Engineering Economic Analysis

2019 SPRING

Prof. D. J. LEE, SNU

Chap. 14

CONSUMER SURPLUS

- Measure how consumers are affected by changes in the economic environment?
- Three such measures are:
 - Consumer's Surplus
 - Equivalent Variation, and
 - Compensating Variation

- Suppose gasoline can be bought only in lumps of one gallon.
- Use r₁ to denote the most a single consumer would pay for a 1st gallon call this her reservation price for the 1st gallon.
- Now that she has one gallon, use r_2 to denote the most she would pay for a 2nd gallon this is her reservation price for the 2nd gallon

- Generally, if she already has n 1 gallons of gasoline then r_n denotes the most she will pay for an nth gallon.
- r_n is the dollar equivalent of the marginal utility of the nth gallon.

Reservation Price Curve for Gasoline

• What is the monetary value of our consumer's gain-to-trading in the gasoline market at a price of P_G ?

Reservation Price Curve for Gasoline

• Gasoline can be purchased in any quantity then ...

- Unfortunately, estimating a consumer's reservation-price curve is difficult,
- So, as an approximation, the reservation-price curve is replaced with consumer's ordinary demand curve.

Change in Consumer's surplus

Change in Consumer's surplus

Change in Consumer's surplus

- Measure how consumers are affected by changes in the economic environment?
 - Consumer surplus (based on demand function)
 - Compensating variations
 - Equivalent variations
- A measure of the changes in utility resulting from some environment change
 - From status quo (\tilde{p}^0, m^0) to proposed change (\tilde{p}', m')

Welfare change = $v(\tilde{p}', m') - v(\tilde{p}^0, m^0)$

Just ordinal measure!

Need to have monetary measure?

- Money metric utility function $\mu(\tilde{q}:\tilde{p},m)$
 - How much money income the consumer would need at price q̃ to be as well off as he would be facing (p̃, m)

 $\mu(\tilde{q}:\tilde{p},m)=e\big(\tilde{q},v\big(\tilde{p},m\big)\big)$

- Then Welfare change = $v(\tilde{p}', m') - v(\tilde{p}^{0}, m^{0})$ = $\mu(\tilde{q} : \tilde{p}', m') - \mu(\tilde{q} : \tilde{p}^{0}, m^{0})$ = $e(\tilde{q}, v(\tilde{p}', m')) - e(\tilde{q}, v(\tilde{p}^{0}, m^{0}))$
- According to the choice of base prices If we let $\tilde{q} = \tilde{p}^0$, then equivalent variations(*EV*)

If we let $\tilde{q} = \tilde{p}'$, then compensating variations(*CV*)

Equivalent variations

$$EV = \mu(\tilde{p}^{0} : \tilde{p}', m') - \mu(\tilde{p}^{0} : \tilde{p}^{0}, m^{0})$$

= $\mu(\tilde{p}^{0} : \tilde{p}', m') - m^{0}$

- What income change at the current prices would be equivalent to the proposed change in terms of its impact on utility
- Two-good case
 - p₁ rises.
 - Q: What is the least extra income that, at the original prices, just restores the consumer's original utility level?
 - A: The Equivalent Variation.

Compensating variations

$$CV = \mu(\tilde{p}':\tilde{p}',m') - \mu(\tilde{p}':\tilde{p}^0,m^0)$$
$$= m' - \mu(\tilde{p}':\tilde{p}^0,m^0)$$

- What income change at the after-change prices would be necessary to compensate the consumer for the price change
- Two-good case
 - p₁ rises.
 - Q: What is the least extra income that, at the new prices, just restores the consumer's original utility level?
 - A: The Compensating Variation.

In general, the magnitudes of EV and CV are different, but the sign is always the same!

Engineering Economic Analysis

2019 SPRING

Prof. D. J. LEE, SNU

Chap. 15 MARKET DEMAND

From Individual to Market Demand Functions

 Consumer i's ordinary demand function for good j is

 $x_i^j(\tilde{p},m_i)$

Market demand function for good j is

$$X^{j}(\tilde{p},\tilde{m}) = \sum_{i=1}^{n} x_{i}^{j}(\tilde{p},m_{i})$$

- Depends on prices and the distribution of incomes
- The market demand curve is the "horizontal sum" of the individual consumers' demand curves.

Market Demand Curve

Inverse Demand Function

- P(X): measures what the market price of the good would have to be for X units of it to be demanded
- Note that, at the optimal choice of consumption, MRS = p₁/p₂
 - If all consumers are facing the same prices, then all consumers have the same MRS at the optimum.
- Thus P(X) measures the MRS, or the marginal willingness to pay, of every consumer who is purchasing the good.

Elasticity

 Elasticity measures the "sensitivity" of one variable with respect to another.

$$\varepsilon_{x,y} = \frac{\%\Delta x}{\%\Delta y} = \frac{\Delta x / x}{\Delta y / y}$$

Own price elasticity

$$\varepsilon = \frac{\Delta q / q}{\Delta p / p} = \frac{p}{q} \frac{\Delta q}{\Delta p}$$
$$= \frac{p}{q} \frac{dq}{dp} = \frac{d \ln q(p)}{d \ln p}$$

The sign of elasticity is generally (-)
→ |ε| is used.

Elasticity

Example: Linear demand q=a-bp

Elasticity

Elasticity and Demand

$$\begin{cases} If |\varepsilon| > 1, & \text{then elastic demand} \\ If |\varepsilon| = 1, & \text{then unit elastic demand} \\ If |\varepsilon| < 1, & \text{then inelastic demand} \end{cases}$$

 If a good has many close substitutes, we would expect that its demand would be elastic.

Elasticity and Revenue

Revenue = Price X Quantity
$$R = pq$$

- Let $p \rightarrow p+\Delta p$, and then $q \rightarrow q+\Delta q$
- Then, the new revenue becomes

$$R' = (p + \Delta p)(q + \Delta q)$$

= $pq + q\Delta p + p\Delta q + \Delta p\Delta q$

• Revenue change

$$\Delta R = q\Delta p + p\Delta q + \Delta p\Delta q$$

- For small values of Δp and Δq , $\Delta p \cdot \Delta q \rightarrow 0$
- Then $\Delta R = q \Delta p + p \Delta q$

Elasticity and Revenue

• The rate of change of revenue per change in price

$$\frac{\Delta R}{\Delta p} = q + p \frac{\Delta q}{\Delta p}$$

• We can derive

$$\frac{\Delta R}{\Delta p} = q + p \frac{\Delta q}{\Delta p}$$
$$= q \left[1 + \frac{p}{q} \frac{\Delta q}{\Delta p} \right]$$
$$= q \left[1 + \epsilon(p) \right]$$
$$= q \left[1 - |\epsilon(p)| \right]$$

Elasticity and Revenue

• If demand is elastic, i.e. $|\varepsilon| > 1$, then $\frac{\Delta R}{\Delta p} < 0$

As price increases, so revenue will decrease and vice versa.

- If demand is inelastic, i.e. $|\varepsilon| < 1$, then $\frac{\Delta R}{\Delta p} > 0$
 - As price increases, so revenue will increase and vice versa.

Elasticity and Marginal Revenue

• The change in revenue

$$\Delta R = p\Delta q + q\Delta p$$

• The marginal revenue

$$MR = \frac{\Delta R}{\Delta q} = p + q \frac{\Delta p}{\Delta q}$$
$$= p \left[1 + \frac{q \Delta p}{p \Delta q} \right]$$
$$= p(q) \left[1 + \frac{1}{\epsilon(q)} \right]$$
$$= p(q) \left[1 - \frac{1}{|\epsilon(q)|} \right]$$

Elasticity and Marginal Revenue

- If the demand of a good is unit elastic, then marginal revenue is zero
 - revenue dose not change when you increase output
- If the demand of a good is inelastic, then marginal revenue is negative
 - revenue will decrease when you increase output
 - If demand is not very responsive to price, then you have to cut prices a lot to increase output: so revenue goes down.

Marginal Revenue Curves

- Linear demand curve p(q) = a bq
- Marginal revenue curve

$$\frac{\Delta R}{\Delta q} = p(q) + \frac{\Delta p(q)}{\Delta q}q$$
$$= p(q) - bq$$
$$= a - bq - bq$$
$$= a - 2bq.$$

$$p(q) = a - bq$$

Revenue: $R(q) = p(q) \cdot q = aq - bq^2$
$$MR(q) = \frac{dR(q)}{dq} = a - 2bq$$

Marginal Revenue Curves

Constant Elasticity Demand Curve

Demand function

$$D(p) = Ap^{\varepsilon}$$

• Elasticity is constant

$$\frac{p}{q}\frac{dq}{dp} = \frac{p}{Ap^{\epsilon}}\epsilon Ap^{\epsilon-1} = \epsilon$$

• Marginal revenue

$$MR = p(q) \boxed{1 - \frac{1}{|\epsilon|}}$$
 constant

 Marginal revenue curve is some constant fraction of the inverse demand curve!

Constant Elasticity Demand Curve

Demand function

when $|\varepsilon| = 1$, MR=0 $|\varepsilon| > 1$, MR lies below the inverse demand curve, p(q) $|\varepsilon| < 1$, MR is negarive

Income Elasticity of Demand

income elasticity of demand $=\frac{\% \text{ change in quantity}}{\% \text{ change in income}}$

$$\eta = \frac{\Delta q / q}{\Delta m / m} = \frac{m}{q} \frac{\Delta q}{\Delta m} = \frac{m}{q} \frac{dq}{dm}$$

If $\eta > 0$, normal good If $\eta < 0$, inferior good If $\eta > 1$, luxary good