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Clocked Comparators
 a.k.a. regenerative amplifier, sense-amplifier, flip-flop, 

latch  etc  latch, etc. 
 At every clock edge, sample the input (continuous) and 

d id  h th  it i  0  1 (bi )decide whether it is 0 or 1 (binary)
 Therefore, it’s inherently nonlinear operation
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Comparator Characteristics
 Offset and hysteresis
 Sampling aperture, timing resolution, uncertainty window
 Regeneration gain, voltage sensitivity, metastabilityg g g y y
 Random decision errors, input-referred noise

 Can be analyzed and simulated based on a linear, time-
i  (LTV) d l f th  tvarying (LTV) model of the comparator
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Clocked Comparator Operation

 4 operating phases: reset, sample, regeneration & decision
 Sampling & regeneration phases can be modeled as LTV Sampling & regeneration phases can be modeled as LTV
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An Ideal Comparator Model
Vk= Vi(to+kT),

to+kT
Vi(t) DkVi(t) Dk

o



 Sampling and decisionp g
 Infinitely-fast tracking of Vi(t)

 A realistic comparator acts on a filtered version of Vi(t)A realistic comparator acts on a filtered version of Vi(t)
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LTV Model for Clocked Comparator

NoisyV (t)

Vk= Vo(tobs+kT)

DV (t) D
tobs+kT

V (t)Noisy
Nonlinear

Filter

Vi(t) DkVi(t) Dk Vo(t)

vo(t)( ) h(t )
vi()

LTV small signal model

()=h(t,)

no(t)

 Assumes a noisy, nonlinear filter before the sampling
 The filter’s small-signal response is modeled with ISF () The filter s small signal response is modeled with ISF ()

6* J. Kim, et al., “Simulation and Analysis of Random Decision Errors in 
Clocked Comparators,” IEEE TCAS-I, 08/2009.



ISF for Oscillators
 Impulse sensitivity function (ISF) () is defined as:

() = the final shift in the oscillator phase due to
a unit impulse arriving at time 

(1)
(2)=0

1 2
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* A. Hajimiri and T. H. Lee, “A General Theory of Phase Noise in Electrical 
Oscillators,” IEEE JSSC, Feb. 1998.



ISF for Oscillators (2)
 ISF describes the time-varying response of a oscillator

 Responses to each impulse add up via superposition Responses to each impulse add up via superposition
 For arbitrary noise input n(t), the resulting phase shift  is:








  dn  )()(

 ISF led to some key oscillator design idioms:
 Sharpen the clock edge to lower ISF (i.e. minimize RMS)

Ali  i   i hi  l ISF i d  Align noise events within low-ISF period 
 Balance ISF (i.e. DC=0) to prevent 1/f-noise up-conversion
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ISF for Samplers and Comparators
 For sample-and-hold circuits, the sampled voltage Vs

can be expressed via a “sampling function” f(t):can be expressed via a sampling function  f(t):




  dVfV is  )()(

* H. O. Johansson, C. Svensson, “Time Resolution of NMOS Sampling 
Switches Used on Low-Swing Signals,” JSSC, Feb. 1998.

 
is

 For clocked comparators, we simply add the “decision”:
  







 




 dVΓVD ikk  )()(sgnsgn
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* P. Nuzzo, et al., “Noise Analysis of Regenerative Comparators for 
Reconfigurable ADC Architectures,” TCAS-I, July 2008.



ISF for Clocked Comparators
 ISF shows sampling aperture, i.e. timing resolution
 In frequency domain, it shows sampling gain and BW

ISF () F.T. { (-) }( ) { ( ) }
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Generalized ISF
 In general, ISF is a subset of a so-called time-varying 

impulse response h(t ) for LTV systems*:impulse response h(t, ) for LTV systems*:





  d xthty )(),()(

 h(t, ): the system response at t to a unit impulse arriving at 
F  LTI t  h( )  h( ) l ti

 

 For LTI systems, h(t, ) = h(t-) convolution

 ISF () = h(t0, )
 t0: the time at which the system response is observed
 For oscillators, t0 = +
 For comparators  t0 is before the decision is made (more later) For comparators, t0 is before the decision is made (more later)

11* L. Zadeh, “Frequency Analysis of Variable Networks,” Proc. 
I.R.E. Mar. 1950.



Noise in LTV Systems
 If the input  x(t) to an LTV system is a noise process, 

then the output  y(t) is a time varying noise in generalthen the output  y(t) is a time-varying noise in general
 Expressions become very complex (cyclo-stationary at best)

We can keep things simple if we are interested in the  We can keep things simple if we are interested in the 
noise only at one time point (in our case: t0 = tobs+kT)
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LTV Output Noise at t = t0
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 Rxx(u, v) is the auto-correlation of the input noise x(t)

 
 

dvduvthuthvuRxx  ),(),(),( 00

Rxx(u, v) is the auto correlation of the input noise x(t)
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Response to White and 1/f Noises
 If the input  x(t) is white noise, i.e. Rxx(u, v) = x

2  (u-v):










  dΓduutht xxy  )( ),()( 22
0

22
0

2

 If the input  x(t) is 1/f noise, i.e. Rxx(u, v) = x
2 :

22
 
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

 Γduutht xxy

 Agrees with Hajimiri/Lee’s low-noise design idioms:
 To minimize contribution of white noise, minimize RMS

T  i i i  ib i  f 1/f i  k   0 To minimize contribution of 1/f noise, make DC = 0
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Random Decision Error Probability
 If we have multiple noise sources, their contributions add 

up via RMS sum assuming they are independent:up via RMS sum assuming they are independent:

 ojyototaly tt )()( 2
,

2
, 

 If the comparator has signal Vo and noise n o at tobs, the 


j

p g o n,o obs,
decision error probability P(error) can be estimated as:

)()( ttVSNR 

  


 dxxSNRQerrorP )2/exp(1)( 2

)()( , obsonobso ttVSNR 
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  
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Q )p(
2
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Circuit Analysis Example
 A variant of StrongARM comparator
 When clk is low, the comparator is in reset

 out+/- are at Vdd
X/X’  V V X/X’ are ~Vdd-VTN

 When clk rises (say t=t0) When clk rises (say t t0),
the comparator goes thru:
 Sampling phase (t0~t1)

X X’

 Regeneration phase (t1~t2)
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1. Sampling Phase (t = t0~t1)
 While out+/- remain high:

 M1 pair discharges X/X’ M1-pair discharges X/X
 M2-pair discharges out+/-

 S S  transfer from v to v : S.S. transfer from vin to vout:

 2

21
/)()(

)(

xoutxoutmxout

mm

in

out
CCCCgsCsC

gg
sv
sv




  

21
22

21

2

1
/)()(

ssxout

mm

xoutxoutmxoutin

sCCs
gg

CCCCgsCsCsv









 The ISF w.r.t. vin is:

RG
tt

t 


 1)(

17

R
ss 21

)(




1. Sampling Phase (t = 0~t1)
 S.S. response to M1 noise:

xout

m

n

out

CCs
g

si
sv

2
2

1 )(
)(


 S S  response to M2 noise:

R
ssm

n G
g

tt
t 




211

1
1 )(



 S.S. response to M2 noise:
out

sCsi
sv 1
)(
)(


outn sCsi )(2

R
out

n G
C

t 
1)(2
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2. Regeneration Phase (t = t1~t2)
 We assume X/X’ ~ 0V and

M1 pair is in linear regionM1-pair is in linear region
 The circuit is no longer 

sensitive to vin (ISF=0)in ( )

 Cross-coupled inverters amplify
signals via positive-feedback:g p








 


R
R

tt
G


12exp

 The ISF w.r.t. noise is:
)/( ,3,2 rmrmoutR ggC 





 tt1
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Putting It All Together
 The overall gain G is:





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 

 


dciobso
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)(

d )(/)(

 The total input referred
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 The total input-referred
noise is:
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 Most of the noise is contributed 

by M1 and M2 pairs during the 
sampling phase
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Design Trade-Offs
 The input-referred noise can be approximated as:

2
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3
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 Therefore, noise improves with larger gm/Id ratios and 
wider sampling aperture (t1-t0)p g p ( 1 0)

 However, sampling bandwidth and/or gain may degrade
 Controlling the tail turn-on rate is a good way to keep high gaing g y p g g
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Simulating Aperture & Noise 
 RF simulators (e.g. SpectreRF) can simulate small-signal 

LPTV response and noise efficiently:LPTV response and noise efficiently:
 Simulates linearized responses around a periodic steady-state
 PAC analysis gives H(j;t) = Fourier transform of h(t,)*y g (j ; ) ( , )
 PNOISE analysis can give the noise PSD at one time point

 The remaining question is how to choose tobs?
 We’d like to choose it to mark the end of the regeneration We d like to choose it to mark the end of the regeneration
 Since () in our LTV model captures sampling + regeneration
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* J. Kim, et al., “Impulse Sensitivity Function Analysis of Periodic Circuits,” 
ICCAD’08.



Comparator Periodic Steady-State (PSS)
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 PSS response of the comparator for a small DC input
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 PSS response of the comparator for a small DC input
 Near the clock’s rising edge; return to reset not shown 
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Comparator Sampling Aperture (PAC)
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Comparator Noise (PNOISE)
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 Magenta line plots the rms output noise (t) vs. time, 
bt i d b  i t ti  th  i  PSD t h ti  i t
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obtained by integrating the noise PSD at each time point
 This is not “transient noise analysis”– it’s a time sample 

f l t ti  i  ( h  ffi i t)of cyclo-stationary noise (much more efficient)
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Comparator Output SNR
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Deciding on tobs

 How to choose tobs that marks the end of regeneration
 Most of the noise is contributed during the sampling phase

 Noise that enters during the sampling phase sees the full gain
N i  th t t  l t  d i  th  ti  h     Noise that enters later during the regeneration phase sees an 
exponentially decreasing gain with time

 For the purpose of estimating decision errors  selection of  For the purpose of estimating decision errors, selection of 
tobs is not critical as long as it’s within regeneration phase
 The SNR and decision error probability stay ~constante S a d dec s o e o p obab ty stay co sta t
 I choose tobs when the comparator has the max. small-signal 

gain (i.e. before the nonlinearity starts suppressing the gain)
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Measurement Results

A AV V
D2k DA 



A A 
Vi ViD2k+1

   LTI Front End

D4k,…,4k+3

 Both receivers are based on StrongARM comparators
Receiver A (90nm) Receiver B (65nm)



 Both receivers are based on StrongARM comparators
 Differential Cin ~ 2pF  thermal noise from the input 

termination resistors < 100 Vrmstermination resistors < 100Vrms
 Excess noise factor  not spec’d by foundries

i l t d t lti l  lsimulated at multiple values
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Receiver A – Direct Sampling Front-End
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 Simulation of the decision error (BER) = Q(Vo(tobs)/o(tobs))
versus the DC input level (excess noise factor =2)
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versus the DC input level (excess noise factor  2)



Receiver A – Direct Sampling Front-End
0

-8

-4
B

ER
)

-16

-12lo
g(

B

-20
0 2 4 6 8 10 12

DC Input (mV)

 Measurement of the decision errors (BER) based on the 
density of the wrong outputs (0’s) versus the DC input level
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density of the wrong outputs (0 s) versus the DC input level



Receiver A – Direct Sampling Front-End
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
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 Fit both sets of points to the Gaussian BER model
 Compare the estimated ’s (input referred rms noise)
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 Compare the estimated  s (input-referred rms noise)



Simulation vs. Measurement

Simulated (mV,rms) Measured (mV,rms)( ) ( )
Receiver =1 =2 =3 =4 (Pos. / Neg. / Avg.)

(A) 90nm
Direct Sampling
Front-End

0.59 0.79 0.94 0.79 / 0.65 / 0.72

(B) 65nm(B) 65nm
w/ Linear
Front-End 0.62 0.73 0.83 0.87 / 0.83 / 0.85

 (Pos. / Neg. / Avg.) refers to measurement results for 
positive VIN  negative VIN  and their averagepositive VIN, negative VIN, and their average
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Noise Filtering via Finite Aperture (ISF)
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 In receiver B, the noise contributed by the linear front-
d i  filt d b  th  fi it  t  f th  t

Frequency (GHz)

end is filtered by the finite aperture of the comparator
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Conclusions
 The linear time-varying (LTV) system model is a good tool for 

understanding the key characteristics of clocked comparatorsunderstanding the key characteristics of clocked comparators
 Sampling aperture and bandwidth
 Regeneration gain and metastabilityg g y
 Random decision errors and input-referred noise

 The impulse sensitivity function (ISF) has a central role in it:The impulse sensitivity function (ISF) has a central role in it:
 As it did for oscillators
 Guides design trade-offs between noise, bandwidth, gain, etc.

 The LTV framework is demonstrated on the analysis, 
simulation, and measurement of clocked comparators
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Back-Up SlidesBack Up Slides



Extracting ISF from h(t,)
 Choose tobs as the maximum small-signal gain point

ISF: ( ) = h(t ) ISF: () = h(tobs,)

Maximum
Gain Point ()

tobs tobs
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Effects of the Bridging Device
 Improves hold time and metastability

Increased
Reg. Gain Improvedp

Hold Time
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Effects of Input and Output Loading

Increased
Hold Time

Increased
Setup Time

38


