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Reorientation of Directions by 
Single Slip 

γ = u  / (d⋅n)   and u = γ (d⋅n)b

D = d + u = d + γ (d⋅n)b     and ijjii bnddD )(γ+=
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Reorientation of Planes by 
Single Slip 

m = d×d'   and   M = D×D’

M = [d + γ (d⋅n)b]×[d' + γ (d'⋅ n)b]
= d×d' + γ (d⋅ n)(b×d') + γ ( d'⋅ n)(d×b)
= d×d' - γ b× [(d'⋅ n)d -(d⋅ n)d']
= d×d' - γ b× [n×(d×d)]
= m - γ b×n×m
= m - γ (b ⋅ m)n

ijjii nmbmM )(γ−=
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Single Slip in Response to 
Tensile Force 
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발표자
프레젠테이션 노트
Let’s consider a cylindrical single crystal subjected to a tensile test. 
The ends of the crystal are attached to the frame of the testing machine via universal joints. 

The testing machine stretches the crystal while recording the force F and the length L of the crystal.
But unfortunately the F-L relation is not characteristic of the material since it depends on the dimensions and geometry of loading.
So we need the fundamental relation between τ  and  .   
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Single Slip in Response to 
Tensile Force 
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Orientation dependence of shear strain γ.

발표자
프레젠테이션 노트
This figure shows the orientation dependence of the shear strain  involved in extending a crystal. 
We can see that in this case the minimum shear obtains when phi0  35˚ and phi0 55˚.
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Single Slip in Response to 
Tensile Force 
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Single Slip in Response to 
Tensile Force 
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F diminishes as L increases.

Geometrical softening
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Single Slip in Response to 
Tensile Force 
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Assuming constant value of shear stress acting on slip system

Geometrical softening
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Single Slip in Response to 
Tensile Force 

Tensile stress-strain curves measured on 
cadmium crystals [Boas, Schmid, 1929].

Tensile stress-strain curves for 
niobium crystals; initial direction of 
applied stress is given for each curve 
[Votava, 1964].

Geometrical softening
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Single Slip in Response to 
Tensile Force 
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Cylindrical crystal (a) in undeformed state, and (b) after slip has occurred on
system given by vectors n and b.

r = L×l = γ (l⋅ n)(b×l)
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Single Slip in Response to 
Tensile Force 
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Stereographic plot of tensile axes of iron crystals. 



12

2010-11-02

Single Slip in Crystals of Cubic 
Symmetry 

001 standard stereographic projection of cubic crystal

발표자
프레젠테이션 노트
We have been considering the deformation of crystals by the action of a uniaxial tension.
Now, Let’s consider which slip systems carry the largest resolved shear stress as the loading direction varies. 

In cubic system, all crystallographic directions may be considered to lie within one of the twenty-four equivalent triangles.
(whose corners are [001], [011], and [111]) 
This is called the stereographic projection of a cubic crystal.
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plotted stereographically as a function of 
direction of uniaxial stress for various types of slip system 
in cubic crystals

Single Slip in Crystals of Cubic 
Symmetry 

)coscos100( 00 λφ

발표자
프레젠테이션 노트
Contours means equal values of the Schmid factor 
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Single Slip in Crystals of Cubic 
Symmetry 

[Example 1] A bcc crystal slips on the (-101) [111] 
system in response to a tensile stress along [-123]. 
How much shear strain is required to rotate the 
longitudinal axis of the crystal to the [001]-[011] 
symmetry line? What is the orientation of the axis 
on this line?
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Single Slip in Crystals of Cubic 
Symmetry 

013

034

231

011

111

001
012

111



16

2010-11-02

Single Slip in Crystals of Cubic 
Symmetry 

[Example 2] Suppose that, in above Example 1, 
one side surface of the crystal is (210). What is 
the new orientation of this face after the crystal 
has undergone a shear strain of             ?4/6
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Single Slip in Crystals of Cubic 
Symmetry 

[Example 3] Suppose that, in above Example 1, 
one direction of the crystal is [210]. What is the 
new orientation of this direction after the crystal 
has undergone a shear strain of             ?4/6
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Slip on Two Systems
-Duplex Slip 

Most highly stressed slip systems of {111}<110> 
types in terms of direction of  uniaxial stress.

발표자
프레젠테이션 노트
In most crystal structures, there is a potential for acting two or more slip systems of the same crystallographic type. 
Under certain loading conditions, two of slip systems may experience the maximum resolved shear stress, then duplex slip will occur. 
Since these two active systems are stressed equally, we would expect equal shear strains on each. 

In cubic crystals, when the uniaxial loading direction lies within a stereographic triangle, one slip system carries a higher resolved shear stress than the rest. 
Along the sides of a triangle, where two triangles meet, two slip systems are simultaneously acted. 
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Slip on Two Systems
-Duplex Slip 
Duplex slip in tension

The vectorial change in length of the crystal

Δl = L - l = Δγ (l·n) b + Δγ (l·n')b'

Δl = l cosφΔγ (b + b')
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Duplex Slip in Cubic Crystals 

Duplex slip in tension
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[001] stereographic projection of 
cubic crystal
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Strains Produced by Slip 
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Strains Produced by Slip 
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Independent Slip Systems 

j can be up to 12 in fcc crystal.
But, mathematically j must be 5.



25

2010-11-02

Independent Slip Systems 

From the definition of [K]-1, the determinant of [K] be non-zero, 
that means the five systems are independent. 

We have used infinitesimal strain in the above analysis. If we have 
to consider large plastic strains, we can regard the (small) strains 
in the analysis as only increments of the total strain.

It is worth remarking that since any (small) plastic strain can be 
accomplished by five independent slip systems, no crystal can 
have more than five such systems.
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Independent Slip Systems 

[Example] Can the {110}<001> family of slip 
systems in a cubic crystal produce any arbitrary 
strain without change in volume?
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Independent Slip Systems 
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Selection of Possible Active Systems 

Which particular combination of five slip systems 
actually operates to achieve a given increment of 
strain ?

Taylor's criterion.

Bishop-Hill’s criterion
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Taylor's criterion

Taylor [1938] postulated that the preferred set of slip 
systems will be that for which the sum of the shears on each 
system is a minimum.

∑=
k

k
c ddw )(γτ

Taylor postulated that the work done in activating the 
preferred set of slip systems is less than that of all other 
sets of systems.
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Taylor's criterion

[γ] = [K] -1 [ε]

From this equation, the Taylor criterion can be used to predict the 
operating slip systems to accomplish the imposed strain. [γ] is 
evaluated from this equation for each set of five independent slip 
systems. There are 384 of these for the fcc crystal structure.

In Talyor criterion, the minimum value of total shear was selected 
among these 384 cases. For the unique active slip system, various 
methods are suggested, for examples, the random selection method
[Van Houtte 1984] and the secondary work minimization model
[Renourd, Wintenberger 1976, 1981].
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Bishop-Hill’s criterion

Bishop and Hill [1951] showed that this Taylor criterion is equivalent 
to the stress criterion for yielding.

∑ ∑≤ )*()( kk dd γγ

We conclude that Taylor’s criterion is that a critical resolved shear 
stress is required for yielding, as stated by Schmid’s law.
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State of Stress for Multiple Slip

A=σ22-σ33 B=σ33-σ11 C=σ11-σ22 F=σ23 G=σ13 G=σ12
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State of Stress for Multiple Slip

]][[][ στ TK=



34

2010-11-02

State of Stress for Multiple Slip

][][][ 1 τσ −= TK

We conclude that combinations of five slip 
systems that are geometrically capable of causing 
an arbitrary strain are also physically capable of 
being activated by a feasible state of stress.
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Stress states for {111}<110> or 
{110}<111> slip

On slip system a1, b1, c1, and d1

On slip system a2, b2, c2, and d2

On slip system a3, b3, c3, and d3
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Stress states for {111}<110> or 
{110}<111> slip
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Octahedral yield surface for cubic crystals that slip on {111}<110> or 
{110}<111> systems.

For the Cartesian spaces with axes (A, G, H)
A stress can be represented by a vector from the origin to the surface of the octahedron.
If such a vector ends on a face, slip occurs on one system.
If it ends on an edge of the octahedron, slip can be activated on two systems. 
If the vector ends at a vertex, slip occurs on all four systems, a1, b1, c1 and d1.
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Stress states for 
{111}<110> or 
{110}<111> slip
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Stress states for {112}<111> slip
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Stress states for {112}<111> slip
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Stress states for {112}<111> slip
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Stress states for {112}<111> slip
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Stress states for {123}<111> Slip
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Stress states for {123}<111> Slip
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Stress states for {123}<111> Slip
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Stress states for {123}<111> Slip

Total number is 106.
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Principle of Maximum Work

This was proposed by Bishop and Hill (1951), and it 
states that in the deformation of a single crystal the 
actual stress corresponding to a given strain does not do 
less work than any other stress that satisfies the yielding 
conditions. 

We can put this another way: The state of stress required 
to cause a given increment of strain is the one that 
maximizes the work done on the material.
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Principle of Maximum Work

Which particular stress state will be preferred in enforcing 
a given increment of strain ? 

Which slip systems are active in accomplishing the strain ?

The Taylor approach gives the same results as 
Bishop and Hill's Principle of Maximum Work.

When considering {111}<110> slip, the Bishop-Hill 
method has the great advantage that the maximum of only 
fifty-six numbers is sought whereas the minimum of 384 
numbers is required in the Taylor approach.
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Principle of Maximum Work
[Example] A compression test is carried 
out on a rectangular single crystal, 
preventing it from expanding in one 
transverse direction (a plane-strain 
compression test). This is conveniently 
achieved by placing the crystal in a 
channel. Which slip systems will 
operate, and what will the compressive 
yield strength be? Suppose that the 
direction of compression is x2= [110] 
and the channel lies along x1=[-110 ] 
(permitting expansion along this 
direction), and that slip occurs on the 
{110} <111> systems.
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Principle of Maximum Work

[Example] A plane strain compression 
test is carried out on a rectangular fcc 
single crystal, in which the compression 
direction is = [100] and the elongation 
direction is x1 = [011]. Which slip 
systems will operate and what will the 
compressive yield strength be?
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Principle of Maximum Work
No. of stress 

state =A/2 + B + F

1 1/2 + (-1) + 0 = -1/2

2 0 + 1 + 0 = 1

3 -1/2 + 0 + 0 = -1/2

4 0 + 0 + 1 = 1

5 0 + 0 + 0 = 0

6 0 + 0 + 0 = 0

7 1/4 + (-1) + 0 = -3/4

8 1/4 - 1 + 0 = 3/4

9 -1/2 + 1/2 + 1/2 = 1/2

10 -1/2 + 1/2 - 1/2 = -1/2

11 1/4 + 1/2 + 0 = 3/4

12 1/4 + 1/2 + 0 = 3/4

13 1/4 + 0 + 1/2 = 3/4

14 1/4 + 0 - 1/2 = -1/4

15 1/4 + 0 + 1/2 = 3/4 

16 1/4 + 0 + (-1/2) = -1/4

17 0 - 1/2 + 0 = -1/2

18 0 - 1/2 + 0 = -1/2

19 0 - 1/2 + 0 = -1/2

20 0 - 1/2 + 0 = -1/2

21 -1/4 + 1/2 + 1/2 = 3/4

22 -1/4 + 1/2 - 1/2 = -1/4

23 -1/4 + 1/2 + 1/2 = 3/4

24 -1/4 + 1/2 - 1/2 = -1/4

25 0 + 0 + 1/2 = 1/2

26 0 + 0 + 1/2 = 1/2

27 0 + 0 - 1/2 = -1/2

28 0 + 0 + 1/2 = 1/2
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Principle of Maximum Work

Note that in certain orientations, more than 
two stress states maximize the work done. In 
such cases, the operative slip systems will be 
those that are common to both stress states, 
and there is no ambiguity about the choice of 
active systems.
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Principle of Maximum Work

Compress 
direction

Enlong.
Direction M/√6 Stress State Active slip system

1 0 0
1 0 0
1 1 0
1 1 0
1 1 0
1–1 0 
1 1 1
1 1 1
1 1-2 
1 1 2 

0 0 1
1 1 2

0 0 1
0 1 1
0 0 1
-1 1 0 
-1 1 2 
1 1 1
-1 1 0 
1 1-2 

1 1 1
1 1-1 

1 1 0
1 1- 1 

1 
1
1
2

4 / 3
5 / 3
5 / 3
3 / 2
3 / 2
3 / 2

1
3 / 2

-1, 2, -7, -8 
2, 4,
-1, -6

-6
-6, -27

6
-6

24, -28
-24, 28
-21, -25

1, 6
-21, -25

a2 , b2 ,c2 , d2
a2 , -a3 , c2 , -c3
-a1 , a2 , -b1 , b2

-a1 , a2 , -b1 , b2 , c1 , -c2 , d1 , -d2
a2 , -b1 , d1 , -d2 , -d1 , d2

-a1 , a2 , -b1 , b2 , c1 , -c2 , d1 , -d2
a1 , -a2 , b1 , -b2 , -c1 , c2 , -d1 , d2

-b1 , b2 , c3 , -d3
b1 , -b2 , -c3 , d3

a1 , -a2 , c3 , -d3
a1 , -a2 , b1 , -b2
a1 , -a2 , c3 , -d3

Values of the relative strength parameter M for cubic crystals of various 
orientations. Subjected to plane strain compression. It is assumed that slip 
occurs on systems {111}<110> or {110}<111>.
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Principle of Maximum Work
[Example] Let us consider the case of an fcc or bcc crystal 
undergoing axisymmetrical deformation about an arbitrary direction. 
This type of deformation occurs, for example, when a cylindrical 
crystal is pulled through a round wire-drawing die. Calculate the M
value and the active slip systems for a given crystal orientation. 
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Principle of Maximum Work
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Principle of Maximum Work
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glide pencil

Stereographic plot of parameter M as a function of direction of axisymmetric 
deformation for {110}<111> and {112}<111> slip systems [Chin, Mammel, 
1967] and pencil glide [Kwon, 1995] in cubic crystals.
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Rigid Body Rotation during Slip 
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