4541.831: Integrated Circuit Design Projects

Jaeha Kim Mixed-Signal IC and System Group (MICS) Seoul National University jaeha@snu.ac.kr

Course Basics

Instructor: Jaeha Kim

- □ Office: Bldg. 104-1, Room 314 or Bldg. 301, Room 507
- □ Office Hours: Mon & Wed 1pm~2pm
- □ Email: jaeha@snu.ac.kr, Phone: 880-1671
- Teaching assistants
 - □ Sangho Youn (PhD), Hanseok Kim (MS)
 - □ Email: <u>shyoun@mics.snu.ac.kr</u>, <u>hskim@mics.snu.ac.kr</u>
- Course website:
 - □ TBD on etl.snu.ac.kr
 - □ TA email alias: ta@mics.snu.ac.kr

About Your Instructor

- BS from SNU
- MS and PhD from Stanford (Advisor: Mark Horowitz)
- Worked at True Circuits, SNU-ISRC, Rambus, …
 Most recently with Stanford as Acting Assistant Prof.
 With SNU since 2010
- Main research interests include:
 - □ Low-power mixed-signal systems
 - such as high-speed I/Os, PLLs, CDRs, ADCs, DACs, ...
 - And their design methodologies
 - key to achieve optimal balance between competing metrics

Course Goals

- To introduce <u>systematic</u> ways of designing analog circuits by leveraging the circuit intent/abstraction
 - Our belief is that we can make analog design as easy and effective as digital design!
- Systematic analog design consists of:
 - Expressing what we want and what we don't want the circuit intent and specifications
 - Measuring these quality metrics in automatic ways to enable quick design iterations
 - Leveraging design equations to build understanding/insights on the circuits and guide the optimizers to find the best solution

Use of models to scale the complexity of the circuit/system

Course Scopes

- This course is not about circuit topologies or architectures
 - e.g. I won't cover all the different op-amp topologies such as two-stage, folded-cascode, telescopic, ...
 - □ Those topics should be covered by another course
- Instead, this course will focus on how to arrive at the best implementation of a given circuit idea
 - Without running extensive SPICE simulations while sweeping parameters exhaustively
 - These methodologies should serve as the foundations for making your circuit research fun!

Prerequisites

- Some experiences in circuit design and simulation
 - □ Carried out a circuit project with SPICE
 - Tried to size transistors either with design equations or with SPICE simulations
 - Have been frustrated with endless simulations that seemed to head nowhere
- Some understanding on the linear system theory and probability theory
 - □ Linear systems: impulse responses and transfer functions
 - Probability density functions (PDF), auto-correlation functions, power-spectral densities (PSD), …

About Teaching Materials

- This course is a fresh new attempt to make analog circuit design systematic and therefore the lecture notes will serve as the principle reference material
- If you want to get some general ideas on where we are heading, I recommend reading:
 - J. Kim, M. Jeeradit, B. Lim, M. A. Horowitz, "Leveraging Designer's Intent: A Path Toward Simpler Analog CAD Tools", Custom Integrated Circuits Conference (CICC), 2009.
 - Or, my other recent publications on analog design methodology

Course Syllabus

- Introduction to analog abstractions (week 2)
 The circuit intent for analog linear system
- Understanding IC process technology (week 3)
 - □ Use of automated simulation scripts
 - Process characterization
- Test-driven methodology (week 4-5)
 - □ "Agile" for analog circuit design
 - Understanding circuit specs and how to measure them
- Circuit simulation strategies (week 6)
 - □ SPICE review
 - Introduction to periodically time-varying analyses (SpectreRF)

Course Syllabus

- Circuit simulation strategies (cont'd: week 7~9)
 - □ Introduction to Verilog-A analog behavioral language
 - Variable domain transformation
 - PTV/ISF simulation for clocked comparators
 - □ Variability/mismatch simulations
- Writing design equations (week 9)
 - Intent-based design equations
 - □ Checking the soundness
 - □ Introduction to Gm/Id methodology

Course Syllabus

- Introduction to circuit optimization (10 week)
 - Optimization basics
 - □ Common pitfalls with circuit optimizers
 - Ways to use circuit optimizers effectively
- Working with analog models (11 week)
 - Using analog models to speed up the simulation and check your design equations (intent)
 - □ Top-down vs. bottom-up strategies for writing models
 - □ Strategies for verifying analog models
- System-level considerations (12 week)
 - Propagating system-level specs to circuit-level specs

Mixed-signal system designs

Course Grading

- Your course grade will be determined based on:
 - □ Homework: 40%
 - □ Final Project: 40%
 - Participation: 20%
- Each homework is actually a small piece of the project
 - □ HW#1: get to know the process with simulation scripts
 - HW#2: choose a circuit and define its purpose and ways to evaluate its quality
 - HW#3: compose simulation testbenches that measure the quality metrics
 - □ HW#4: write design equations for the quality metrics

HW#5: try out circuit optimizers for finding the best sizes

Project

- Choose your own circuit and find its best implementation
 - That is, find the optimal transistor sizes or configurations that give the best performances under the specs
 - You could select a circuit from the literature and try to size the transistors to meet its specs
 - □ You can work solo or as a group of two
- Important: your work will be evaluated based on how you got the answer rather than how good your answer is
 - I can't check your answer directly so you need to convince me that what you have done finds the optimum
 - Clever new ways/methodologies to achieve this is a big plus

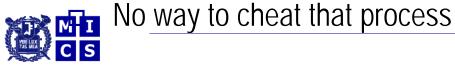
This is exactly what you do at companies - "design reviews"

Project

- To see if you have indeed arrived at the best answers using good methodologies rather than resorting to bruteforce simulations or by accident, I may introduce some changes at the last minute, for example:
 - Updating the transistor models
 - Migrating the design to a different process technology
 - □ Changing the target specs
- All of these last-minute changes are in fact very REAL
 - Only way to make these changes "painless" is to automate the process as much as possible

Participation

- In this course, participation takes *20%* of the grading
 - The idea is that each homework/project is actually an experimentation of a new design flow and it deserves an active discussion
 - For homeworks with open problems, this substitutes distributing the solutions
 - Students may be asked to present their homework and others to comment on their findings
 - In every class, students who actively participated in discussions will collect points
 - Note that simply attending the class but not participating in discussions may not earn you points

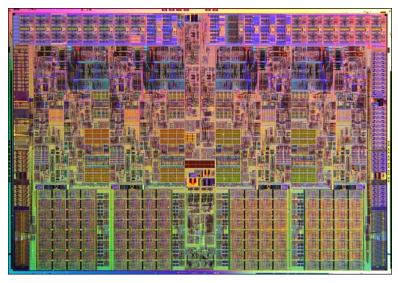

CAD Tools Used in the Class

- In this course, you will be introduced to a number of CAD tools for analog circuit design
- Some are commercial:
 - □ Cadence Virtuoso Schematic Editor
 - □ Synopsys HSPICE or Cadence Spectre
- While others are in-house built:
 - Mulan/Simba simulation scripts
 - Eva equation tools
 - Polka optimizer

For technology models, we will provide the PTM models but when may use the process of your choice as well 15

Honor Code

- I am less worried about the issue for this class, but please remember you are bound by the honor code:
 - Do not plagiarize others' work (e.g. homework, project, exam,...)
 - □ If you need help, feel free to ask the instructor and TAs
- But if you are found cheating it is *very serious*
 - □ Besides getting zero score for the work
 - □ There will be a formal hearing
 - □ You can be thrown out of SNU
- So save yourself and us a huge hassle and be honest
- Always remember that your goal in this class is to <u>learn</u> how to design and build circuits


Lecture 1. Analog Bottleneck

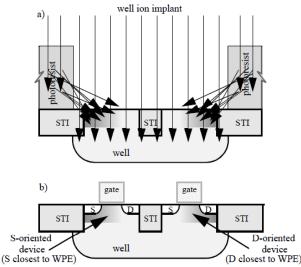
Jaeha Kim Mixed-Signal IC and System Group (MICS) / ISDL Seoul National University jaeha@ieee.org

The Analog Bottleneck

- The main driving force behind the complexity scaling of CMOS systems has been digital, not analog
 - Near a billion of transistors in modern processors
- Analog circuit hasn't scaled its complexity much
 - □ 10~1000s of transistors
 - Technology scaling makes its design difficult and forces even simpler analog

Intel 4-core Nehalem processor (820M)

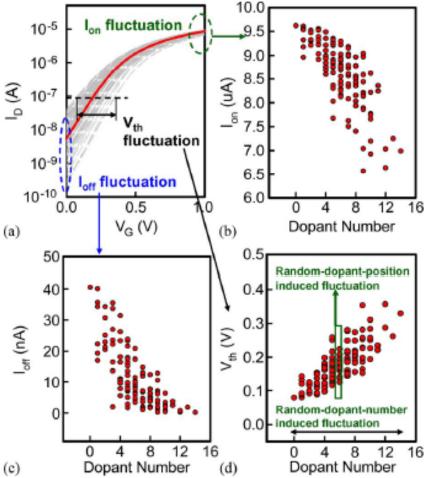
Trend is to replace pesky analog parts with digital for easy process migration and design management (Big D, Little A)



Challenge 1: Device Behavior Complexity

- With technology scaling, the list of "strange effects" keeps piling up – making circuit designs more difficult
- Deviations from classical, long-channel model:
 - Carrier velocity saturation
 - Drain-induced barrier lowering (DIBL)
 - Subthreshold leakage
 - □ Gate direct tunneling leakage
- Proximity effects:
 - Well proximity effect (WPE)
 - Shallow trench isolation stress effect

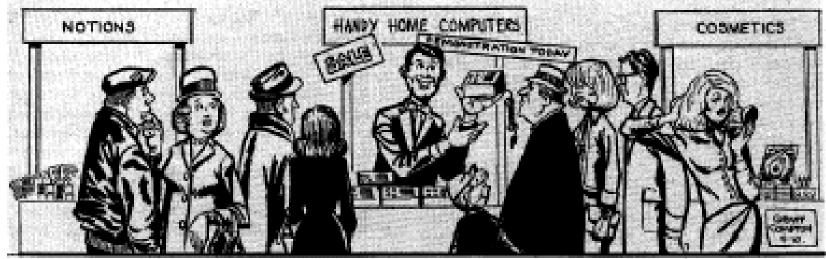
Reliability degradation:


Negative bias temperature instability (NBTI)

P. Drennan, et al, "Implications of Proximity Effects for Analog Design", CICC '06

Challenge 2: Uncertainty and Variability

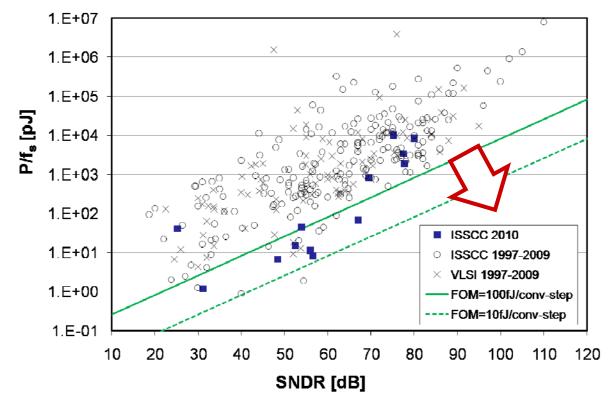
- Designers have to cope with uncertainties in device parameters
 - PVT variations (die-to-die)
 - Systematic and random mismatches (within-die)
- Calling for circuit designs that
 - Are insensitive to parameter variations
 - Can be calibrated to the best (condition


Y. Li, "Random-Dopant-Induced Variability in Nano-CMOS Devices and Digital Circuits," Trans. Electron Devices, 08/2009.

Signs of the End of CMOS Scaling

- In his original paper in 1965, G. Moore predicted issues that can limit the scaling
 - Power dissipation
 - Design cost
 - □ Running out of things to do with all those transistors

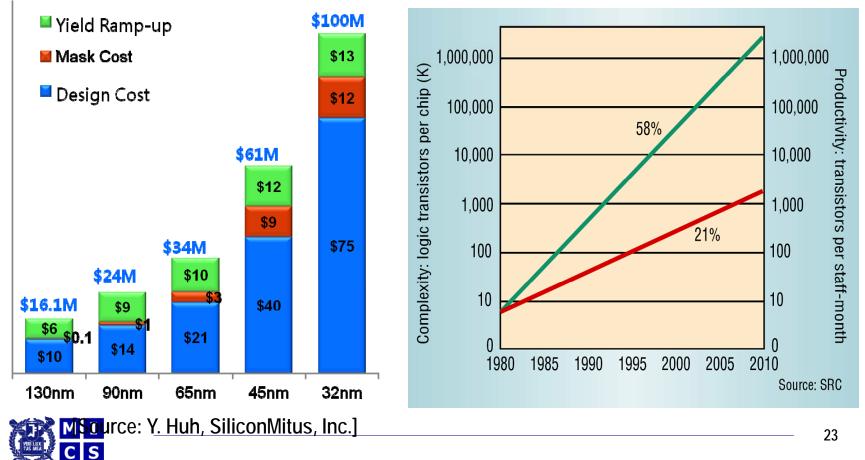
Electronics, Volume 38, Number 8, April 19, 1965



ftp://download.intel.com/research/silicon/moorespaper.pdf

Challenge 3: Push for Lower Power

Power limits what you can integrate on the chip



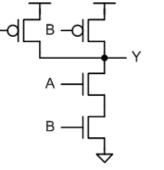
- Designers need to consider multiple objectives: esp. performance vs. power
- And understand the trade-offs and identify ways to reduce power

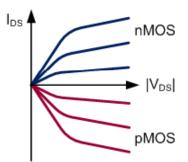
B. Murmann, "ADC Performance Survey 1997-2010," [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html

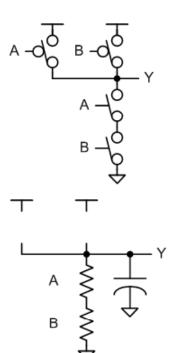
Challenge 4: High Design Costs

 Rising design costs due to ever-increasing design and verification costs can justify very few markets today

Analog Circuit Design – A Dark Art?

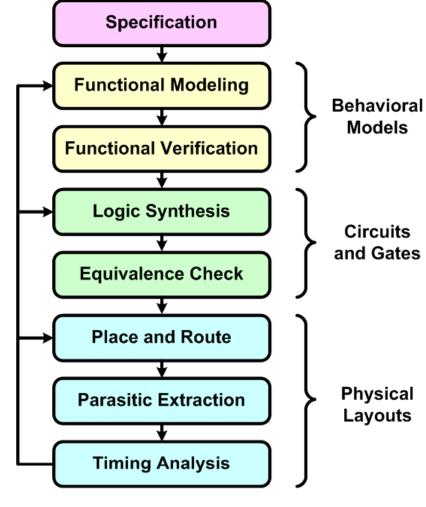

- Wait all of these challenges apply to digital as well
 - Digital systems are made of the same transistors
 - □ Facing similar power and cost constraints
 - □ In fact, more difficult must deal with higher complexity!
- The real problem for analog is lack of design process
 - It's not clear how good analog circuits are built
 - □ Paper and pencil approach?
 - Exhaustive SPICE simulation?
- I believe the root cause is:
 - Designers don't think much about *what they really want*
 - EDA industries try to provide tools that can do everything




(e.g. fast & accurate SPICE that can simulate any circuits)

Knowing What You Want Goes a Long Way

- How do you design a good NAND gate in CMOS?
 - How do you know if this circuit will operate correctly in presence of complex device behaviors?
 - □ Run many SPICE sims?
- Knowing the intent lets you divide and conquer the problem
 - 1. Check if the circuit has the correct functionality in the ideal world
 - 2. Use first order models to estimate its delay and power
 - 3. Use SPICE to check its noise margins



Closer Look at Digital Design Flow

- Digital has an established design flow with welldefined milestones
 - Do models have correct functionalities?
 - Do circuits have same functionalities with models?
 - Are delay and power within acceptable bounds?
- Each question can be answered with help of automation tools
 - Not necessarily with almighty SPICE

How to Make Analog Design Like Digital?

- This is a long-sought question: how do we make analog circuit designs as easy as digital designs?
- Some say: let's make analog circuits with digital gates
 e.g. all-digital PLL or CDR
 - Does it solve the problem? -- Can I design/validate the PLL based on the digital flow?
- Others say: let's pretend analog circuits behave like digital
 - Discretize the analog signals with many quantization steps
 - After discretization, the analog circuits can be analyzed with digital tools (called "hybrid verification")
 - □ What is the problem with this approach?

How to Make Analog Design Like Digital?

- Note that digital tools leverage "abstractions" effectively
 Digital abstraction: Boolean (value), synchronous (time)
 - Tools that simulate abstraction models, convert between abstraction layers, check equivalence, measure coverage, …

So, analog tools must leverage abstractions – but what is the proper abstraction for analog?

- No notion on analog abstraction; SPICE treats any circuit as a general nonlinear system
- Designers scream for *faster* SPICE; although it's not the solution

