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1. Definitions and notation

§ D: particle diameter
§ ρs : sediment density
§ ρ : fluid density
§ upi=(up, vp, wp) : Instantaneous particle velocity.
§ ui=(u, v, w) : Instantaneous fluid velocity
§ Vp : particle volume
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2. Equation of particle motion

§ The instantaneous equation of momentum of a particle i
mmersed in a fluid 

§ Stress tensor from N-S

§ nj is denotes an outward unit normal to the surface of the 
grain.
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ρsVp

dupi
dt

= −ρsVpgi + τ jin j dS
S
∫

∂ui
∂t

+ u j
∂ui
∂x j

= + 1
ρ
∂τ ij
∂x j

+ gi
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3. Case: Particle moving through quiescent fluid

§ The particle equation has no general solution so we will l
ook up the several cases. 

§ Particle falls through a quiescent fluid.

§ Buoyancy force

§ Drag force

4

τ jin j dS
S
∫ = Bi + Di + Ai

Bi = −ρVpgi

Di = − 1
2
ρCDAD up upi

AD = π D
2

⎛
⎝⎜

⎞
⎠⎟
2

up = upiupi
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3. Case: Particle moving through quiescent fluid

§ When the particle Reynolds number defined as

§ For small Reynolds number 

§ Larger Reynolds number
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Rp =
up D
ν

CD = 24
Rp

Di = 3πρνDupi

CD = 0.4, Di = 0.4π
D2

8
up upi
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3. Case: Particle moving through quiescent fluid

§ Finally the added mass term

§ This added mass term acts as a resistance force. 
§ If we send it to the left hand side, it plays as like as mass 

and appear as effective mass.
§ More terms

– Basset force : history force
– Magnus force : lift force by rotation

§ Finally
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Ai = −ρCmVp

dupi
dt

(Cm ~ 0.5)

ρs + 0.5ρ( )Vp

dupi
dt

= ρs − ρ( )Vpgi −
1
2
ρCDπAp up upi
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4. Case: Particle in moving fluid

§ Consider the relative motion between the fluid and the p
article

§ The position of the particle centroid

§ Relative particle velocity 

§ Now force balance equation becomes

§ Here Li is lifting force
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u fi t( ) = ui xpi t( ),t( )
uri = upi − u fi

τ jin j dS
S
∫ = Bi + Di + Ai + Li
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4. Case: Particle in moving fluid

§ Buoyant force now contains an accelerative effect,

§ The drag and added mass forces must be expressed in t
erms of relative velocity 
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Bi = −ρVpgi + ρVp

du fi

dt

Di = − 1
2
ρCDAp ur uri

Ai = −ρCmVp
duri
dt
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4. Case: Particle in moving fluid

§ The lift force associated with the filed of shear flow can b
e related in dynamic pressure across the grain.

§ Net lift force is 
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Li =
1
2
ρCLAp ur max

2 − ur opp
2⎡

⎣
⎤
⎦eri
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4. Case: Particle in moving fluid

§ Now, the general equation of motion of a particle is found 
to be
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ρsVp

dupi
dt

= ρs − ρ( )Vpgi + ρVp

du fi

dt
− 1
2
ρCDAp ur upi − u fi( )

− ρCmVp
d
dt

upi − u fi( ) + 12 ρCLAp ur max

2 − ur opp
2⎡

⎣
⎤
⎦eri
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5. Collision with the bed (Bedload transportation)

§ Sediment particles tend to move in one or two relative di
stinct modes.
– The first mode is bedload transport

§ In this case, particles tend to roll, slide, or hop along the 
bed.

§ The hopping mode is perhaps the most common
– It is called Saltation.
–
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5. Collision with the bed (Bedload transportation)

§ Saltating particles obtain their forward momentum fron th
e flow through the drag term.

§ That is the faster flow tends to pull the grain along.
§ Under the influence of gravity these grains fall back to th

e bed.
§ Upon striking the bed, they transfer some of their momen

tum to the bed.
§ The particles tend to bound back however, as the collisio

n is partially elastic.
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5. Collision with the bed (Bedload transportation)

§ Particle collide with the bed with velocity
– The subscript “in” denoting “incoming”.

§ Velocity tangent to the bed surface
§ Velocity normal to the bed surface

– “out” denoting “outgoing and e denotes the 
coefficient of restitution. (0.5~0.75)

§ You will have mini-project !!!! (Congrat!)
– From today during two weeks.

13

upi in

upT in

upN out
= −e ⋅upN in
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6. Diffusivity of turbulent (suspended sediment)

14

Qd = −Dd
dC
ds

§ The effect of turbulent is to diffuse, or mix any contamina
nt such as hear, suspended sediment, momentum.

§ Fickian model of diffusion

– C denote the linear concentration of contaminant.  The diff
usive discharge Qd of contaminant, in grams grossing a se
ction as s per unit time, is taken to be given by Fick’s law.
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6. Diffusivity of turbulent (suspended sediment)

§ Dd denotes a coefficient of diffusivity. Mass balance of co
ntaminant on a strip of length ds requires the following re
lation to hold:

§ Now the total amount of contaminant in the canal is give
n by
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∂
∂t

mass in strip[ ] = net inflow of mass[ ]
∂
∂t

Cds[ ] =Qd s( )−Qd s + ds( )
∂C
∂t

= Dd
∂2C
∂s2

Cds
−∞

∞

∫
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6. Diffusivity of turbulent (suspended sediment)

§ Two previous equations can be rearranged as

§ Now suppose we release a patch of contaminant at s=0 
and allow it to diffuse in time.
– Because there is no mean flow, the position of the centroid 

of the patch should not change.
– On the other hand the variance of the patch should increas

es as diffusion progresses from areas of high concentratio
n to low concentration

16

∂P
∂t

= Dd
∂2P
∂s2

P = C

Cds
−∞

∞

∫
, Pds

−∞

∞

∫ = 1
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6. Diffusivity of turbulent (suspended sediment)
§ By definition, the s coordinated of the centroid of the diffu

sing patch is given by

§ Centroid of s does not change with time. 17

s = sPds
−∞

∞

∫
s ∂P
∂t

= sDd
∂2P
∂s2

⎛
⎝⎜

⎞
⎠⎟
ds

−∞

∞

∫

s ∂P
∂t

⎛
⎝⎜

⎞
⎠⎟ ds−∞

∞

∫ = sDd
∂2P
∂s2

⎛
⎝⎜

⎞
⎠⎟
ds

−∞

∞

∫
∂
∂t

sP( )ds =
−∞

∞

∫
ds
dt

ds
dt

= Dd s ∂
2P
∂s2

⎛
⎝⎜

⎞
⎠⎟
ds

−∞

∞

∫ = Dd s ∂P
∂s −∞

∞

− ∂P
∂s

ds
−∞

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥ = 0
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6. Diffusivity of turbulent (suspended sediment)
§ Diffusivity
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σ 2 = s − s( )2 = s2 = s2Pds
−∞

∞

∫
s2 ∂P

∂t
= s2Dd

∂2P
∂s2

⎛
⎝⎜

⎞
⎠⎟
ds

−∞

∞

∫

s2 ∂P
∂t

⎛
⎝⎜

⎞
⎠⎟ ds−∞

∞

∫ = s2Dd
∂2P
∂s2

⎛
⎝⎜

⎞
⎠⎟
ds

−∞

∞

∫
∂
∂t

s2P( )ds =
−∞

∞

∫
dσ 2

dt
dσ 2

dt
= Dd s2 ∂

2P
∂s2

⎛
⎝⎜

⎞
⎠⎟
ds

−∞

∞

∫ = Dd s2 ∂P
∂s −∞

∞

− 2s ∂P
∂s

ds
−∞

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥

dσ 2

dt
= −Dd 2s ∂P

∂s
ds

−∞

∞

∫ = 2Dd
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7. Limiting equation for fine particles.

§ Consider in the limiting case of very fine particles.
§ The lift force can be neglected because the size of the p

article is much smaller than any characteristic lengths
§ The drag law can be take to be stokes form
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ρVp

dupi
dt

= ρs − ρ( )Vpgi + ρVp

du fi

dt
− 1
2
ρCDAp ur upi − u fi( )

− ρCmVp
d
dt

upi − u fi( ) + 12 ρCLAp ur max

2 − ur opp
2⎡

⎣
⎤
⎦eri

⇒ Vp
d
dt

ρs +Cmρ( )upi − ρ 1+Cm( )u fi⎡⎣ ⎤⎦ = ρs − ρ( )Vpgi − 3πρνD upi − u fi( )

Di = −3πρνD upi − u fi( )
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7. Limiting equation for fine particles.

§ If the particles are very small and if the time scale of fluct
uation of the flow is large compared to the response time 
of the particle (e.g., characteristic eddy size is much larg
er than particle size), then the acceleration term can be d
ropped.

§ The remaining terms are gravity and drag; the particle is 
taken to respond instantaneously to changing flow.

§ The resulting relation is usefully expressed in a coordinat
e system with z oriented upward vertically such that
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gi = − 0,0,g( ) = −gδ 3i

0 = − 4
3
π D

2
⎛
⎝⎜

⎞
⎠⎟
3

Rgδ 3i − 3πνD upi − u fi( )
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7. Limiting equation for fine particles.

§ At this point, consider flow to be in quiescent water

§ Then

§ Now put this one into original force balance equation, the
n

21

u fi = 0 Then upi = 0,0,−vs( )
0 = − 4

3
π D

2
⎛
⎝⎜

⎞
⎠⎟
3

Rg + 3πνDvs

vs =
1
18

RgD2

ν
(stokes ' falling velocity)

0 = − 4
3
π D

2
⎛
⎝⎜

⎞
⎠⎟
3

Rgδ 3i − 3πνD upi − u fi( )

upi − u fi = − 4
3
πD3Rgδ 3i
8 ⋅3πνD

= − 1
18

RgD2

ν
δ 3i = vsδ 3i

upi = u fi − vsδ 3i
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8. Taylor’s theory of diffusion by continuous movement

§ Assuming that the particle motion is neutrally buoyant (s
o fine as to exactly follow the fluid motion).

§ In this case
§ By the way
§ Then

§ One dimensional form is

by G.I. Taylor.

22

upi = u fi

upi =
dxpi
dt

(where xpi is particle position)

dxpi
dt

= ui xpj t( ),t( ) (where ui is Eulerian fluid velocity field)

dS
dt

=U(t) (where xi → S(t), ui (xpj (t),t)→ u(S(t),t) =U(t))
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8. Taylor’s theory of diffusion by continuous movement

§ Taylor envisioned releasing many particles from the point 
s=0 in a turbulent fluid with no mean flow. Averaging over 
all the particle displacements should result in a mean dis
placement of zero.

§ It can be expected, however, that the spread or variance, 
of particle position should increase in time due to the dis
persive nature of turbulence. 
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8. Taylor’s theory of diffusion by continuous movement

§ Averaging 

§ Let us consider what a time record of U might look like. It 
should consist entirely of turbulent fluctuations about me
an. 24

dS
dt

=U(t)⎛
⎝⎜

⎞
⎠⎟ ⇒ S = 0 if U = 0 (see figure)
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8. Taylor’s theory of diffusion by continuous movement

§ The amplitude of these fluctuations is measured by the r
oot-mean-squared velocity U’, where by definition

§ Correlation function can be similarly defined for U:

25

U ′ = U 2( )1/2

R t,τ( ) = U(t)U(t +τ )
U ′2

(where τ is time lag)

R t,τ( )→ 0 as τ → ∞
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8. Taylor’s theory of diffusion by continuous movement

§ If the turbulence has the same statistical characteristics 
everywhere, it is said to be stationary. Under this conditi
on, the correlation function has exactly the same form re
gardless of the time t at which it is measured. That is 

§ This correlation function can be used to define a Lagrang
ian (following a fluid particle) integral time scale of turbul
ent fluctuation TL:
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R t,τ( ) = R τ( )

TL = R τ( )dτ
0

∞

∫
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8. Taylor’s theory of diffusion by continuous movement

§ Now we compute the variance of the dispersion particles
:

§ With above two equations

27

σ 2 = S − S( ) = S2
dS
dt

=U(t) ⇒ S = U t ′( )dt′
0

t

∫

σ 2 = U t ′( )dt′
0

t

∫ U t ′′( )dt′′
0

t

∫

= U t ′( )U t ′′( )dt′
0

t

∫ dt′′
0

t

∫

= 2 U t ′( )U t ′′( )dt′
0

t ′

∫ dt′′
0

t

∫

If f (t ′,t ′′) = f (t ′′,t) then

f (t ′,t ′′)dt′
0

t

∫ dt′′
0

t

∫

= 2 f (t ′,t ′′)dt′
0

t ′

∫ dt′′
0

t

∫
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8. Taylor’s theory of diffusion by continuous movement

§

§

28

Let's t ′′ = t ′ +τ1. In the integral in t′′, t ′ can be taken as constant, 
so dt′′ = dτ1.

σ 2 = 2 U t ′( )U t ′ +τ1( )dt′dt = 2U ′2 dt′
0

t

∫ R τ( )dτ1
− t ′

0

∫
− t ′

0

∫
0

t

∫

Now let τ1 = −τ  and use the property R τ( ) = R −τ( )  to obtain

σ 2 = 2U ′2 dt′
0

t

∫ R τ( )dτ1
0

t ′

∫

= 2U ′2 t R τ( )dτ − τR τ( )dτ
0

t

∫
0

t

∫
⎡

⎣
⎢

⎤

⎦
⎥
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8. Taylor’s theory of diffusion by continuous movement

§ The first term for the long time converges to tTL, thence i
ncreasing linearly in time.  The second term converges t
o a constant, and thus becomes negligible to the first ter
m for long time.

§ Finally, the characteristics of the turbulent can be related 
to the diffusivity
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σ 2 = 2U ′2 t R τ( )dτ − τR τ( )dτ
0

t

∫
0

t

∫
⎡

⎣
⎢

⎤

⎦
⎥

σ 2 ≅ 2U ′2TLt Dd ≅
1
2
dσ 2

dt
=U ′2TL


