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Recall

Bayes’ Theorem
- Based on the symmetry of the definition of conditional probability, we can
predict the posterior probability based on the prior information
P(A) X P(B|A)
P(B)

P(A|B) =

Modeling Uncertainty: Statistics

Concept of Moments

Central Limit Theorem

Types of Probability Distribution

Discrete Approximation: Bracket Median Method, Pearson-Tukey 3 points Method
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MODELING UNCERTAINTY
- Data Fitting



Variables & Distributions
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Data fitting is the procedure of selecting a statistical distribution that
best fits to a data set generated by some random process.

Data Fitting

Original Data Cost $ Descriptive Statistics
\rlequenby)
10 $  20.00 60
20 $ 30.00 > 50 |
30 $  40.00 S 40
40 $ 50.00 >
50 $  60.00 S 30
60 $ 70.00 20 -
50 $ 80.00 0|
40 $ 90.00
30 $ 100.00 U
20 $ 110.00 S P S PSS
10 $ 120.00 SO S Y
Total 360
Average $ 70.00 | Cost

Distribution
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Data Fitting Process

Do sufficient data
exist?

Can the data be
adjusted to better
represent the target
population?

Are the data
representative of the
target population?

Consider the mechanistic

characteristics of the data
(e.g., continuous or discrete variable)

v

Summary statistics and

graphical data exploration
(e.g., descriptive statistics, histograms)

l (Continued on next page)

No

Conduct expert
elicitation for PDF

Yes

v

Present PDF for
the decision
problem




Data Fitting Process

l (Continued form previous page)

Choose a type of PDF

(e.g., Normal, Beta, Lognormal, etc.)

v

Estimate parameters

Appropriate

No Goodness-of-Fit?

Apply truncation limits as
appropriate

Would a mixture of
distributions better
represent the data?

Specify a mixture of
distributions

Present PDF for the
decision problem

No




What is data fitting? Why is it important?

 Data fitting is the procedure of selecting a statistical distribution that best fits to
a data set generated by some random process.

» Probability distributions can be viewed as a tool for dealing with uncertainty:
you use distributions to perform specific calculations, and apply the results to
make well-grounded business decisions.

« However, if you use a wrong tool, you will get wrong results. If you select and
apply an inappropriate distribution (the one that doesn't fit to your data well),
your subsequent calculations will be incorrect, and that will certainly result in
wrong decisions.

 Data fitting allows you to develop valid models of random processes you deal
with, protecting you from potential time and money loss which can arise due to
invalid model selection, and enabling you to make better business decisions.



Choose a Type of Distribution

* You cannot "just guess" and use any other particular distribution without
testing several alternative models as this can result in analysis errors.

* In most cases, you need to fit two or more distributions, compare the results,
and select the most valid model. The “candidate” distributions you fit should be
chosen depending on the nature of your probability data.

- For example, if you need to analyze the time between failures of technical
devices, you should fit non-negative distributions such as Exponential or
Weibull, since the failure time cannot be negative.

* You can also apply some other identification methods based on properties of
your data.

- For example, you can build a histogram and determine whether the data
are symmetric, left-skewed, or right-skewed, and use the distributions which
have the same shape.



Choose a Type of Distribution

« To actually fit the "candidate" distributions you selected, you need to employ
statistical methods allowing to estimate distribution parameters based on your
sample data.

* The solution of this problem involves the use of certain algorithms
implemented in specialized software.

 After the distributions are fitted, it is necessary to determine how well the
distributions you selected fit to your data.

» This can be done using the specific goodness of fit tests or visually by
comparing the empirical (based on sample data) and theoretical (fitted)
distribution graphs.

* As a result, you will select the most valid model describing your data.



Normal Distribution — Assumption of Normality

 The Normal distribution is one of the oldest, the most well-known, and
frequently used distributions.

« Normal distribution assumptions are important to note because so many
researches rely on assuming a distribution to be normal. In most cases, the
assumption of normality is a reasonable one to make.

» The reason for the normal distribution assumptions is that this is usually the
simplest mathematical model that can be used. In addition, it is surprisingly
ubiquitous and it occurs in most natural and social phenomena. This is why
the assumption of normality is usually a good first approximation.

« The assumption of normality is valid in most cases but when it is not, it could
lead to serious trouble. Also, since this assumption is made so inherently, it is
hard to spot and sometimes difficult to question. Therefore care must be taken
to ensure that the researcher is aware of not just the assumption of normality
but in fact all the assumptions that go into a statistical analysis. This will help
define the scope of the research and if something is not as expected, one can
find the reason for the discrepancy.



Normal Distribution — Evaluating Normality

* There are statistical tests that a researcher can undertake which help
determine whether the normal distribution assumptions are valid or not.
- One quick way is to compare the sample means to the real mean. For a
normally distributed population, the sampling distribution is also normal
when there are sufficient test items in the samples.

» There are both graphical and statistical methods for evaluating normality.
- Graphical methods include the histogram and normality plot (the data are plotted

against a theoretical normal distribution in such a way that the points should form an approximate straight line).
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Normal Distribution — Evaluating Normality

» There are both graphical and statistical methods for evaluating normality.

- Statistical methods include diagnostic hypothesis tests for normality, and a
rule of thumb@= ) that says a variable is reasonably close to normal if its
skewness and kurtosis have values between —1.0 and +1.0.

- None of the methods is absolutely definitive.



Left-Skewed Symmetric Right-Skewed

Normal Distribution — Normality
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1) Is it symmetric?

- The probability density function of the Normal distribution is symmetric about its
mean value, and this distribution cannot be used to model right-skewed or left-

skewed data. r
A /A

2) Is it u n bo u n ded ? Right-Skewed Symmetric | Left-Skewed

- The Normal distribution is defined on the entire real axis (-Infinity, +Infinity), and if
the nature of your data is such that it is bounded or non-negative (can only take
on positive values), then this distribution is almost certainly not a good fit.
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3) Is its shape constant? f \\ / \ [\x.._

Bounded Unbounded Non-Negative

- The shape of the Normal distribution does not depend on the distribution
parameters. Even if your data is symmetric by nature, it is possible that it is best

described by one of the heavy-tailed models.
f/ ,Jk /\ \

Laplace Cauchy Logistic Normal



Normal Distribution — Transformations

 When a variable is not normally distributed, we can create a transformed
variable and test it for normality. If the transformed variable is normally
distributed, we can substitute it in our analysis.

« Three common transformations are: the logarithmic transformation (x to
log(x)), the square root transformation (x to sqgrt(x)), and the inverse
transformation (quantile function, switch x and y).

 All of these change the measuring scale on the horizontal axis of a histogram
to produce a transformed variable that is mathematically equivalent to the
original variable.



EDA (Explanatory Data Analysis)

EDA includes:

1) Descriptive statistics (numerical summaries): mean, median, range,
variance, standard deviation, etc.

2) Chi-square

- This method compares number of observations found in discrete classes to that
predicted by the proposed model.

- Best suited for discrete random variables.

- Generally, p-value greater than 0.05 indicates a close fit (at the 95% significant
level).
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EDA includes:

3) Kolmogorov-Smirnov & Shapiro-Wilk tests:

- These methods test whether one distribution (e.g. your dataset) is significantly
different from another (e.g. a normal distribution) and produce a numerical
answer, yes or no.

- Use the Shapiro-Wilk test if the sample size is between 3 and 2,000 and the
Kolmogorov-Smirnov test if the sample size is greater than 2,000.

- Unfortunately, in some circumstances, both of these tests can produce misleading
results, so "real" statisticians prefer graphical plots to tests.

4) Graphical methods: frequency distribution histograms, stem & leaf plots, scatter
plots, box & whisker plots, normal probability plots (PP forcoF and QQ for Quantiles

lots), graphs with error bars, etc. .
p )’ g p ’ 15,16,21,23,23, 26,26,30,32,41 Box and Whisker Plot
/ A box and whisker plot (also called a box plot) shows the five-

numbersummary of a set of data: minimum, lower quartile,
median, upper quartile, and maximum.
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Goodness-of-Fit Test: Chi-square Test

The chi-square test is used to test if a sample of data came from a population
with a specific distribution (zzicte] 20| 2EEHe & CiESID Q=X HH).

Another way of looking at that is to ask if the frequency distribution fits a
specific pattern.

Two values are involved, an observed value &=z, which is the frequency of a
category from a sample, and the expected frequency (7itizt), which is
calculated based upon the claimed distribution.

The idea is that if the observed frequency is really close to the claimed
(expected) frequency, then the square of the deviations will be small.

- The square of the deviation is divided by the expected frequency to weight
frequenC|eS Xz —F (=7 7|5ﬂﬂ)2 / 7|5hg)

- A difference of 10 may be very significant if 12 was the expected frequency,
but a difference of 10 is not very significant at all if the expected frequency
was 1,200.



Goodness-of-Fit Test: Chi-square Test

* If the sum of these weighted squared deviations is small, the observed
frequencies are close to the expected frequencies and there would be no
reason to reject the claim that it came from that distribution.

* Only when the sum is large is the a reason to question the distribution.
Therefore, the chi-square goodness-of-fit test is always a right tail test.

0.05
| Zl
If Estimated y° >Tabulated y~ ( firom statistics book)
It is not an assumed distribution — reject!
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Goodness-of-Fit Test: Chi-square Test

* The chi-square test is defined for the hypothesis:
H,: The data follow a specified distribution.

H,: The data do not follow the specified distribution.

» Test Statistic: For the chi-square goodness-of-fit computation, the data are
divided into & bins and the test statistic is defined as

e= 20T

where, 0 is the observed frequency and E is the expected frequency.




Goodness-of-Fit Test: Chi-square Test

Assumptions:
* The data are obtained from a random sample.

* The expected frequency of each category must be at least 5.

- This goes back to the requirement that the data be normally distributed.
You're simulating a multinomial experiment (using a discrete distribution)
with the goodness-of-fit test (and a continuous distribution), and if each

expected frequency is at least five then you can use the normal distribution
to approximate (much like the binomial).

ZHOlAE B8 A0 TA =20| QUCk 7|0l =7} 5 O|2kR! E0] HHL| 20%E = 8F 710X
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Goodness-of-Fit Test: Chi-square Test

Properties of the Goodness-of-Fit Test

The data are the observed frequencies. This means that there is only one data
value for each category.

The degrees of freedom is one less than the number of categories, not one
less than the sample size.

It is always a right tail test.

It has a chi-square distribution.

df=20

The value of the test statistic doesn't change if the order of the categories is
switched.



Goodness-of-Fit Test: Chi-square Test

Example #1:
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Goodness-of-Fit Test: Chi-square Test

Example #1:
« Estimating Chi-square.
y-i N
Group Observed f Expected Frequency \ Chi-Square
Frequency Normal Poisson Normal Poisson
90-95 9 9.9 13.5 0.082 1.500
95-100 29 21.3 27 1 2.784 0.133
100-105 28 30.9 27 1 0.272 0.030
105-110 17 24.5 18.0 2.296 0.056
110-115 10 10.6 9.0 0.034 0.111
115-120 7 2.5 5.3 8.100 0.545
Sum \ y 13.567 2.375
N S

From the definition of
the distribution
(statistics book)



Goodness-of-Fit Test: Chi-square Test

Example #1:
 Estimating Chi-square

- Normal distribution:
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Goodness-of-Fit Test: Chi-square Test

Example #1:
» Estimating Chi-square

Ake=2
k!

- Poisson distribution: 1 = E(X) = Var(X), Pr(X = k) =
0.40— . ]
0.35F
0.30F

< 0.25F

% 0.20f

a
0.15¢
0.10f
0.05F
0.00




Goodness-of-Fit Test: Chi-square Test

Example #1:
* Estimating Chi-square. From statistics book
7 ~ N
Group Observed f Expected Frequency \ f Chi-Square \
Frequency Normal Poisson Normal Poisson
90-95 9 9.9 13.5 0.082 1.500
95-100 29 21.3 27 1 2.784 0.133
100-105 28 30.9 27 1 0.272 0.030
105-110 17 24.5 18.0 2.296 0.056
110-115 10 10.6 9.0 0.034 0.111
115-120 7 2.5 5.3 8.100 0.545
Sum \ y 13.567 2375 }
N J N 4
(0 — E)?

-

E



Goodness-of-Fit Test: Chi-square Test

Example #1:
* Estimating Chi-square From statistics book
7 ~ N
Grou Observed f Expected Frequency \ [ Chi-Square \
P Frequency Normal Poisson Normal Poisson
90-95 9 9.9 13.5 0.082 1.500
95-100 29 21.3 27 1 2.784 0.133
100-105 28 30.9 27 1 0.272 0.030
105-110 17 24.5 18.0 2.296 0.056
110-115 10 10.6 9.0 0.034 0.111
115-120 7 2.5 5.3 8.100 0.545
Sum \ y 13.567 2.375
N —J N 4
2
-y
E

- If Normal distribution is assumed, chi-square is 13.567.

- If Poisson distribution is assumed, chi-square is 2.375.



Goodness-of-Fit Test: Chi-square Test

Example #1:
« Estimating Chi-square

- Assume 5% level of significance, degree of freedom v = k — 1 — m (where,

k = number of data groups, m = number of population parameters from the
sample).

- In the Normal distribution, tabulated Chi-square value is 7.814 under 5%
level of significance and degree of freedomv =6 —-1—-2 = 3.

- In the Poisson distribution, tabulated Chi-square value is 9.488 under 5%
level of significance and degree of freedomv=6—-1—-1 = 4.



Goodness-of-Fit Test: Chi-square Test

Example #1:

 Reference: Chi-square Table

e /\_

o
di~] 995 990 975 950 050 025 016 005
11392704 107 157083 x 10~* 982069 < 10" 393214 x10~% 184146 5.02389 663490 7.87944
2 0100251 0201007 0506356 02587 : 737776 921034 10.5966
3 0717212 114832 215795 351846 781473 Y9.34840 113449 }2.838]
4 206930 297110 483419 TL072] 9.48773A1.1433 112767  14.8602
5 411740 554300 831211 1145476 11,0705 12,8325 150863 16.749%
6 675727 872085 1.237347 1.63539 125916 144494 168119 18.5476
7 989265 1.239043 1.68987 216735 140671 160128 184753 20.2777
8] L3441y |.646482 2.17973 273264 15,5073 17.5346 200902  21.9550
9|  1.724926 2087912 2.70039 332511 169190  19.0228 216660 235893
[0} 215385 2.55821 3.24697 3.94030 18.3070 204831 232093 25.1882
1} 2.60321 3,05347 3.81575 4.57481 19.6751 219200 247250 26.7569
12| 307382 3.57056 4.40379 5.22603 210261 233367 262170 28.2995
13] 356503 4.10691 5.00874 589136 223621 247356 27.6883 298194
14| 4.07468 4.66043 362872 £.57063 236848 261190 291413 31,3193
15|  4.60094 5.22935 6.26214 726094 249958 274884 305779 32.8013
16| 5.14224 581221 6.90766 7.96164 262962 23.8454 319999 342672
17| 569724 6.40776 7.56418 5.67176 27.5871 30,1910 334087 357185
18] 6.26481 7.01491 8.23075 9.39046 288693 31.5264 348053 37.1564
19 6.84398 7.63273 8.90655 10.1170 30.1435 328523 36.1908 3B.5822




Goodness-of-Fit Test: Chi-square Test

Example #1:

 Reference: Parameters of Distributions
Information / Constraints Distribution Shape
[a. b] uniform
[a. m, b] triangular
[a. b, oy, o, P] beta
[p. o] normal
Y exponential
[a, b, W, O] Johnson Sb.

Lognormal

[, B] gamma

a=mummum. b=maximum n=mode, o=shape parameter, p=mean,
o=standard deviation. y=average rate of occurrence of events, P=scale,



Goodness-of-Fit Test: Chi-square Test

Example #2: Prussian Cavalry z=zoju9 7150 getting kicked in the head

« X: the number of fatalities per regiment/year in the Prussian cavalry due to
horse kicks

Number of Number of Number of unit-years
deaths/unit/year unit/years 120
0 109 100
1 65 5
2 22
60
3 3
40
4 1
20
>4 0 .
Total 200 e T . T s T vt

Number of deaths/unit /year

Poisson Distribution?



Goodness-of-Fit Test: Chi-square Test

Example #2: Prussian Cavalry getting kicked in the head

 To test this with a goodness of fit test, we must first know how to generate the
null distribution.

* The problem is that we don't have an a priori expectation for the rate of horse-
kick fatalities, and we must therefore estimate the rate from the data itself.

« The average number of kicking deaths per year is :
(109x0)+(65x1)+(22%x2)+(3%x3)+(1x4)

200

= 0.61deaths/unit/year

« S0 we can use this as our estimate of the rate of kicking fatalities.



Goodness-of-Fit Test: Chi-square Test

Example #2: Prussian Cavalry getting kicked in the head
» Expected relative frequency

- Poisson distribution:

0.61%e~061
1=061=EX)=Var(X), Pr(X=k)= x
Number of deaths/unit /year Expected relative frequency
0 0.54
1 0.33
2 0.10
3 0.02
4 0.003

>4 0.0004




Goodness-of-Fit Test: Chi-square Test

Example #2: Prussian Cavalry getting kicked in the head

* From this we can calculate the expected frequencies of the numbers of deaths
per year, given the Poisson distribution:

Number of deaths/unit /year Expected relative frequency Expected count
(relative freq. x total number)
0 0.54 109
1 0.33 66
2 0.10 20
3 0.02 4
4 0.003 1
>4 0.0004 0

Total 200




Goodness-of-Fit Test: Chi-square Test

Example #2: Prussian Cavalry getting kicked in the head

 Then, we must combine across classes to ensure E > 5:

Number of deaths/unit Observed Expected
lyear
0 109 109
1 65 66
2 22 20
>2 4 5
Total 200 200

* S0 now there are 4 classes and we have estimated one parameter (the
average rate) from the data, we have 4-1-1=2d.f.

« We can calculate that y? = 0.415, and the critical value of y? with 2 d.f. and
5% level of significance is y? = 5.991, we are not in the tail of the distribution,
and we cannot reject the null hypothesis that the deaths are occurring at
random. In fact the match to the Poisson distribution is remarkably good.



Goodness-of-Fit Test: K-S Test

« The Kolmogorov-Smirnov test, also called the Kolmogorov-Smirnov test,
is a goodness-of-fit test which tests whether a given distribution is not
significantly different from one hypothesized (ex., on the basis of the
assumption of a normal distribution).

* It is a more powerful alternative to chi-square goodness-of-fit tests when its
assumptions are met.

* Whereas the chi-square test of goodness-of-fit tests whether in general the
observed distribution is not significantly different from the hypothesized one,
the K-S test tests whether this is so even for the most deviant values of the
criterion variable. Thus it is a more stringent (2z3h test.
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Quantile-Quantile Plots (Q-Q Plot)

* The assumption of a normal model for a population of samples will be required in
order to perform certain inference procedures. Histogram can be used to get an idea
of the shape of a distribution.

* However, there are more sensitive tools for checking if the shape is close to a normal
model — a Q-Q Plot.

* Q-Q Plot is a plot of the percentiles (or quantiles) of a standard normal distribution (or
any other specific distribution) against the corresponding percentiles of the observed
data.

« If the observations follow approximately a normal distribution, the resulting plot
should be roughly a straight line with a positive slope.

1

Empirical Theoratical Cverlaid
3 CDF CDF CDFs

Probability
- -]

]
i
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Quantile-Quantile Plots (Q-Q Plot)

* The graphs below are examples for which a normal model for the response is
not reasonable.

- The Q-Q plot (a) indicates the existence of two clusters of observations.

- The Q-Q plot (b) shows an example where the shape of distribution

appears to be skewed right.

Normal Q-Q Plot of CLUSTER
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Quantile-Quantile Plots (Q-Q Plot)

« The graphs below are examples for which a normal model for the response is
not reasonable.

- The Q-Q plot (c) shows evidence of an underlying distribution that has
heavier tails compared to those of a normal distribution.

- The Q-Q plot (d) shows evidence of an underlying distribution which is
approximately normal except for one large outlier that should be further

investigated.
Normal Q-Q Plot of TAILS Normal Q-Q Plot of OUTLIER
40 20
158 o
nn 14 o V

20 .

12 o ﬁ
10 =
o
L
a
L
-10

10 a 10 20 a0 40 0 10 20 a0

(c) (d)
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Using S/W

« SPSS
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Using S/IW

« SPSS

Descriptives

Statistic Std. Error
TOTAL TIME SPENT Mean 10.731 1.5918
ON THE INTERNET 959 Confidence Lower Bound 7.570
Interval for Mean Upper Bound 13893
5% Trimmed Mean 8.295
Median 5.500
Variance 235.655
Std. Deviation 15.3511
Minimum B
Maximum 102.0
Range 101.8
Interquartile Range 10.200
Skewness 3.532 .250
Kurtosis ___——/ 15614 495

The skewness and kurtosis for the variable both exceed the rule of
thumb criteria of 1.0. The variable is not normally distributed.




Using S/IW

« SPSS

Frequency

Histogram

50 »

An initial impression of the
normality of the distribution
can be gained by examining
the histogram.

40

In this example, the
histogram shows a substantial
violation of normality caused
by a extremely large value in
the distribution.

30

20

10 Std. Dev = 15.35
Mean =10.7
0 N =93.00

0.0 20.0 40.0 60.0 80.0 100.0

10.0 300 50.0 70.0 90.0



Using S/IW

« SPSS

3
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0= The problem with the normality of this
variable’s distribution is reinforced by the
g normality plot.

© -1 y 4 - If the variable were normally distributed,
§ ' g the red dots would fit the green line very
2 - closely. In this case, the red points in the
== g upper right of the chart indicate the
o -2 2 severe skewing caused by the extremely
S large data values.
=3
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Using S/W

« SPSS

Tests of Normality

a. Lilliefors Significance Correctign

Kolmogorov-Smirnova Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
TOTAL TIME SPENT
ON THE INTERNET 246 93 .000 .606 93 .000

/\

Since the sample size is larger than 50, we use the Kolmogorov-Smirnov

test. If the sample size were 50 or less, we would use the Shapiro-Wilk
statistic instead.

The null hypothesis for the test of normality states that the actual
distribution of the variable is equal to the expected distribution, i.e., the
variable is normally distributed. Since the probability associated with the
test of normality is < 0.001 is less than or equal to the level of significance
(0.01), we reject the null hypothesis and conclude that total hours spent on
the Internet is not normally distributed. (Note: we report the probability as
<0.001 instead of .000 to be clear that the probability is not really zero.)




Using S/W

» Best fit (embedded in “@Risk” program)

k¥ BestFit
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PART Il

MODELING UNCERTAINTY
- Using Subjective Assessment



Expert’s Judgement

Do sufficient data No
exist?

Yes

Can the data be
adjusted to better
represent the target
population?

Present PDF for
the decision
problem

Are the data
representative of the
target population?

Consider the mechanistic

characteristics of the data
(e.g., continuous or discrete variable)

v

Summary statistics and

graphical data exploration
(e.g., descriptive statistics, histograms)

l (Continued on next page)



Expert’s Judgement

« Unfortunately, in many cases, directly applicable historical data concerning the
risk are not available inadequate amount, and a subjective assessment will be
required.

- Contractors are generally reluctant to document or record data as they come
from the field during construction or as the project proceeds.

- Even if they do so, the data are incomplete.

- Hence, available data are mainly subjective in nature and must be obtained
through careful questioning of experts or people with the relevant
knowledge.




1. Risk Perception

Different experts draw contradictory conclusions

How people perceive risk?

Personal background

Experiences (expert vs. novice), domain specific knowledge

Very sensitive to certain kindness of specific risks

Conservative or Speculative: Manager or estimator’s perspective? Cost risk
or Revenue risk?

Risk messages are difficult to formulate in accurate, clear, and not misleading
way

How to communicate risk information to the public or higher levels of decision
makers? — Big issue



1. Risk Perception

 Mak and Raftery (1992)
- Risk Attitude in Forecast of Costs

£
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* Mak, S. and J. Raftery (1992). "Risk attitude and systematic bias in estimating and forecasting." Construction Management & Economics, 10(4): 303-320.



1. Risk Perception

 Mak and Raftery (1992)
- Risk Attitude in Forecast of Return
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* Mak, S. and J. Raftery (1992). "Risk attitude and systematic bias in estimating and forecasting." Construction Management & Economics, 10(4): 303-320.



1. Risk Perception

« Mak and Raftery (1992)

Systematic Bias

e
2
I
D EEEEE—
Estimator’s perception Manager’s perception

* Risk seeking in estimating + Risk averse in forecasting

project cost (“Speculative”) project cost (“Conservative”)
)
x
)
©
o]
o
S
o
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3T T T ] [ O B O B

50 60 70 80 90
Optimistic Most likely Pessimistic
($59Mm) ($66M) ($79M)
Optimistic Most likely Pessimistic
($65M) ($72M) ($86M)

Project Cost
($ Millions)

* Mak, S. and J. Raftery (1992). "Risk attitude and systematic bias in estimating and forecasting." Construction Management & Economics, 10(4): 303-320.



1. Risk Perception

- Variation in common language e _
[Survey by DSMC (1983)] AUMOST CERTAINLY 4 'jqj
HIGHLY LIKELY : 1 K
- Need for common language in —
uncertain (risky) situations ProaABLE | e b
- 23 military experts interpreting o i s s
various phrases S ———
- How to reduce error and et f
inconsistency in elicit uncertain T ] ::_n B
IMPROBABLE . L - B
. o ,
information” > A — ‘l |
PROBABLY NOT | -E. l. } |
ALMOSTNOCHANCE  fazb4
HIGHLY UNUKELY  [iea” ¢ | —
CHAMNCES ARE SUGHT -:_::l:_‘l .
. 1'0 = s ASS!;?IED PsF?GEAI;T.TTY .{;::) ° ” -‘on
Figure lI-IV: What Uncertainty Statements Mean To Different Readsers

After Defense Systems Management College [1383]

Defense Systems Management College (1983). “Risk Assessment Techniques, A Handbook for Program Management Personnel," Defense Systems
Management College (Fort Belvoir), July.



2. Risk Preferences/ Risk Attitudes

« Different people have different attitudes toward risk

- Make different choices within the same risky context

* Three types
- Risk averse: Individuals who are afraid of risk or are sensitive to risk
- Risk seeking (or taking): person those who try to seek the risky alternatives

- Risk neutral: person who ignores risk aspects of alternatives

Risk-taker person

— Alternative 1 ——— Riskiness 1 L
More riskier

Risky situations —— Alternative 2 ——— Riskiness 2

— Alternative 3 ——— Riskiness 3 Less riskier

Risk-averse person




2. Risk Preferences/ Risk Attitudes

Components of Risk

Risk Averter Requires

Risk Taker Accepis

Magnitude of
Potential Loss

Chances of Potential
Loss

Exposure to
Potential Loss

Other Risk
Components

Low Maximum loss

Low stakes,commitment
Low variability in pay offs
Meore information on losses
More control over losses

Low chance of loss

Familiar environment

Few uncertain events

More information on chances
Meore control over uncertain events
Low uncertainty

Low exposure

Shared responsibility

More information on exposure
More control over exposure

.................
-----
n® "y
L]
[

5 Control by self

Contingency plans
Consensus &
Exrt from risky situations

a®

.
.
''''''''
-------------

Higher Maximum loss
Higher stakes,commitment
Higher variability in pay offs
Less information on losses
Less control over losses

Higher chance of loss

Unfamiliar environment

Many uncertain events

Less information on chances
Less control over uncertain events
Higher uncertainty

Higher exposure

Sole responsibility

Less information on exposure
Less control over exposure

----------------------
------
u® "y
a® .y
o .

" Control by others
No Contingency plans
Conflict

-
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2. Risk Preferences/ Risk Attitudes

 Situation:
- We are not all expected monetary value (EMV) decision makers.
- Some of us are risk-preferring and some of us are risk-averse.

- How can we factor this into the analysis?



2. Risk Preferences/ Risk Attitudes

» Are you a risk averter or a risk taker?

Game #1 Game #2
v" Win $30 /w p=0.5 v Win $2,000 /w p=0.5
v' Lose $1 /w p=0.5 v' Lose $1,900 /w p=0.5

« Which game do you prefer?
- Game #1: EMV=%14.5, SD=14.53
- Game #2: EMV=%$50, SD=1,900.7



2. Risk Preferences/ Risk Attitudes

Framing Effects

« Suppose that we are preparing for an outbreak of an unusual disease that is
expected to kill 6,000 people.

* Two alternatives are possible, and scientific estimates of the consequences
are as follows:

- If program A is adopted, 2,000 people will be saved.
- If program B is adopted,

1/3 probability that 6,000 people will be saved.

2/3 probability that no people will be saved.

* Which program would you favor?



2. Risk Preferences/ Risk Attitudes

Framing Effects

* Here are other alternative programs with the same situation (disease that is
expected to kill 6,000 people).

* Two alternatives are possible, and scientific estimates of the consequences
are as follows:

- If program C is adopted, 4,000 people will die.
- If program D is adopted,

1/3 probability that nobody will die.

2/3 probability that 6,000 people will die.

* Which program would you favor?

People behave differently against gain (i.e. SAVE) and
loss (i.e. DIE) even though the results are the same.




2. Risk Preferences/ Risk Attitudes

Framing Effects (Tversky and Kahneman, 1983)

« The framing effect is an example of cognitive bias, in which people react to a
particular choice in different ways depending on how it is presented; e.g. as a
loss or as a gain.

* People tend to avoid risk when a positive frame is presented but seek risks
when a negative frame is presented.

« Gain and loss are defined in the scenario as descriptions of outcomes (e.g.
lives lost or saved, disease patients treated and not treated, lives saved and
lost during accidents, etc.).

* Prospect theory shows that a loss is more significant than the equivalent gain,
that a sure gain (certainty effect and pseudo-certainty effect) is favored over a
probabilistic gain, and that a probabilistic loss is preferred to a definite loss.
One of the dangers of framing effects is that people are often provided with
options within the context of only one of the two frames.

* Tversky, A. and Kahneman, D. (1983). “Extensional Versus Intuitive Reasoning: The Conjunction Fallacy in Probability Judgment.” Psychological Review, 90(4), pp. 293—-315.



2. Risk Preferences/ Risk Attitudes

Framing Effects (Tversky and Kahneman, 1983)

« Examples of Framing Effects

- 6,000 deaths are more than three times as bad as 2,000 deaths. By
contrast, 6,000 savings is less than three times as good as 2,000 savings.

- The large airplane accident (350 fatalities) is more than twice as serious as
small one with the half of the number of fatalities (175 fatalities).

- War involving one million casualties will be more than twice as bad as one
involving half million casualties.

* Tversky, A. and Kahneman, D. (1983). “Extensional Versus Intuitive Reasoning: The Conjunction Fallacy in Probability Judgment.” Psychological Review, 90(4), pp. 293—-315.



2. Risk Preferences/ Risk Attitudes

Framing Effects (Tversky and Kahneman, 1983)

« Examples of Framing Effects

- Concerns about a death accident by crashing at the same airplane make
husband and wife to decide flying on separate airplanes.

J/

* By doing so, they reduce the probability that both of them will die at the same
accident.

J/

% However, it simultaneously increase the probability that at least one of them die.
» Crash of BOTH planes: p(a) X p(b) = 0.01 X 0.01 = 0.0001 — Prob. of both die at the same time
» Crash of ONE plane: p(a) + p(b) = 0.01 + 0.01 = 0.02 — Prob. of one of them die

- WHY?

/

* Dislike of both dying is more than twice as serious as the dislike of one of them
dying.

* Tversky, A. and Kahneman, D. (1983). “Extensional Versus Intuitive Reasoning: The Conjunction Fallacy in Probability Judgment.” Psychological Review, 90(4), pp. 293—-315.



2. Risk Preferences/ Risk Attitudes

Can Risk Attitude Be Measured?

* Yes it can, but imperfectly.

- As is true of any measurement, the measurement of risk attitude is subject
to error and possibly bias, especially as we are dealing with an inherently
subjective construct.

A variety of measurement methods have been developed, each with its
own merits.

- Different methods sometimes produce discordant zs2x =34z ct2) results:
this may be viewed not necessarily as a problem, but as an opportunity to
learn about, and reconcile ==izgs3ich, possible inconsistencies in risk taking.



2. Risk Preferences/ Risk Attitudes

Assessing Risk Attitude

* Two methods are available.

Certainty-Equivalent (CE zuxs71) Probability-Equivalent (PE z&571)
$1,000 $1,000
p=0.5 p
$10 $10
1-p=0.5 1-p
\ ~ \ 50
A Reference Lottery (CE method) A Reference Lottery (PE method)

« Subjects are ask for specifying how much sure payoff must be received
to make them indifferent between;

- Sure payoff (CE) =

- Expected value (EV) of the given risky investment that is not certain

rOI-
El

10|



2. Risk Preferences/ Risk Attitudes

Assessing Risk Attitude — (1) CE method

e Criteria to decide attitude toward risk

- If one answer CE would be less than the EMV ($505), it indicates that
he/she prefers the sure payoffs =44 o) rather than risky option (opportunity
to earn more payoff).

- On the other hand, if the CE would be greater than the EMV ($505), this
would imply that the decision maker would be a risk-seeker who is not
intent to release the risky opportunity gz without being paid a higher CE.

$1,000
p=0.5

$10
1-p=0.5

[N .

A Reference Lottery (CE method)




2. Risk Preferences/ Risk Attitudes

Assessing Risk Attitude — (1) CE method

- Exercise
- Imagine you have a ticket (opportunity) to play the following bonus game.
- One of your friends is interested in taking your place.

- You can trade/sell this game for a sure price to your friend.



2. Risk Preferences/ Risk Attitudes

Assessing Risk Attitude — (1) CE method

« Exercise: How much are you willing to sell this game (opportunity)?

Game #1 Certainty-Equivalent of Games??
1,800,000
p=0.5 EMV: W700,000
CE: W500,000 (risk averse)
W900,000 (risk take)
-¥A400,000
1-p=0.5
Game #2
- 1,000,000
p=0.5 EMV: W500,000
CE: W300,000
W700,000
WO
1-p=0.5

Game #3

400,000
p=0.5 EMV: ¥%200,000
CE: w100,000
¥300,000

WO

1-p=0.5




2. Risk Preferences/ Risk Attitudes

Assessing Risk Attitude — (1) CE method

700,000

500,000

200,000

Actual VALUE (Utility)

RISK AVERSE

-

Risk premium = EMV - CE

The premium you pay (in the
sense of AVOIDING RISK)

700,000

100,000

300,000

500 000 Money (selling price)
CE -




2. Risk Preferences/ Risk Attitudes

Assessing Risk Attitude — (1) CE method

Actual VALUE (Utility)

700,000

s00.000 ————
TAKING

700,000 900,000
Money (selling price)

300,000
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Assessing Risk Attitude — (1) CE method
» Typical shapes of risk attitude

Utility | Risk Averse

Risk Neutral

Risk Taking

Money



2. Risk Preferences/ Risk Attitudes

Assessing Risk Attitude — (2) PE method

« To find the utility for $650, adjust p until you are indifferent between the sure
$650 and the gamble.

- U($650) = p x U($1,000) + (1 — p) X U($10)

- If risk neutral, p = o0

0 % (650 —10) = 0.646

- If you answered p = 0.87, U($650) = 0.87 > 0.646 — risk averse

$1,000

$10
1-p

\ $650

A Reference Lottery (PE method)




2. Risk Preferences/ Risk Attitudes

Assessing Risk Attitude
- DOSPERT(Domain-Specific Risk-Taking) Scale

- DOSPERT is a psychometric scale that assesses risk taking in five content
domains: financial decisions (separately for investing versus gambling),
health/safety, recreational, ethical, and social decisions.

- Respondents rate the likelihood that they would engage in domain-specific
risky activities (Part I).

- An optional Part Il assesses respondents’ perceptions of the magnitude of
the risks and expected benefits of the activities judged in Part |.

https://www8.gsb.columbia.edu/decisionsciences/research/tools/dospert

https://sites.google.com/a/decisionsciences.columbia.edu/dospert/home

* Weber, E. U,, Blais, A.-R., & Betz, N. (2002). A domain-specific risk-attitude scale: Measuring risk perceptions and risk behaviors. Journal of Behavioral Decision Making, 15, 263-290.
 Blais, A.-R., & Weber, E. U. (2006) A Domain-Specific Risk-Taking (DOSPERT) scale for adult populations. Judgment and Decision Making, 1, 33-47.



2. Risk Preferences/ Risk Attitudes

Some phenomena

« The subjective values for gains and losses are non-linear, so-called normally
concavee<) for gains and convexz=) for losses.

« Gains increase more slowly than losses decrease (“loss aversion” — a loss of
the certain dollars is more aversive than a gain of the same dollars is
attractive).



2. Risk Preferences/ Risk Attitudes

Risk Takers and Risk Averters

* |t can be varied from person to person.
« Several factors affect the personal risk propensity:
@ Personal characteristics
@ Financial status
® Business background (small venture firm or large scale firm)
@ Personal experience (seniority, experience, years)

&) Social & cultural differences, nationalities, etc.



2. Risk Preferences/ Risk Attitudes

Literatures on risk attitude

* De Neufville, R., Hani, E.N., and Lesage, Y. (1977) “Tendering Models:
Effects of Bidders Risk Aversion.” ASCE Journal of Construction Division,
103(CO1), pp. 57-70.

- Contractors behave differently when dealing with small and large projects,
and when operating in good years or bad so that they are most risk averse
toward larger projects (esp. in lean yearsy)) and bid relatively lower.




2. Risk Preferences/ Risk Attitudes

Literatures on risk attitude

« MacCrimmon, K. R., and Wehrung, D. A. (1986) Taking risks: The
management of uncertainty. New York: Free Press. - surveys in various
business contexts

- Decision makers are more risk averse in opportunity situations than in
threat situations.

- Decision makers are extremely risk averse when the chance of loss it too
high.

- Both Canadian and American managers believe that Canadians are more
risk averse, but there was no significant evidence.

- Generally, older decision makers with longer seniority in their firms were
more risk averse.

« Basically, these findings are analogous to the works from “Tversky and
Kahneman (1983)".



2. Risk Preferences/ Risk Attitudes

Literatures on risk attitude

« Taylor (1991) concluded that subjects are more motivated to avoid losses
than to obtain the equivalent gains.

« Brown (1998) also demonstrated that individuals gain knowledge of
forecasting with greater accuracy when threatened by a loss than motivated
with more gains (referred to as “loss avoidance™).

« Weber and Hsee (1998) indicated a cultural impact on the risk aversion
demonstrating that Chinese is more risk averse than is the case of American
or Polish.




Q&A

Street Cq Jevlus

MiZigatin s K Mitigatin
m@fﬁ Fd,ﬂtﬂ r;ﬂ R\Eﬂctﬂrﬁ Fﬂﬁt:%r_g. 3
#black £ o
Fmate pomale LIDUAY e
E':’o:&s?::ﬁ:u:& e B loafers & male D briefcase
TRl R o
on backwards Xwhistling oW rong neigh- unn:nt ing
O short hajr Sondheim bar‘f.laan‘ B otown
0 baqgy jacket LFFed Ex O police officer 2 tiey coat:
ﬂﬂ-*fg:;hnejg,h- o E-‘}Vﬂfﬂp& o bﬂ-E&bﬂH.:aP er4o
oy polo sp; = ME =4
RF = 3 MP = ohirg Rf =3 4=>3
N Risk: Acceptable.
R;sk; Accg_'pfﬂbfﬂ,
Goog D GCood
ep-e”}ﬂg' e'fe-?lfnj_

=
B aa

i

Copyright @ 1994 by Garry Trudeau. Reprinted with permission.



