Lecture 11. Mismatch Simulation using PNOISE

Jaeha Kim Mixed-Signal IC and System Group (MICS) Seoul National University jaeha@ieee.org

Overview

- Readings
 - J. Kim, K. D. Jones, M. A. Horowitz, "Fast, Non-Monte-Carlo Estimation of Transient Performance Variation Due to Device Mismatch," IEEE Trans. Circuits and Systems I, July 2010.
- Background
 - In this lecture, we will find another use of periodic analyses in RF simulators. First, we can approximate mismatch-induced offsets as low-frequency AC noise and hence substitute timeconsuming Monte-Carlo simulations with small-signal noise analysis. The periodic noise (PNOISE) analysis lets you extend this approach to those that involve time-domain simulations.

Design for Yield

- CMOS device mismatch nearly doubles for every process generation < 100nm</p>
 - \square 3 σ -variation of I_{DS} reached beyond 30%
- Worst-case analysis is too pessimistic
 Sacrifices speed, power, and area
- Must use statistical methods to estimate variation due to mismatch
 - □ And optimize circuits for highest yield

Previous Work

- Monte-Carlo Simulation
 - □ Repeated simulation with random samples
 - □ Often prohibitively time-consuming
- Yield optimization is even more costly
 - □ Iteration over Monte-Carlo simulations
 - □ Sensitivity requires additional sims
- Prior arts: variance reduction, response surface modeling, design centering, robust convex optimization, etc.

This Work

- Extends DCMATCH to estimate variation in transient measurements
 - Delay of logic path, frequency of VCO, input offset of comparator
 - □ Applies to small, Gaussian mismatches
- Achieves 100~1000× speed up compared to Monte-Carlo analysis
- Exploits currently available RF simulators (SpectreRF) and Verilog-A

Idea 1: DC offset ≈ low-freq AC noise

If simulation time is bounded, low-freq AC noise appears the same as DC offset

Idea 2: Sensitivity-based Analysis

 If input variation is small enough, ∆output ≈ Sensitivity × ∆input

Noise-Based Mismatch Analysis

Sensitivity-based analysis (DCMATCH):

$$\sigma_{out}^2 = \sum S_i^2 \cdot \sigma_i^2$$

 σ_i : variation in input parameter p_i

S_i: DC sensitivity of the output to p_i

Assuming mismatches are indep. Gaussian

• Noise analysis:

Output $PSD(f) = \sum |TF_i(f)|^2 \cdot Input \ PSD_i(f)$

• $TF(f) \approx DC$ sensitivity if f is low (e.g. 1Hz)

 Math_{GS} PSD_i(f) = σ_i^2 , then Output PSD (f) = σ_{out}^2

Monte-Carlo on Transient Measures

- Ex: VCO frequency, PLL static offset, ...
- Measurement takes place only after a circuit settles to a steady-state

Extend Noise Analysis to Transient (1)

 Transient noise analysis wastes computation during initial transient

Extend Noise Analysis to Transient (2)

- PSS + PNOISE analysis:
 - □ PSS: expedites initial transient
 - □ PNOISE: freq-domain analysis only on PSS

Noise-Based Mismatch Analysis

Noise-Based Mismatch Analysis

Modeling Mismatch as Noise

- Variation in passive elements (R, L, C)
 Model as equivalent pseudo-noise in V or I
- Pseudo-noise has 1/f PSD profile
 - $\square \quad \text{Mismatch with } \sigma^2 \rightarrow \text{PSD(f)} = \sigma^2/f$

Why Model Mismatch as 1/f Noise?

- In LTI frequency-domain analysis, each frequency point is independent
 - □ Only PSD at 1Hz matters
- In LPTV analysis, noise may up-convert or down-convert by N·f_c (noise folding)
 - \Box f_c: fundamental frequency of PSS
- 1/f-noise ensures negligible contamination due to noisefolding

 \Box if 1Hz << f_c

MOS Transistor Mismatch

Pelgrom Model (JSSC, 1989):

$$\sigma_{VT}^2 = A_{VT}^2/WL$$

 $\sigma_{\beta}^2/\beta^2 = A_{\beta}^2/WL$

Verilog-A Modeling of Pseudo-Noise

endmodule

```
subckt NMOS_MC ( d g s b )
parameters W=1.0u L=0.13u
transistor ( di gi s b ) nmos W=W L=L
mismatch ( d di g gi s ) mos_MC
+ var_VT=A_VT**2/(W*L) var_REL_BETA = A_rel_beta**2/(W*L)
ends NMOS_MC
```


Model Correlations

- Mismatches may be correlated
 - □ Ex: spatial correlation
 - □ Noise sources are assumed independent
- Model correlation among mismatches by combining independent noise sources
 - □ Assume N₁, N₂ are indep. Gaussian with σ =1

$$\square \quad X = x_1 \cdot N_1 + x_2 \cdot N_2 \rightarrow Var(X) = x_1^2 + x_2^2$$

$$Y = y_1 \cdot N_1 + y_2 \cdot N_2 \rightarrow Var(Y) = y_1^2 + y_2^2$$

$$Cov(X,Y) = x_1 \cdot y_1 + x_2 \cdot y_2$$

PNOISE Analysis

- LPTV small-signal noise analysis
 - □ Linearizes the circuit around its periodic steady-state (PSS)
 - Thus the circuit must have PSS
- Many transient sims can be made periodic
 - VCO frequency: already periodic
 - □ Logic path delay: apply periodic inputs
- SpectreRF, HSPICE-RF, ADS, ...

Periodic Setup for Comparator

- Feedback servos V_{OS} for V(out+)=V(out-)
- V_{OS} settles to input offset voltage at PSS

Comparator Offset Simulation

V_{OS} settles to input offset voltage at PSS

Before Settling

After Settling

Interpreting Output Noise as Variation

 PNOISE output is cyclostationary noise
 Described by a collection of PSDs at various sidebands: 0, ±f_c, ±2f_c, ±3f_c, ...

- Baseband noise PSD corresponds to variation in DC response
 - □ E.g. variation in offset voltage
 - \square PSD of P₁ at 1Hz \rightarrow variation $\sigma^2 = P_1$

Variation in Delay and Frequency

- Passband noise PSD corresponds to variation in AC response
 - □ E.g. time shifts in PSS: phase, delay, freq.
- From narrowband FM approximation:

$$\sigma_{\Phi}^{2} = \pi^{2} \cdot P_{1} / A_{c}^{2}$$

$$\sigma_{D}^{2} = 1 / 4 f_{c}^{2} \cdot P_{1} / A_{c}^{2}$$

$$\sigma_{f}^{2} = 4 f_{1}^{2} \cdot P_{1} / A_{c}^{2}$$

Breakdown of Noise Contributions

- Simulator also reports breakdown of contributions to total output noise
 List of $(S_i \cdot \sigma_i)^2$ in $\sigma_{out}^2 = \sum S_i^2 \cdot \sigma_i^2$
- Use this breakdown to estimate:
 - □ Sensitivities
 - Correlations
 - □ At no additional simulation cost!

Sensitivity Analysis

Sensitivity of output variation (σ_{out}) w.r.t. design parameters (e.g. device W) $\partial \sigma_{out}^2 / \partial W_i = \sum S_i^2 \cdot \partial \sigma_i^2 / \partial W_i$

 $\sigma_{i} \text{ is either } \sigma_{\text{VT}} \text{ or } \sigma_{\beta}/\beta$

- According to Pelgrom model: $\partial \sigma_i^2 / \partial W = -A^2 / W^2 L = -\sigma_i^2 / W$
- Therefore:

$$\partial \sigma_{out}^2 / \partial W_i = -\sum S_i^2 \cdot \sigma_i^2 / W_i$$

Comparator Mismatch Sensitivity

Correlation Analysis

For Z = X+Y,
$$\sigma_z^2 = \sigma_x^2 + \sigma_y^2 + \sigma_{XY}$$

- $\hfill\square$ But we often forget $\sigma_{\rm XY}$ term
- □ Without σ_{XY} (covariance), RMS sum can either under-estimate or over-estimate
- If two measurements A, B vary as:

$$\sigma_A^2 = \sum \left(S_{A,i}^2 \cdot \sigma_i \right)^2 \text{ and } \sigma_B^2 = \sum \left(S_{B,i}^2 \cdot \sigma_i \right)^2$$

then covariance σ_{AB} is given by:

$$\sigma_{AB} = \sum \left(S_{A,i}^2 \cdot \sigma_i \right) \cdot \left(S_{B,i}^2 \cdot \sigma_i \right)$$

Correlation Analysis Example

$X \xrightarrow{c} A$ $Y \xrightarrow{a} \xrightarrow{b} \xrightarrow{d} B$							
Mismatch source	X rises first		Y rises first				
	Delay at A	Delay at B	Delay at A	Delay at B			
Gate a (inv)	1.168e-23	1.145e-23	2.545e-33	1.147e-23			
Gate b (nor)	2.060e-23	1.543e-23	1.094e-30	1.549e-23			
Gate c (nand)	6.934e-24	5.662e-26	3.704e-24	6.133e-26			
Gate d (inv)	1.068e-25	3.401e-24	5.443e-36	3.417e-24			
Correlation (ρ)	0.885		0.010				

Correlation Analysis Example

X Y A Z C A C A C A C A C A C A B							
Mismatch source	X rises first		Y rises first				
	Delay at A	Delay at B	Delay at A	Delay at B			
Gate a (inv)	1.168e-23	1.145e-23	2.545e-33	1.147e-23			
Gate b (nor)	2.060e-23	1.543e-23	1.094e-30	1.549e-23			
Gate c (nand)	6.934e-24	5.662e-26	3.704e-24	6.133e-26			
Gate d (inv)	1.068e-25	3.401e-24	5.443e-36	3.417e-24			
Correlation (ρ)	0.885		0.010				

Benchmark Results

Test Case	CPU Time		Results (σ)	
	Proposed	1000-pt Monte-Carlo	Proposed	1000-pt Monte-Carlo
Comparator Input Offset	21.6 sec	24373 sec	28.741 mV	28.775 mV
Logic Path Delay	5.52 sec	1990 sec	A: 1.925 ps B: 5.518 ps	A: 2.004 ps B: 5.174 ps
5-stage Ring Oscillator	6.09 sec	652 sec	69.34 MHz	69.96 MHz

- 0.13µm CMOS, 3σ for I_{DS} ≈ 14%
 - 3.6GHz Intel Xeon with 4GB memory

Histogram Comparison

Limitations

Small, Gaussian mismatches only

 \square 10% error when 3σ in I_{DS} becomes 38%

Conclusions

- This work extends DCMATCH analysis to estimation of transient performance
 - □ Assumes small, Gaussian mismatch PDFs
- Noise-based analysis exploits efficient PSS and PNOISE algorithms
 - □ Compared to transient noise analysis
- Yield optimization becomes tractable

