· The Carnot Cycle

Reversible process (가역과정) - ideal process

한번 발생했던 과정이 역으로도 될 수 있고 이때 계(system)와 주위 (surrounding)에 아무 변화도 남기지 않는 과정

Irreversible (or Real) process - the opposite

Consider a heat engine with every process reversible and the cycle is also reversible -> i.e. if a cycle is reversed, the heat engine becomes a refrigerator

√ This is the most efficient cycle that can operate between two constant temperature reservoirs - CARNOT CYCLE -

여재익, jjyoh@snu.ac.kr, (02) 880-9334 - 2006 Spring - 11

Combustion Laboratory

- 4 Processes in a Carnot Cycle
 - A reversible O_n isothermal process (High-T \rightarrow Steam)
 - Reversible adiabatic process in turbine W
 - Reversible isothermal process for Q_L
 - Reversible adiabatic process on the pump
- → Reverse the flow → Refrigerator

A Carnot Cycle (Heat Engine) (working fluid = steam)

Assume all processes are reversible

여재익, jjyoh@snu.ac.kr, (02) 880-9334 - 2006 Spring - 12

Combustion Laboratory

• Carnot Cycle (Working fluid = Gas) 이상기체에 의한 Carnot 사이클

for an ideal gas as working fluid, Carnot cycle can be expressed as

여재익, jjyoh@snu.ac.kr, (02) 880-9334 - 2006 Spring - 14

Isothermal expansion 2 → 3 Adiabatic expansion Isothermal compression 4 → 1 Adiabatic compression

$$W = \int p \, dV$$

eXtreme Combustion Laboratory Thermodynamic temperature scale
 Consider 3 engines, 3 Carnot engines

여재익, jjyoh@snu.ac.kr, (02) 880-9334 - 2006 Spring - 15

 $|T_1 > T_2 > T_3|$

 \mathcal{Q}_3 is the same for engine B and C since cycles are reversible

In general term, for a Carnot cycle

$$\begin{aligned} \frac{Q_1}{Q_3} &= \frac{f(T_1)}{f(T_3)} \\ &= \frac{T_1}{T_3} \\ \end{aligned}$$
 `Definition of Absolute Temperature'
By Lord Kelvin (*)

eXtreme
Combustion Laborator

With this definition, the Carnot efficiency may be expressed in terms of absolute temperature.

$$\eta_{\textit{thermal}} = 1 - \frac{Q_L}{Q_H} = 1 - \frac{T_L}{T_H}$$

Kelvin proposed a Carnot engine that required heat at the temperature of the steam point and rejected heat at the temperature of the ice point.

$$\eta_{th} = 1 - \frac{T_L}{T_H} = 0.2680$$
 or $\frac{T_{ice\ po\ int}}{T_{steam\ po\ int}} = 0.7320$ (1)

and use

$$T_{steam\ po\ int} - T_{ice\ po\ int} = 100 \tag{2}$$

Now solve (1) and (2) simultaneously and find Kelvin Temperature!

$$T_{steam pt} = 373.15K$$
$$T_{ice pt} = 273.15K$$

여재익, jjyoh@snu.ac.kr, (02) 880-9334 - 2006 Spring - 16

extreme
Combustion Laboratory

Now extending "cycle" to a "process"...

Some examples of a process:

- · combustion process in an automobile
- · cooling of a cup of coffee
- chemical processes that take place in our body

Energy? Both are abstract concept!

- · Generalization of 2nd Law for a process (Not cycle limited!)
- · Inequality of Clausius says

$$\oint \frac{\delta Q}{T} \le 0$$

· Again the Inequality of Clausius says

$$\oint \frac{\delta Q}{T} \le 0$$

- This is a consequence of the 2nd Law.
- This is true for both reversible + irreversible cycle, heat engines, refrigerators.

Consider a reversible heat engine system

(*) becomes

$$\oint \frac{\delta Q}{T} = \frac{Q_H}{T_H} - \frac{Q_L}{T_L} = 0$$

$$\frac{Q_{\scriptscriptstyle H}}{Q_{\scriptscriptstyle L}} = \frac{T_{\scriptscriptstyle H}}{T_{\scriptscriptstyle L}}$$

For all irreversible cycle.

$$\oint \frac{\delta Q}{T} < 0$$

• For both cycles (reversible & irreversible):

$$\oint \frac{\delta Q}{T} \le 0$$

여재익, jjyoh@snu.ac.kr, (02) 880-9334 - 2006 Spring - 19

Example

Consider a simple power plant that demonstrates the inequality of Clausius.

Q: Does this cycle satisfy the inequality of Clausius?

여재익, jjyoh@snu.ac.kr, (02) 880-9334 - 2006 Spring - 20

Answer to the previous question:

Heat transfer takes place in two places, the boiler and the condenser.

$$\oint \frac{\delta Q}{T} = \int \left(\frac{\delta Q}{T}\right)_{boiler} + \int \left(\frac{\delta Q}{T}\right)_{condenser}$$

Note T is constant across boiler, condenser.

For Boiler, look up steam table

At 1)
$$x = 0$$
, $p_1 = 0.7MPa$, $h_1 = 697.22 \frac{kJ}{kg}$

2)
$$x = 1$$
, $p_2 = 0.7MPa$, $h_2 = 2763.5 \frac{kJ}{kg}$

So for 1kg of mass.

1st law for Boiler:

$$q_{1,2} = h_2 - h_1 + W$$

= 2763.5 - 697.22 = 2066.28 kJ/kg

$$T_1 = 164.97$$
° C sat. liq. temperature

Likewise.

$$q_{3,4} = h_4 - h_3 = 463.4 - 2361.8 = -1898 \frac{kJ}{kg}$$

$$T_3 = 53.97$$
°C

$$\therefore (*) \oint \frac{\delta Q}{T} \le 0$$