Chapter 6. Link Between Operations and Finance

ROIC or KPI Tree

Economic Value Created =
 Invested Capital X (ROIC – WACC)
 where ROIC= Return on Invested Capital
 WACC = Weighted Average Cost of Capital

ROIC or KPI (Key Performance Indicators) Tree

⇒ Read financial statements to get a sense of the operational performance of a company

ROIC or KPI Tree

ROIC = Net Operating Profit after Tax (NOPAT) Average Invested Capital

Apple (2019)

NOPAT [49.682 B] (/) Average Invested Capital over Period [199.7 B] (=) Return On Invested Capital [24.9%]

Where invested capital is calculated as follows:

(+) Average Debt = (108.4 B + 122.2 B) / 2 = 115.3 B (+) Average Equity = (96.456 B + 72.282 B) / 2 = 84.369 B (=) Invested Capital [199.7 B]

Apple Return on Invested Capital Benchmarks

Name	Ticker	Return on Invested Capital
Western Digital Corporation	NASDAQGS:WDC	1.4%
Information Technology	SECTOR:IT.US	2.8%
Tesla, Inc.	NASDAQGS:TSLA	3.7%
Hewlett Packard Enterprise Co	NYSE:HPE	4.6%
International Business Machines	NYSE:IBM	7.1%
Amazon.com, Inc.	NASDAQGS:AMZN	8.5%
Alphabet Inc.	NASDAQGS:GOOG.L	11.5%
Netflix, Inc.	NASDAQGS:NFLX	11.9%
Microsoft Corporation	NASDAQGS:MSFT	20.1%
Avid Technology, Inc.	NASDAQGS:AVID	23.9%
Apple Inc.	NASDAQGS:AAPL	24.9%
HP Inc.	NYSE:HPQ	64.7%

Paul Downs started making furniture in 1986, in a small shop in Manayunk. Over the years we have outgrown 4 other shops and we now operate a 33,000ft² shop in Bridgeport, PA.

Much of our work is residential, but we also do a lot of office furniture, including desks and conference tables. We complete 125 commissions per year, consisting of about 500 separate pieces of furniture.

Production facility

Machines valued about \$450k, depreciation \$80k per year Overall facility is utilized at 100% right now

Show rooms and factory: \$150k for rent

Indirect costs: (marketing \$100k, \$180k management, \$60k finish)

Inventory: \$50,000 WIP and \$20,000 raw material Suppliers need to be paid 1 month before receiving the wood.

Work force

12 cabinet makers each working about (220 days @8h/day) wage rate: \$20 per hour

A worker needs about 40h per unit of furniture (work-cell) as labor content Spend about 15% of time on set-ups (build fixtures / program machines) Labor utilization around 90% (idle time resulting from waiting)

End Product

Average price is \$3000 per unit Requires 30kg of wood (wood costs about \$10 per kg) before scrap 25% scrap

Customer pays 50% as a down payment and gets her furniture 3 months later

Creating ROIC (Value, KPI) Trees

Develop value trees

- Link financial measures to potential value drivers in operations
- In operations, **performance typically focuses on ROIC**
- Develop several versions as there is no "right answer"
- Explore multiple sub-trees

Value Drivers

Value drivers are operational variables in the ROIC tree that have a big impact on ROIC

Identify value drivers based on sensitivity analysis in Excel

Typical value drivers: -If operation is currently <u>capacity constrained</u> (i.e. has high demand), everything that creates additional capacity is powerful utilization / downtime production yields set-up time / other improvement of overall equipment effectiveness (OEE) -If operation is currently <u>demand constrained</u> (i.e. has insufficient demand), everything that gets more \$'s out of a customer is powerful variety / customization after-sales service / support ⇒ innovation

But: no general rule exists: your insight is needed

How the Airline Industry Works: Philadelphia (PHL) to Seattle (SEA) on a Boeing 737-700

Distance: 2378 miles (nonstop)

Seats on airplane: 137

Available seat miles (ASM): 137*2378=325,786 seat miles

120 passengers are on the plane paying an average of \$200 for their ticket

Revenue passenger miles (RPM): 120*2378=285,360 revenue passenger miles

Load factor: RPM/ASM=0.876 (percentage of seats sold)

Yield: revenue per revenue passenger mile=120*200/285,360=200/2378=0.08 \$/RPM

Using Productivity Ratios: Airline Application

Note: There exists a \$25k per year difference in wages (=(\$1million/47.35-\$1million/67.01)*4 quarters)

Revenue / fuel costs = Revenue/RPM * RPM/ASM * ASM/Gallons * Gallons/fuel costs

USAir: 6.21 =0.197 * 0.70 * 52.3 * 0.860.86Fuel productivity advantage of SW is driven by (a)SW : 6.79 =0.135 * 0.69 * 60.2 * 1.21fuel productivity advantage of SW is driven by (a)(b) cheaper fuel (by hedging)

Note: There exists a \$0.33 per gallon difference in fuel prices (=(1/0.86 - 1/1.21))

Using Productivity Ratios: Airline Application

Table 6.2 Comparison between Southwest and other airlines						
Airline	Operational Yield [\$/RPM]	Load Factor [%]	ASM per Employee	Number of Employees/Million US\$ of Labor Costs	Overall Labor Productivity	
Delta	0.14	0.85	2682.7	7.42	2419.2	
South- west	0.15	0.84	2912.7	7.15	2606.0	
United	0.14	0.83	2529.5	8.32	2364.7	

2016 MIT Airline data

- A Southwest employee is able to support almost 10% more ASM compared to Delta and United employees. (This gap was more than 30% 5 years ago!)

- Southwest employees earn higher wages.

Sizing the Pie: How to Value the Financial Performance Improvement From an Improved Productivity Ratio

Strategic Trade-offs

- No differentiation between the major US carriers
- Efficient frontier:

Southwest introduced the high efficiency strategy in the US Ryanair has pushed this to the extreme in Europe following

⇒ Choose clean strategies, especially for Lufthansa and Ryanair ...
... and drive improvement towards the frontier and beyond