2 Gauss Elimination

2.1 Inverse matrices

A is invertible if there exists a matrix A^{-1} such that

$$
A^{-1} A=I \quad \text { and } \quad A A^{-1}=I
$$

(1) inverse exists \Leftrightarrow elimination produces n pivots (row exchanges allowed)
(2) A cannot have two different inverses.

$$
\begin{aligned}
& B A=I \\
& A C=I
\end{aligned}
$$

i.e. A left-inverse and right-inverse are the same.
(3) If A is invertible, the one and only solution to $A \mathrm{x}=\mathrm{b}$ is $\mathrm{x}=A^{-1} \mathrm{~b}$.
(4) If there is a nonzero vector x such that $A \mathrm{x}=0$, then A cannot have an inverse. If A is invertible, $x=0$ is the only solution to $A \mathrm{x}=0$
(5) A is invertible \Leftrightarrow determinant is not zero.

$$
\operatorname{ex}) \quad\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{c d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

(6)

$$
\left[\begin{array}{cc}
d_{1} & 0 \\
\ddots & \\
0 & d_{n}
\end{array}\right]^{-1}=\left[\begin{array}{rc}
1 / d_{1} & 0 \\
\ddots & \\
0 & 1 / d_{n}
\end{array}\right]
$$

- If A and B are invertible, then so is AB .

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

2.2 Gauss Elimination

- Calculating A^{-1} by Gauss - Jordan Elimination

$$
\begin{gathered}
A A^{-1}=I \\
A\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]=\left[\begin{array}{lll}
e_{1} & e_{2} & e_{3}
\end{array}\right]
\end{gathered}
$$

Gauss - Jordan method solves three systems of equations $\left(A x_{i}=e_{i}\right)$ together.

- Augmented matrix

$$
\left[\begin{array}{llll}
A & e_{1} & e_{2} & e_{3}
\end{array}\right]=\left[\begin{array}{ccc|ccc}
2 & -1 & 0 & 1 & 0 & 0 \\
-1 & 2 & -1 & 0 & 1 & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right]
$$

$\frac{1}{2}$ row $1+$ row 2

$$
\left[\begin{array}{ccc|ccc}
2 & -1 & 0 & 1 & 0 & 0 \\
0 & \frac{3}{2} & -1 & \frac{1}{2} & 1 & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right]
$$

$\frac{2}{3}$ row $2+$ row 3
\Longrightarrow

$$
\left[\begin{array}{ccc|ccc}
2 & -1 & 0 & 1 & 0 & 0 \\
0 & \frac{3}{2} & -1 & \frac{1}{2} & 1 & 0 \\
0 & 0 & \frac{4}{3} & \frac{1}{3} & \frac{2}{3} & 1
\end{array}\right]
$$

Continue!!

$$
\frac{3}{4} \text { row } 3+\text { row } 2
$$

$$
\Longrightarrow
$$

$$
\left[\begin{array}{ccc|ccc}
2 & -1 & 0 & 1 & 0 & 0 \\
0 & \frac{3}{2} & 0 & \frac{3}{4} & \frac{3}{2} & \frac{3}{4} \\
0 & 0 & \frac{4}{3} & \frac{1}{3} & \frac{2}{3} & 1
\end{array}\right]
$$

$\frac{2}{3}$ row $2+$ row 1

$$
\Longrightarrow
$$

$$
\left[\begin{array}{ccc|ccc}
2 & 0 & 0 & \frac{3}{2} & 1 & \frac{1}{2} \\
0 & \frac{3}{2} & 0 & \frac{3}{4} & \frac{3}{2} & \frac{3}{4} \\
0 & 0 & \frac{4}{3} & \frac{1}{3} & \frac{2}{3} & 1
\end{array}\right]
$$

divide each row by its pivots

$$
\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & 1 & 0 & \frac{1}{2} & 1 & \frac{1}{2} \\
0 & 0 & 1 & \frac{1}{4} & \frac{1}{2} & \frac{3}{4}
\end{array}\right]=\left[\begin{array}{lll}
\left.\left.I \left\lvert\, \begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right.\right], 0\right]
\end{array}\right.
$$

```
G-J process multiplies,
    \(A^{-1}\left[\begin{array}{ll}A & I\end{array}\right]\)
to get \(\left[\begin{array}{ll}I & A^{-1}\end{array}\right]\)
```

- Let A be a square matirx.
A^{-1} exists (and Gauss-Jordan finds it) exactly when A has n pivots.

$$
\text { If } A C=I \text {, then } C A=I \text { and } C=A^{-1} .
$$

Example 1.

If L is lower triangular with 1's on the diagonal, so is L^{-1}.

$$
\begin{array}{cc}
{\left[\begin{array}{ll}
L & I
\end{array}\right]=\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
* & 1 & 0 & 0 & 1 & 0 \\
* & * & 1 & 0 & 0 & 1
\end{array}\right]} \\
\Longrightarrow & {\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & * & 1 & 0 \\
0 & * & 1 & * & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & * & 1 & 0 \\
0 & 0 & 1 & * & * & 1
\end{array}\right]=\left[I \mid L^{-1}\right]}
\end{array}
$$

- Elimination $=$ LU Factorization $($ Strang P883)

Example 2.

$$
\begin{gathered}
A=\left[\begin{array}{ll}
2 & 1 \\
6 & 8
\end{array}\right] \\
E_{21} A=\left[\begin{array}{cc}
1 & 0 \\
-3 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
6 & 8
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
0 & 5
\end{array}\right]=U \\
\underbrace{E_{21}^{-1} U}_{L U=A}=\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
0 & 5
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
6 & 8
\end{array}\right]=A
\end{gathered}
$$

Example 3.

A is 3×3, no row exchange.
Then,

$$
\begin{gathered}
E_{21} A \\
E_{31}\left(E_{21} A\right) \\
E_{32}\left(E_{31} E_{21} A\right)
\end{gathered}
$$

$$
\Longrightarrow A=\underbrace{\left(\begin{array}{lll}
E_{21}^{-1} & E_{31}^{-1} & E_{32}^{-1}
\end{array}\right)}_{\text {lower triangular, 1's on the diagonal }} U=L U
$$

Each multiplier $l_{i j}$ goes directly into (i, j) position.

Example 4.

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
0 & \frac{2}{3} & 1
\end{array}\right]}_{L} \underbrace{\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & \frac{2}{3} & 1 \\
0 & 0 & \frac{4}{3}
\end{array}\right]}_{U}
$$

Observation :

- If a row of A starts with 0 , then so does that row of L
- If a column of A starts with 0 , then so does that column of U

In the above example,
Row 3 of $U=$ Row of $A-l_{31}$ (Row1 of U) $-l_{32}$ (Row2 of U)
\Longrightarrow Row3 of A
$=l_{31}($ Row 1 of $U)+l_{32}($ Row 2 of $U)+1($ Row 3 of $U)$
$=$ Row 3 of $L U$
This shows why $\mathrm{A}=\mathrm{LU}$.

2.3 LDU Factorization

Divide U by diagonal elements so that U has 1's on the diagonal.
In the previous example,

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
0 & \frac{2}{3} & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & \frac{3}{2} & 0 \\
0 & 0 & \frac{4}{3}
\end{array}\right]\left[\begin{array}{lll}
1 & \frac{1}{2} & 0 \\
0 & 1 & \frac{2}{3} \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
* & 1 & 0 \\
* & * & 1
\end{array}\right]\left[\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right]\left[\begin{array}{ccc}
1 & \frac{U_{12}}{d_{1}} & \frac{U_{13}}{d_{1}} \\
0 & 1 & \frac{U_{23}}{d_{2}} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

2.4 Transposes

$$
A^{T}=\text { transpose of } A
$$

column of $A^{T}=$ row of A

$$
\left(A^{T}\right)_{i j}=A_{j i}
$$

- $(A+B)^{T}=A^{T}+B^{T}$
- $(A B)^{T}=B^{T} A^{T}$
- $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$
- For any vectors x and y ,

$$
(A x)^{T} y=x^{T} A^{T} y=x^{T}\left(A^{T} y\right)
$$

- Symmetric matrix : $A T=A .\left(a_{j i}=a_{i j}\right)$
- Inverse of an invertible, symmetric matrix is also symmetric.

$$
\therefore\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}=A^{-1}
$$

- Choose any matrix R, then $R^{T} R$ is square, and

$$
\begin{gathered}
\quad\left(R^{T} R\right)^{T}=R^{T}\left(R^{T}\right)^{T}=R^{T} R \\
\therefore R^{T} R \text { is a symmetric matrix. } \\
\left(R R^{T} \text { is also a symmetric matrix. }\right)
\end{gathered}
$$

In the previous example,

$$
\begin{aligned}
\underbrace{A}_{\text {symmetric }} & =L D U=\left[\begin{array}{lll}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
0 & \frac{2}{3} & 1
\end{array}\right]\left[\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right]\left[\begin{array}{ccc}
1 & \frac{1}{2} & 0 \\
0 & 1 & \frac{2}{3} \\
0 & 0 & 1
\end{array}\right] \\
& =L D L^{T}
\end{aligned}
$$

\Longrightarrow If $A=A^{T}, A=L D U$ (with no row exchange), then $U=L^{T}$, and $A=L D L^{T}$

