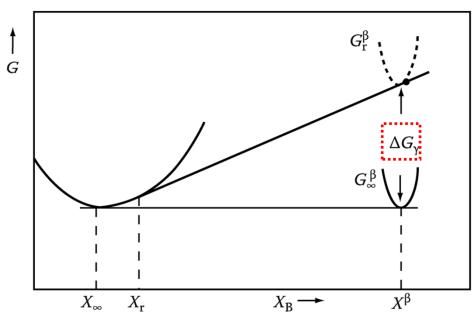


Fig. 1.38 The effect of interfacial E on the solubility of small particle

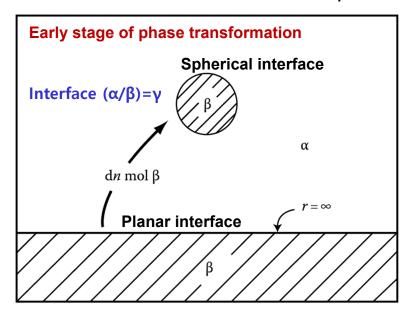


Fig. 1.39 Transfer of dn mol of β from large to a small particle.

$$X_B^e = A \exp\left\{-\frac{Q}{RT}\right\}$$

Gibbs-Thomson effect (capillarity effect):

Free energy increase due to interfacial energy

Quite large solubility differences can arise for particles in the range r=1-100 nm. However, for particles visible in the light microscope (r>1um) capillarity effects are very small.

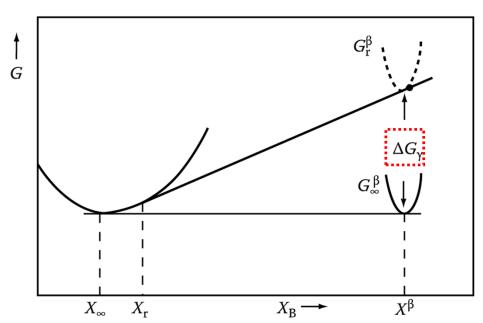


Fig. 1.38 The effect of interfacial energy on the solubility of small particles.

(b)

$$X_{B}^{e} = \exp(-\frac{\Delta G_{B} + \Omega}{RT})$$

$$X_{B}^{r=\infty} = \exp(-\frac{\Delta G_{B} + \Omega}{RT})$$

$$X_{B}^{r=r} = \exp(-\frac{\Delta G_{B} + \Omega - 2\gamma V_{m}/r}{RT})$$

$$= X_{B}^{r=\infty} \exp(\frac{2\gamma V_{m}}{RT})$$

For small values of the exponent,

$$\frac{X_B^{r=r}}{X_B^{r=\infty}} = \exp(\frac{2\gamma V_m}{RTr}) \approx 1 + \frac{2\gamma V_m}{RTr}$$

Ex) $\gamma = 200 \text{mJ/m}^2$, $V_m = 10^{-5} \text{ m}^3$, T = 500 K

$$\frac{X_r}{X_{\infty}} = 1 + \frac{1}{r(nm)}$$

For r=10 nm, solubility~10% increase

24

Total Free Energy Decrease per Mole of Nuclei $\Delta G_0 = -V \Delta G_V + A \gamma + V \Delta G_s$

📜 Chapter 5.1

Driving Force for Precipitate Nucleation

$$\alpha \rightarrow \alpha + \beta \mid \Delta G_{V}$$

: 변태를 위한 전체 구동력/핵생성을 위한 구동력은 아님

$$\Delta G_1 = \mu_A^{\alpha} X_A^{\beta} + \mu_B^{\alpha} X_B^{\beta}$$

: Decrease of total free E of system by removing a small amount of material with the nucleus composition (X_R^{β}) (P point)

$$\Delta G_2 = \mu_A^{\beta} X_A^{\beta} + \mu_B^{\beta} X_B^{\beta}$$

: Increase of total free E of system by forming β phase with composition X_{R}^{β} (Q point)

$$\Delta G_n = \Delta G_2 - \Delta G_1$$
 (length PQ)

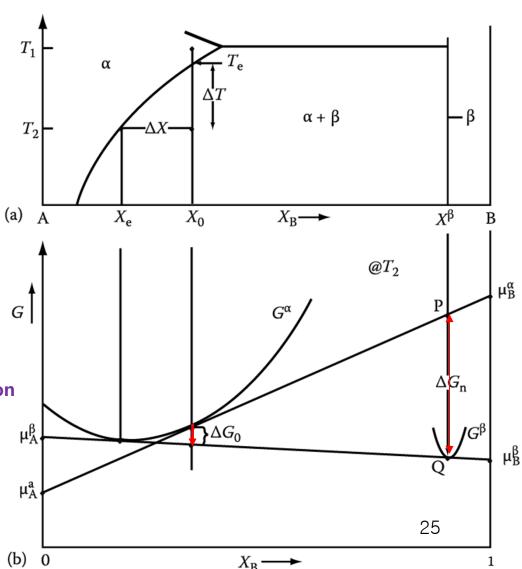
 $\Delta G_V = \frac{\Delta G_n}{V}$ per unit volume of β : driving force for β precipitation

For dilute solutions,

$$\Delta G_V \propto \Delta X$$
 where $\Delta X = X_0 - X_e$

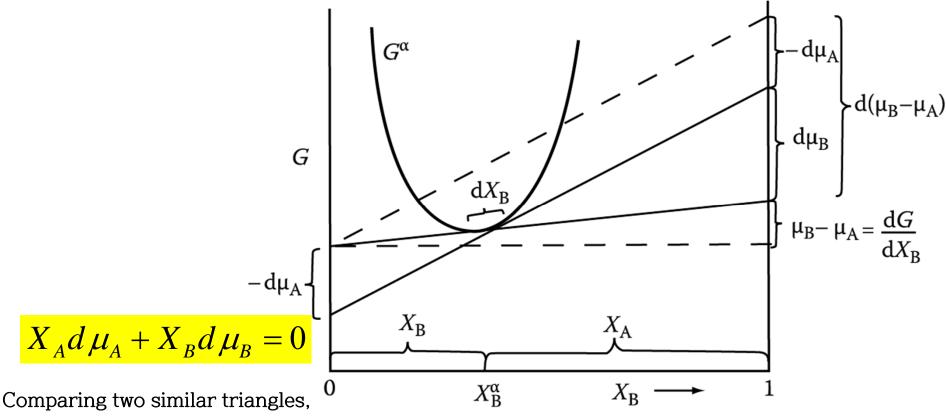
$$\Delta G_V \propto \Delta X \propto (\Delta T)$$

∝undercooling below T_a



1.8 Additional Thermodynamic Relationships for Binary Solutions

Gibbs-Duhem equation: Calculate the change in (dµ) that results from a change in (dX)



$$-\frac{d\mu_{A}}{X_{B}} = \frac{d\mu_{B}}{X_{A}} = \frac{d(\mu_{B} - \mu_{A})}{1} \qquad \iff \frac{dG}{dX_{B}} = \frac{\mu_{B} - \mu_{A}}{1} \quad \frac{d^{2}G/dX^{2}}{d^{2}G/dX_{B}^{2}} = d^{2}G/dX_{A}^{2}$$

Substituting right side Eq. & Multiply X_AX_R

$$-X_A d\mu_A = X_B d\mu_B = X_A X_B \frac{d^2 G}{dX^2} dX_B$$

Additional Thermodynamic Relationships for Binary Solutions

be able to calculate the change in chemical potential (dµ) that result from a change in alloy composition (dX).

1 For a regular solution,

$$G = X_A G_A + X_B G_B + \Omega X_A X_B + RT(X_A \ln X_A + X_B \ln X_B)$$

$$\frac{d^2 G}{dX^2} = \frac{RT}{X_A X_B} - 2\Omega$$
 For a ideal solution, $\Omega = 0$,
$$\frac{d^2 G}{dX^2} = \frac{RT}{X_A X_B}$$

Different form $\mu_{B} = G_{B} + RTIna_{B} = G_{B} + RTIn\gamma_{B}X_{B}$ **(2)** Eq. 1.65

Differentiating With respect to
$$X_B$$
, $\frac{d\mu_B}{dX_B} = \frac{RT}{X_B} \left\{ 1 + \frac{X_B}{\gamma_B} \frac{d\gamma_B}{dX_B} \right\} = \frac{RT}{X_B} \left\{ 1 + \frac{d \ln \gamma_B}{d \ln X_B} \right\}$

$$\frac{d\mu_B}{dX_B} = \frac{RT}{X_B} \left\{ 1 + \frac{X_B}{\gamma_B} \frac{d\gamma_B}{dX_B} \right\} = \frac{RT}{X_B} \left\{ 1 + \frac{d \ln \gamma_B}{d \ln X_B} \right\} \quad \text{Eq. 1.69}$$

a similar relationship can be derived for $d\mu_A/dX_B$

The Gibbs-Duhem Equation

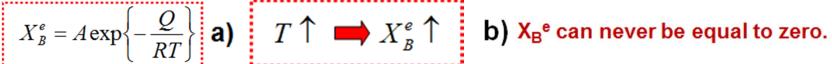
$$X_A X_B \frac{d^2 G}{dX^2} = RT \left\{ 1 + \frac{d \ln \gamma_A}{d \ln X_A} \right\} = RT \left\{ 1 + \frac{d \ln \gamma_B}{d \ln X_B} \right\}$$

be able to calculate the change in chemical potential $(d\mu)$ that result from a change in alloy composition (dX).

Summary II: Binary phase diagrams

- F = C P + 1 (constant pressure) - Gibbs Phase Rule Gibbs' Phase Rule allows us to construct phase diagram to represent and interpret phase equilibria in heterogeneous geologic systems.
- Effect of Temperature on Solid Solubility

$$X_B^e = A \exp\left\{-\frac{Q}{RT}\right\}$$



- Equilibrium Vacancy Concentration $X_{V}^{e} = exp \frac{-\Delta G_{V}}{RT}$

$$X_{V}^{e} = exp \frac{-\Delta G_{V}}{RT}$$

Influence of Interfaces on Equilibrium

$$\Delta G = \frac{2\gamma V_m}{r}$$
 Gibbs-Thomson effect

Gibbs-Duhem Equation: Be able to calculate the change in

chemical potential that result from a change in alloy composition.

$$X_A X_B \frac{d^2 G}{dX^2} = RT \left\{ 1 + \frac{d \ln \gamma_A}{d \ln X_A} \right\} = RT \left\{ 1 + \frac{d \ln \gamma_B}{d \ln X_B} \right\}$$

Topic proposal for materials design

Please submit 3 materials that you want to explore for materials design and do final presentations on in this semester. Please make sure to thoroughly discuss why you chose those materials (up to 1 page on each topic). The proposal is due by September 26 on eTL.

Ex) stainless steel/ graphene/ OLED/ Bio-material/ Shape memory alloy Bulk metallic glass, etc.