Lecture 8. Special Topics: Design Trade-Offs in LC-Tuned Oscillators

Jaeha Kim Mixed-Signal IC and System Group (MICS) Seoul National University jaeha@ieee.org

1

Tuned Oscillator Basic

- LC resonant tank resonates at $\omega_0 = 1/sqrt(LC)$
- Oscillation is sustained if –Gm = 1/R

Review: Performance Metrics for LC Osc.

- Performance Metrics
 - □ Phase noise/jitter
 - □ Frequency tuning range
 - Power dissipation
 - □ Supply/substrate noise sensitivity
 - □ Output swing
 - □ ...

Phase Noise

A clock signal v(t) can be expressed by its amplitude A, nominal frequency f_0 and its phase noise $\phi(t)$:

 $v(t) = A \cdot \sin(2\pi f_0 t + \phi(t))$

Phase noise $S_{\phi}(f)$ is a power-spectral density (PSD) of the instantaneous phase $\phi(t)$:

 $\hfill\square$ Describes how close v(t) is to a perfectly periodic waveform

In measurements, $S_{\phi}(f)$ is approximated by the PSD of the signal v(t):

$$\mathcal{L}(\Delta f) := 4S_v(f_0 + f_m)/A^2$$

Lecture Outline

- Understanding the origins of phase noise/jitter
 - □ LTI phase noise theory (high-Q on-chip resonators)
 - □ LTV phase noise theory (1/f noise up-conversion)
 - NTV phase noise theory (voltage-limiting; AM-to-PM conversion)
- Optional topics regarding optimal LC oscillator designs
 - □ Wide tuning range
 - □ Multiphase clock generation
 - Optimization

LTI Phase Noise Theory

6

LTI Phase Noise Theory (1)

Noise sources in an LC oscillator: R and –Gm

$$\frac{i_{n,total}^2}{\Delta f} = \frac{i_{n,R}^2 + i_{n,Gm}^2}{\Delta f} = \frac{4kT}{R}(1+\gamma) \quad (\because -Gm = R)$$

- □ Thermal noise where γ is the excess noise factor for the active devices
- \square γ for a MOS device is 2/3 for long-channel, 1~4 for shortchannel devices

LTI Phase Noise Theory (2)

• Impedance Z of the parallel RLC near ω_0 :

$$Z(\omega_0 + \Delta\omega) = \frac{\omega_0 R}{2Q\Delta\omega}$$

• Phase noise at offset $\Delta \omega$:

$$\mathcal{L}(\Delta\omega) = 10 \cdot \log\left(\frac{i_n^2}{\Delta f} \cdot |Z(\omega_0 + \Delta\omega)|^2 \cdot \frac{1}{2P_{sig}}\right)$$
$$= 10 \cdot \log\left(\frac{2kT(1+\gamma)}{P_{sig}} \cdot \left(\frac{\omega_0}{2Q\Delta\omega}\right)^2\right)$$

- White noise translates to 1/f² phase noise
- High Q and large P_{sig} desired for low phase noise

Leeson's Formula

$$\mathcal{L}\{\Delta\omega\} = 10 \cdot \log\left[\frac{2FkT}{P_{sig}}\left(1 + \left(\frac{\omega_0}{2Q\Delta\omega}\right)^2\right)\left(1 + \frac{\Delta\omega_{1/f^3}}{|\Delta\omega|}\right)\right]$$

- In addition to thermal noise contribution (1/f²), the formula also includes:
 - 1/f-noise contribution
 (1/f³)
 - □ Buffer noise

Phase Noise vs. Power

- Shunt N identical LC VCOs in parallel
 - □ Power is doubled; phase noise is halved
 - □ R is halved; L is halved; C is doubled
 - \square Q, ω_{o} , and output swing remain unchanged
- But, scaling I_{bias} only doesn't always improve your VCO phase noise
 - □ In fact, it can get worse (voltage-limiting)

Figure-of-Merit (FOM)

• $\mathcal{L}{\Delta\omega}$ normalized to $\Delta\omega/\omega_o$ and P_{sig}

FOM =
$$-\mathcal{L}\{\Delta\omega\} - 10 \cdot \log\left(\left(\frac{\Delta\omega}{\omega_0}\right)^2 \cdot \frac{P_{sig}}{kT}\right)$$

= $10 \cdot \log\left(\frac{2Q^2}{1+\gamma}\right)$

- Indicates the qualities of the tank (Q) and the energy restorer (γ)
- Typical ranges of FOM: 0 ~ 20dB
 Q/sqrt(1+γ) of 0.7 ~ 7

Clock Jitter Definitions

- Suppose {t_n} is a sequence of rising transition times from a clock with the nominal period of T (=1/f₀)
- Absolute jitter (a.k.a. aperture jitter):

$$\{t_n - nT\}$$

Absolute jitter in radians: $\{\theta_n := 2\pi f_0 \cdot (t_n - nT)\}$

Relation with phase noise: $\sigma_{abs}^{2} = \frac{1}{2\pi f_{0}^{2}} \int_{-f_{0}/2}^{f_{0}/2} S_{\theta}(f) df$ where $S_{\theta}(f) \approx S_{\phi}(f)$ $T+j_{1} T+j_{2} T+j_{3}$ $T+j_{1} T+j_{2} T+j_{3}$

D. Lee, "Analysis of Jitter in Phase-Locked Loops," TCASII, Nov. 2002

Clock Jitter Definitions (2)

Period jitter (a.k.a. cycle-to-cycle jitter):

$$\{j_n := t_{n+1} - t_n - T\}$$

Jitter over k periods (a.k.a. long-term jitter):

$$\{j_n(kT) := t_{n+k} - t_n - kT\}$$

Relation with phase noise:

D. Lee, "Analysis of Jitter in Phase-Locked Loops," TCASII, Nov. 2002

Long-Term Jitter of an Oscillator

Another way of defining the long-term jitter is by the standard deviation of phase difference between time τ:

$$\sigma_{\tau}^{2} = \sigma_{J}^{2}(\tau) = \mathbb{E}\left[\left(\phi(t+\tau) - \phi(t)\right)^{2}\right] / \omega_{0}^{2}$$

Assuming thermal noise only (1/f² noise):

$$\sigma_\tau = \kappa \cdot \sqrt{\tau}$$

where

$$\kappa = \Delta \omega / \omega_0 \cdot 10^{\mathcal{L}\{\Delta \omega\}/20}$$

Typical CMOS LC Oscillator

2.5GHz, 1mW LC VCO with FOM=17dB

 $\kappa = \Delta \omega / \omega_0 \cdot 10^{\mathcal{L}\{\Delta \omega\}/20}$ $= \sqrt{FOM \cdot \frac{P_{sig}}{kT}}$

- Cycle-to-cycle jitter (τ=T_{period}): 5.8fs,rms
- PLL with BW=1MHz (τ =1/2 π BW): 115fs,rms

Clock Jitter Definitions (3)

Adjacent period jitter (a.k.a. cycle-to-cycle jitter):

$$\{\Delta j_n := j_{n+1} - j_n = (t_{n+2} - t_{n+1}) - (t_{n+1} - t_n)\}\$$

Adjacent period jitter over k periods:

$$\{\Delta j_n(kT) := t_{n+2k} - 2t_{n+k} - t_n\}$$

Relation with phase noise:

D. Lee, "Analysis of Jitter in Phase-Locked Loops," TCASII, Nov. 2002

Relationship Among Clock Jitters

Relation between period jitter and adjacent period jitter:

$$\sigma_{\Delta J}^2(kT) = 4\sigma_J^2(kT) - \sigma_J^2(2kT)$$

And some known inequalities:

 $\sigma_J(kT) \leqslant 2 \cdot \sigma_A$ $\sigma_{\Delta J}(kT) \leqslant 4 \cdot \sigma_A$ $\sigma_{\Delta J}(kT) \leqslant 2 \cdot \sigma_J(kT)$ $\sigma_J(2kT) \leqslant 2 \cdot \sigma_J(kT)$

D. Lee, "Analysis of Jitter in Phase-Locked Loops," TCASII, Nov. 2002

Quality Factor

General definition of the Q-factor:

 $Q = 2\pi \cdot \frac{energy \ stored}{energy \ loss \ in \ one \ oscillation \ cycle}$

• For a parallel RLC tank:

$$Q = 2\pi \cdot \frac{average \ magnetic \ energy + average \ electric \ energy}{energy \ loss \ in \ one \ oscillation \ cycle} \Big|_{\omega=\omega_0}$$

$$= 2\pi \cdot \frac{peak \ magnetic \ energy}{energy \ loss \ in \ one \ oscillation \ cycle} \Big|_{\omega=\omega_0} = \frac{R}{\omega_0 L}$$

$$= 2\pi \cdot \frac{peak \ electric \ energy}{energy \ loss \ in \ one \ oscillation \ cycle} \Big|_{\omega=\omega_0} = \omega_0 RC$$

$$= \frac{R}{\sqrt{L/C}}$$
1

Quality Factor (2)

• Q of inductor:
$$Q_L = \omega_0 L_S / R_S$$

$$L_{P} = L_{S} \cdot (Q_{L}^{2}+1)/Q_{L}^{2}, \quad R_{P} = R_{S} \cdot (Q_{L}^{2}+1)$$

• Q of capacitor:
$$Q_C = 1/\omega_0 R_S C_S$$

 $C_P = C_S \cdot Q_C^2/(Q_C^2+1), R_P = R_S \cdot (Q_C^2+1)$

• Q of RLC: $Q_L \parallel Q_C$

Start-Up Condition

- Oscillation starts if -Gm > 1/R_{tank}
- Assuming that inductor loss (R_s) dominates: $1/R_{tank} \approx 1/R_s \cdot 1/((\omega_o L_s/R_s)^2 + 1) \approx R_s/(\omega_o L_s)^2$
- Worst-case start-up is at the lowest ∞₀!
 □ Don't reset your VCO to the lowest Vctrl

Spiral Inductor

- Minimize R_s for highest Q (dc, skin-effect)
- Use top metal for low C_{ox} and high f_{self-resonant}
- PGS removes substrate uncertainties

Spiral Inductor Q

• $Q = \omega_o L_s / R_s \cdot (\text{substrate loss factor}) \cdot (\text{self-resonance factor})$

Patterned-Ground Shield (PGS)

- Shields the electric field of the inductor from the lossy substrate
 - □ Can't shield the magnetic field
- Patterned in order to prevent eddy current loss
 - High resistance along the induction loop
- Alleviates uncertainty in substrate modeling

Transmission Lines

- Distributed element with $\gamma = \alpha + j\beta$
- Short-circuited T/L: $Z_{in,SC} \approx jZ_o \cdot tan(\beta L)$ □ Inductive for L < $\lambda/4$
- Open-circuited T/L: $Z_{in,OC} \approx -jZ_o \cdot \cot(\beta L)$ □ Inductive for $\lambda/4 < L < \lambda/2$

Spiral L vs. Transmission Line

- Spiral inductors:
 - □ High L per area
 - Open-field structure
- Transmission lines:
 - □ Closed-field structure; less coupling, higher Q
 - □ Higher accuracy in L
 - □ Lengthy at low frequencies

CPW vs. Microstrip

- CPW: Higher $Z_o \Rightarrow$ higher Q and large L
 - Dimensions are set by lithography not by oxide thickness; less process sensitive
- Microstrip: inherent shield to the substrate
 - □ Insensitive to substrate parameters

Traveling vs. Standing Wave

- Both are equivalent to $\lambda/4$ short-circuited T/L
- [Wood01], [O'Mahony03], [Ham04]

LTV Phase Noise Theory

LTV Phase Noise Theory

- VCO response depends on when noise hits
- Hajimiri ISF: linear, but time-varying response $h_{\phi}(t,\tau) = \Gamma(\omega_{o}\tau)/q_{max} \cdot u(t-\tau)$

Periodic ISF: Noise Folding

- $\phi(t) = \int h_{\phi}(t,\tau) \cdot i(\tau) d\tau = \int \Gamma(\omega_{o}\tau)/q_{max} \cdot i(\tau) d\tau (*)$
- $\Gamma(\cdot)$ is periodic; expanded to Fourier series:

$$\Gamma(\omega_{o}\tau) = c_{0}/2 + \sum c_{n} \cdot \cos(n\omega_{o}\tau)$$

Noise at $n \cdot \omega_{\lambda} + \Delta \omega$ folds down to $\Delta \omega$

Thermal Noise Contribution

- Sum of noise power $\approx \sum c_i^2 = 2 \cdot \Gamma_{rms}^2$
- $\mathcal{L}(\Delta \omega) = 10 \cdot \log(i_n^2 / \Delta f \cdot \Gamma_{\rm rms}^2 / (2q_{\rm max}^2 \Delta \omega^2))$
- Minimize $\Gamma_{\rm rms}$ for low 1/f² phase noise

Flicker Noise Contribution

- Flicker noise: $i_{n,1/f}^2 = i_n^2 \cdot \omega_{1/f} / \Delta \omega$
- Only c_0 term counts: $c_0 = \Gamma_{dc}$
- $\mathcal{L}(\Delta \omega) = 10 \cdot \log(i_n^2 / \Delta f \cdot \omega_{1/f} \cdot \Gamma_{dc}^2 / (8q_{max}^2 \Delta \omega^3))$
- Minimize Γ_{dc} for low 1/f³ phase noise

CMOS vs. NMOS/PMOS-only

- Better 1/f³: symmetric ISF lowers Γ_{dc} [Hajimiri99]
- Better $1/f^2$: twice G_m and V_{swing} for same I_{bias}

 \Rightarrow 6-dB less phase noise [Andreani06]

NMOS vs. PMOS

- [Jerng05]: PMOS has less thermal noise than NMOS, because it's less velocity-saturated
- PMOS also has lower flicker noise

NMF: Cyclostationary Noise

- Noise profile changes with the circuit state
 Changes periodically; cyclostationary noise
- Use $\Gamma eff = \Gamma \cdot NMF$ 0.8 Minimize 0.4 Γ eff,rms and 0.0 Γeff,dc --ISF NMF -0.4 Eff. ISF Radians <CMOS LC> π/2 3π/2 0 2π Π Slide 35

Colpitts Oscillator

- Colpitts adds noise when osc is least sensitive
- But Colpitts generates more noise [Andreani05]

Loop Delay

- Loop delay adds to phase shift causing Δf
- Effective Q and ISF degrade [Shaeffer03]

Delay Compensation via Coupling

- VCOs coupled in quadrature pull each other
- Pulling cancels the delay

Tail Current 1/f Noise Up-Conversion

- Tail node fluctuates at $2\omega_{o}$; ISF periodic with $2\omega_{o}$
- DC-noise converts into AM only
- 2ω_o-noise converts into AM+PM [Hegazi01]

Tail Current Source

- Sets I_{bias} and provides high Z to diff pair
- Without CS, the device in triode adds noise

Noise Filter

- High Z is required for even harmonics only
- L_F provides high Z at $2\omega_o$

Inductor Tail

- Removes the current source device
- $L_{\rm S}$ provides high Z at $2\omega_{\rm o}$

NTV Phase Noise Theory

43

NTV Phase Noise Theory

- In LTV, frequency translation occurs only due to the periodic ISF and NMF
- Nonlinearity in VCO can also cause frequency translation, thus noise folding
 Nonlinear Gm of switches
 Nonlinear C/V of varactors
- AM-noise gets converted to PM-noise
 - □ Tail bias 1/f noise
 - □ Vdd noise

Voltage Limiting

- Current-limited: $V_{swing} \approx I_{bias} \cdot R_{tank}$
- Voltage-limited: V_{swing} becomes limited by Vdd
- Phase noise may become worse!
 Devices operate more in linear region (noisy)

Switch Nonlinearity Adds Phase Noise

- Hard switching creates 2nd and 3rd harmonics of current in response to sine voltage
 - □ Nonlinear Gm; dependency on amplitude
- The harmonics flow into C causing imbalance
 Imbalance will result in phase shift
- Thus, amplitude noise will turn into phase noise
 - □ Tail current noise including flicker
 - □ Vdd noise

Switch Device Sizing

- In LTV, excess noise factor γ doesn't depend on switch device sizes [Rael00]
- But switch nonlinearity suggests that smaller device with higher
 Vgs-Vt yields lower
 [Jerng05]

AM-PM due to Varactor Nonlinearity

- Nonlinear C-V of varactor excites harmonics
 Single-tone voltage in
 Multi-tone current out
- Another mechanism of noise folding
 - □ Up-conversion of tail bias 1/f noise

A_0 -Dependency of f_{OSC}

- Due to large swing A_0 , varactor C v
- Ceff = $C_0 C_2/2$

C₀: time average of C C₂: second-order Fourier coeff [Hegazi03]

■ f_{OSC} varies with A₀ ≠ 1/2π√LC_{nom}

A₀-Dependency of Tuning Range

1st-order approximation of tuning range:

 $\mathsf{TR} = \mathsf{Kvco} \cdot \Delta \mathsf{V}_{\mathsf{TUNE}} = (\omega_{\mathsf{H}} \text{-} \omega_{\mathsf{L}}) / \mathsf{A}_{\mathsf{0}} \cdot \Delta \mathsf{V}_{\mathsf{TUNE}}$

TR also depends on A_0 and narrower than $\omega_H:\omega_L$

Vdd Noise Sensitivity

- CMOS: output V_{CM} varies with Vdd
 V across varactor and switches also vary with
 - V across varactor and switches also vary with Vdd
- PMOS: output V_{CM} is fixed at gnd
 - □ By 1st order, Vswing and Vgs-Vt are fixed by Ibias

Selected Topics in LC Oscillator Design

- Design for Wide Tuning Range
- Multiphase Clock Generation
- VCO Design Optimization

Issues for Wide Tuning Range

- MOS varactor is preferred for large dC/dV
- But nonlinear C/V of varactor degrades PN
- Use small varactor + switched array of fixed C

Switched Capacitor Array

- Switch size affects Q and tuning range
- ~2:1 range is feasible; but be aware of the broad-range design issues [Berny05]

Switched Inductor

- Switch L to mitigate trade-offs in varying C only
 - □ If Q_L dominates, $R_{tank} \approx (\omega_o L_S)^2 / R_S$
 - □ Waste of power occurs at high frequency

Multi-Phase Clock Generation (1)

Coupled oscillators [JJKim00]

Multi-Phase Clock Generation (2)

LC-delay ring oscillators [Rogers02]

Slide 57

Multi-Phase Clock Generation (3)

Rotary-wave oscillators [Wood01]

Optimization of LC Oscillator Design

VCO Design Constraints

Power

: I_{bias}

- Start-up
- Osc freq
- Tuning range : $C_{varactor}/C_{tank}$
- : $g_{active} \ge \alpha_{min} \cdot g_{tank} (\alpha_{min} = 3 \sim 5)$
- $: \omega_0^2 = 1/L_{tank}C_{tank}$

VCO Optimization via Iteration

Find transmission line geometry that maximizes Q and satisfies $\omega_o = \omega_{desired}$

Calculate C_{tank} (Size C_{varactor}) Extract

gtank

Graphical Interpretation

Iteration Minimizes Phase Noise

Summary

- LTI theory gives the main guideline:
 - □ Maximize Q of the tank
 - **u** Fundamental limit of γ : γ_{MOS}
- LTV/NTV theory explains noise mechanisms that determine excess noise factor γ
 - $\hfill \square$ Major factor is still Q and γ_{MOS}
 - □ Not everyone agrees what the next dominant one is

- [Lee00] T. Lee, A. Hajimiri, "Oscillator Phase Noise: A Tutorial," JSSC, March 2000
- [Jerng05] A. Jerng, C. Sodini, "The Impact of Device Type and Sizing on Phase Noise Mechanisms," JSSC, Feb. 2005
- [Andreani02] P. Andreani, H. Sjoland, "Tail Current Noise Suppression in RF CMOS VCOs," JSSC, March 2002
- [Andreani05] P. Andreani, et al, "A Study of Phase Noise in Colpitts and LC-Tank CMOS Oscillators," JSSC, May 2005
- [Levantino02] S. Levantino, et al, "Frequency Dependence on Bias Current in 5-GHz CMOS VCOs: Impact on Tuning Range and Flicker Noise Upconversion," JSSC, Aug. 2002
- [Nonis05] R. Nonis, et al, "Modeling, Design and Characterization of a New Low-Jitter Analog Dual-Tuning LC-VCO PLL Architecture," JSSC, June 2005
- [Berny05] A. Berny, et al, "A 1.8-GHz LC VCO with 1.3-GHz Tuning Range and Digital Amplitude Calibration," JSSC, April 2005

- [Hegazi01] E. Hegazi, et al, "A Filtering Technique to Lower LC Oscillator Phase Noise," JSSC, Dec. 2001
- [Maget03] J. Maget, et al, "MOS Varactors with n- and p-Type Gates and Their Influence on an LC-VCO in Digital CMOS," JSSC July 2003
- [Hegazi03] E. Hegazi, A. Abidi, "Varactor Characteristics, Oscillator Tuning Curves, and AM-FM Conversion," JSSC, June 2003
- [Rael00] J. Rael, A. Abidi, "Physical Processes of Phase Noise in Differential LC Oscillators," CICC, 2000
- [Kral98] A. Kral, et al, "RF-CMOS Oscillators with Switched Tuning," CICC, 1998
- [Tiebout01] M. Tiebout, "Low-power Low-Phase-Noise Differentially-Tuned Quadrature VCO Design in Standard CMOS," JSSC, July 2001
- [Porret00] A.-S. Porret, et al, "Design of High-Q Varactors for Low Power Wireless Applications using a Standard CMOS Process," JSSC, Mar. 2000
- [Castello98] R. Castello, et al, "A +/-30% Tuning Range Varactor Compatible with Future Scaled Technologies," Symp VLSI, 1998

- [Svelto00] F. Svelto, et al, "A three terminal varactor for RFICs in standard CMOS technology," IEEE Trans. Electron Devices, April 2000
- [Maget02] J. Maget, et al, "Influence of novel MOS varactors on the performance of a fully integrated UMTS VCO in standard 0.25-um CMOS technology," JSSC, July 2002
- [Ham01] D. Ham, A. Hajimiri, "Concepts and methods of optimization of integrated LC VCOs," JSSC, June 2001
- [Doan04] C. H. Doan, et al, "Design of CMOS for 60GHz Applications," ISSCC 2004
- [JJKim00] J. J. Kim, B. Kim, "A Low-Phase-Noise CMOS LC Oscillator with a Ring Structure," ISSCC 2000
- [Aparicio02] R. Aparicio, A. Hajimiri, "A CMOS Differential Noise-Shifting Colpitts VCO," ISSCC 2002
- [Wang01] H. Wang, "A 50GHz VCO in 0.25um CMOS," ISSCC 2001
- [Wood01] J. Wood, et al, "Rotary Traveling-Wave Oscillator Arrays: A New Clock Technology," JSSC, Nov. 2001

- [O'Mahony03] F. O'Mahony, et al, "10GHz Clock Distribution Using Coupled Standing-Wave Oscillators," ISSCC 2003
- [Liu99] T.-P. Liu, "A 6.5-GHz Monolithic CMOS Voltage-Controlled Oscillator," ISSCC 1999
- [Shaeffer03] D. Shaeffer, S. Kudszus, "Performance-Optimized Microstrip Coupled VCOs for 40-GHz and 43-GHz OC-768 Optical Transmission," JSSC, July 2003
- [Razavi02] B. Razavi, "Prospects of CMOS Technology for High-Speed Optical Communication Circuits," JSSC, Sept. 2002
- [Yue98] C. P. Yue, S. S. Wong, "On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC's," JSSC, May 1998
- [Mohan99] S. S. Mohan, et al, "Simple Accurate Expressions for Planar Spiral Inductances," JSSC, Oct 1999
- [Ham04] D. Ham, W. Andress, "A Circular Standing Wave Oscillator," ISSCC, Feb. 2004
- [Rogers02] J. E. Rogers, J. R. Long, "A 10Gb/s CDR/DEMUX with LC Delay Line VCO in 0.18um CMOS," ISSCC 2002

- [Hajimiri99] A. Hajimiri, T. H. Lee, "Design Issues in CMOS Differential LC Oscillators," JSSC, May 1999
- [Li05] Z. Li, K. K. O, "A Low-Phase-Noise and Low-Power Multiband CMOS Voltage-Controlled Oscillator," JSSC, June 2005
- [Andreani06] P. Andreani, A. Fard, "A 2.3GHz LC-Tank CMOS VCO with Optimal Phase Noise Performance," ISSCC 2006
- [JKim06] J. Kim, et al, "A 20-GHz Phase-Locked Loop for 40-Gb/s Serializing Transmitter in 0.13-um CMOS," JSSC, April 2006
- [DaDalt05] N. Da Dalt, et al, "A Compact Triple-Band Low-Jitter Digital LC-PLL with Programmable Coil in 130-nm CMOS," JSSC, July 2005
- [Yue98] P. Yue, S. S. Wong, "On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC's," JSSC, May 1998

