Lecture 8. Introduction to RF Simulation

Jaeha Kim Mixed-Signal IC and System Group (MICS) Seoul National University jaeha@ieee.org

Overview

Readings:

- K. Kundert, "Introduction to RF Simulation and Its Application," JSSC, Sept. 1999.
- L. Zadeh, "Frequency Analysis of Variable Networks," Proc.
 I.R.E., Mar. 1950, pp. 291-299.
- Background:
 - This lecture introduces advanced class of simulation algorithms that perform linear, periodically time-varying (LPTV) analyses on circuits. These simulations are commonly referred to as "RF simulations", but once you understand the underlying principles, there are a myriad of ways to utilize them for broad classes of circuits beyond RF.

RF Transceiver

Direct Conversion Transmitter

Super-Heterodyne Receiver

- Identify the key circuit blocks and their purposes
 Filters, LNA, LO, mixers, PA, ...
- Which ones would have difficulties in characterizing their functionalities/performances using conventional SPICE?

SPICE Analysis Modes: TRAN

TRAN: time-domain analysis

- Most versatile way of simulating a circuit measures the output time-waveforms for given inputs' time-waveforms
- Note: when digital folks say "simulation", they always mean this transient analysis (e.g. Verilog only runs in time-domain)
- Which blocks can you verify/characterize with TRAN?
 - □ Check each of filter, LNA, LO, mixer, PA, ...
 - Yes, you can simulate any circuits with TRAN but you can never <u>completely verify</u> the circuit with it
 - □ This is why digital people ask for "formal verification tools"

RF Characteristics I: Narrowband Signals

RF signals are expressed as *modulated carriers*, e.g.,

 $y(t) = m(t) \times A_c \cdot \cos(\omega_c t)$

□ Amplitude, phase, or frequency can be modulated

RF Characteristics I: Narrowband Signals

- To measure RF circuit responses with TRAN analysis We need fine time steps due to the high-frequency carrier Also, long time span due to the low-frequency signal
- Hence, TRAN analysis can take a very long time slow modulation signal fast carrier

RF Analysis Modes: Envelope-Following

- Accelerates transient simulation assuming that the response is a slowly-modulated periodic waveform
 - Once the periodic waveform (i.e. the carrier) is found, only the small changes between the cycles are computed
 - □ e.g. for simulating initial transients of phase-locked loops

SPICE Basics

SPICE is basically a nonlinear ODE solver, which formulates an arbitrary circuit into:

- One reason for SPICE's success was its reliable equation formulation algorithm
 - □ called modified nodal analysis (MNA)

SPICE Basics (2)

- Once the equation is formed, its solution is found by iterating between linearization and solving
 - □ Linearize the nonlinear ODE around its temporary solution
 - □ Solve the linear ODE
 - □ Repeat until the solution converges

SPICE Analysis Modes: DC, AC

- SPICE offers two kinds of steady-state analysis
- DC: finds the DC steady-state response of a circuit
 - Assuming the circuit reaches a DC state at t= ∞ , solve: $f(v(t = \infty), t = \infty) = i(v_{DC}) + u_{DC} = 0$
 - Solving this eq is actually the most difficult task in SPICE!
 Note: it finds "a" solution but not all the solutions...
- AC: calculates the steady-state response to a smallsignal, sinusoidal perturbation
 - Linearizes the system and use phasor analysis to compute the transfer functions
 - Extremely efficient computation the fastest in SPICE!

Characterization with DC/AC Analyses

- Which blocks can you verify/characterize with DC/AC?
 Your choices: filter, LNA, LO, mixer, PA, ...
- The ones with linear, time-invariant (LTI) behaviors
 Filters (LPF, BPF), LNA, and PA fall into this category
 - A frequency-domain transfer function completely describes their functional behavior (filtering, narrow-band amplification)
- But what about others?
 - □ Mixers and oscillators are they just nonlinear?

RF Characteristics II: Linear Time-Varying

- Mixers, just like other RF circuits, are designed to be as linear as possible <u>from its input to output</u> while minimizing distortion/nonlinearities
- Mixer circuit itself exhibits strong nonlinearity and typically driven by a large-signal LO clock:

RF Characteristics II: Linear Time-Varying

- However, the LO clock does not bear any information
 It is more like part of the circuit (i.e. the circuit wouldn't function correctly frequency translation without it)
- Then mixer+clock can be perceived as a LPTV system: $v_{in}(t) = m(t) \cdot cos(\omega_c t)$

 $v_{out}(t) = LPF\{cos(\omega_{LO}t) \cdot v_{in}(t)\} = m(t) \cdot cos((\omega_c - \omega_{LO})t)$

Output

Unlike LTI systems, LPTV systems can translate frequencies!

RF Characteristics II: Linear Time-Varying

- Oscillators are time-varying systems since:
 - □ Its steady-state is a time-varying waveform (periodic)
 - □ Its response to external noises varies with time

* A. Hajimiri and T. H. Lee, "A General Theory of Phase Noise in Electrical Oscillators," IEEE JSSC, Feb. 1998.

Periodic Steady-State (PSS) Analysis

- Finds a steady-state response of a periodic circuit
 - □ The circuit may be driven by periodic, large-signal excitations
 - The resulting response is a large-signal one, but must be periodic
 - e.g. output of a mixer with DC input, oscillator output clock
- PSS is an extension of DC analysis to periodic circuits
 - □ Finds the final waveforms after infinite period of time
 - □ Useful for:
 - Measuring the steady-state frequency of a VCO
 - Measuring the steady-state phase-offset of a locked PLL
 - □ However, as with DC, PSS is the most difficult analysis

Can have convergence issues if care is not taken

PSS Method 1: Harmonic Balance

- Harmonic balance directly finds the PSS solution in frequency domain
 - Assuming that the PSS solution is T-periodic, it can be expressed in a Fourier series:

$$f(v(t),t) \to \sum_{k=-\infty}^{\infty} F_k(V) \cdot e^{j2\pi kt/T} = 0$$
$$F_k(V) = I_k(V) + \frac{j2\pi k}{T}Q_k(V) + U_k = 0$$

Solve a system of equations for k=0, ±1, ..., ± K
 Accuracy/speed depends on the choice of K

PSS Method 2: Shooting Newton

Shooting solves a boundary value problem to find a Tperiodic solution:

$$v(T) - v(0) = 0$$

- In other words, find a circuit state v(0) that makes the state after T identical to v(0)
- \square Requires to calculate the sensitivity of v(T) w.r.t. v(0)

v(0) v'(0)

Harmonic Balance vs. Shooting

- Harmonic Balance (e.g. Agilent ADS)
 - □ A frequency-domain method
 - Easily handles frequency-domain models (e.g. S-parameters)
 - Its accuracy is limited by the number of harmonics used not suitable for simulating strongly nonlinear responses
- Shooting (e.g. Cadence SpectreRF)
 - □ A time-domain method
 - Need not choose the number of harmonics however, the time step should be fine enough to simulate the max frequency AC response
 - □ Can't handle frequency-domain models directly

SpectreRF Syntax for PSS

To find its full description (in fact, it works on any Spectre commands):

unix> spectre -h pss

For example:

```
PSS_Shooting pss fund=1G tstab=100n
+ errpreset=conservative
PSS_HB pss fund=1G harms=10 harmonicbalance=yes
+ errpreset=conservative
```

Tip: USE 'simulator lang=spice' and 'simulator lang=spectre' to Switch the languages within a deck CS

Dealing with PSS Convergence Issues

- Before SPICE became mature enough, circuit designers used to encounter "DC convergence failure" error a lot
 These days, you may get the equivalent messages with PSS
- However, convergence problems are usually the designers' faults the circuit isn't really periodic!
 - Remember, the *entire* circuit must be *perfectly periodic* at the prescribed fundamental frequency
 - □ Common pitfalls (e.g. for a PLL)
 - Some part of the circuit has longer periods (e.g. divider, prbs)
 - The PD has hysteresis or deadzone near the locked point and the PLL doesn't lock to a single point

Output of PSS Analysis

A unit-period time-domain waveform

A collection of Fourier series component

Quasi Periodic Steady State (QPSS)

A circuit driven by two large-signal excitations may have two fundamental tones:

$$x(t) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} X_{kl} \cdot e^{j2\pi(kf_1+lf_2)t}$$

 Its steady-state response (i.e., a periodically modulated periodic signal) can be found either by harmonic balance or by shooting

PSS vs. DISTO

- Consider a PA driven by a large, periodic signal at f_c
 - □ The PSS output waveform may have spectrums at k·f_c due to the PA's nonlinearities (i.e. harmonic distortion)
- Comparison with SPICE's distortion analysis (DISTO)
 DISTO computes the harmonic distortions due to "small-signal" inputs while PSS does for "large-signal" inputs

RF Analysis Modes: Periodic AC (PAC)

- Computes the steady-state response to a small-signal sinusoid excitation of a circuit about its PSS
- For LTI systems, AC analysis returns X(jω₁)·H(jω₁)
 D No frequency translation is possible

RF Analysis Modes: Periodic AC (PAC)

- For LPTV systems, a sinusoid input at ω_1 can excite the output at multiple frequencies of $\omega_1 + m \cdot \omega_c$
 - $\hfill\square$ $H_m(\omega_c)$ is the transfer function mapping to the m-th sideband
 - □ In PAC, you specify which $H_m(\omega_c)$ to be reported

Linear Time-Varying System Basics

Time-varying impulse response $h(t,\tau)$:

$$y(t) = \int_{-\infty}^{t} h(t,\tau) \cdot x(\tau) d\tau$$

• Time-varying transfer function $H(j\omega;t)$:

$$Y(j\omega)e^{j\omega t} = H(j\omega;t) \cdot X(j\omega)e^{j\omega t}$$

Relationship between h(t, τ) and H(jω;t):

$$H(j\omega;t) = \int_{-\infty}^{\infty} h(t,\tau) \cdot exp(-j\omega(t-\tau))d\tau$$

• For LPTV system $H(j\omega;t) = H(j\omega;t+T)$:

$$H(j\omega;t) = \sum_{m=-\infty}^{\infty} H_m(j\omega) \cdot e^{jm\omega_c t}$$

* L. Zadeh, "Frequency Analysis of Variable Networks," Proc. I.R.E. Mar. 1950.

A Mixer Example

- Consider a upconversion mixer
- TF to which sideband would you be interested in?
- That TF describes the conversion gain, bandwidth, etc.

PM vs. AM

 Based on narrowband angle modulation approximation, one can derive whether the input perturbation modulates the phase or the amplitude of the carrier:

$$PM = \frac{j}{A_c} \cdot (H_{-1}e^{j\phi_c} - H_1e^{-j\phi_c})$$
$$AM = \frac{1}{A_c} \cdot (H_{-1}e^{j\phi_c} + H_1e^{-j\phi_c})$$

SpectreRF Syntax for PAC

First, you need a PAC stimulus:

Vin (in gnd) vsource dc=0 pacmag=1 pacphase=0

Then the analysis statement:

```
sim_PAC pac start=1k stop=.1G dec=10 maxsideband=10
freqaxis=in
```

- **sidebands:** array of relevant sidebands for the analysis.
- maxsideband: equivalent to sidebands = [-maxsideband ...
 0 ... +maxsideband
- freqaxis: specifies whether the results should be output versus the input frequency (in), the output frequency (out), or the absolute value of the output frequency (absout)

SPICE Analysis Modes: NOISE

- Computes output noise PSD contributed by multiple noise sources
- Based on the TFs obtained by small-signal AC analysis

RF Analysis Modes: Periodic Noise

- Since in LPTV systems a single-frequency input can give rise to outputs at multiple frequencies, noise folding may occur
- The resulting noise is in general cyclostationary

SpectreRF Syntax for PNOISE

Reporting time-averaged PSD of the output noise

- start=1 stop=0.5G dec=20
- maxsideband=50 noisetype=sources
- maxsideband specifies the # of sidebands in the noise TF to be considered
- Reporting the output noise PSD at specific time (hence, cyclostationary noise):

```
sim_PNOISE ( outp outn ) pnoise
+ start=1 stop=0.5G dec=20
+ maxsideband=50 noisetype=timedomain
+ noisetimepoints=[0.5n] numberofpoints=1
```

